CONCRETE DELAYED FAILURE TIME
Main Article Content
Abstract
At a single action on a concrete and reinforced concrete structure short-term dynamic load, the value of which may exceed the value of the static load-bearing capacity of the structure, it was observed that failure will occur not immediately, but after a certain time (delayed failure time td). If the dynamic load action is stopped before the moment td, the structure will not collapse. Therefore, the accurate determination of the delayed failure time of concrete is an important and relevant problem. To solve this problem, the paper presents a visco-elastic-plastic model to describe the stress-strain state of concrete under dynamic loading. This model consists of 2 elements: a nonlinear spring A and a piston B connected in parallel. Element A describes the nonlinear elastic-plastic properties of concrete, and element B takes into account the high-strain-rate effect of concrete. Under the action of sudden dynamic loads with an intensity greater than the static bearing capacity of the concrete, piston B helps to inhibit the development of deformations initiated in element A. Based on the proposed model, the delayed failure time is defined by the time interval required for the deformation of concrete to reach its ultimate value. The main factors affecting the deformation and failure of concrete such as concrete compressive strength, overload level, and viscosity are also investigated. Specifically, as follows: The higher the static compressive strength of concrete, the lower the delayed failure time. When a dynamic force of greater intensity is applied compared to the bearing capacity of the concrete, the faster the specimen will destroy. In addition, the viscosity coefficient significantly reduces the strain rate of concrete and the corresponding delayed failure time increases as the viscosity increases.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Bazhenov Yu.M. (1970) Beton pri dinamicheskom nagruzhenii [Concrete under dynamic loading]. Мoscow: Stroyizdat. (in Russian)
Rossi P. (1991) Influence of cracking in the presence of free water on the mechanical be-haviour of concrete. Magazine of concrete research, vol. 43, no 154, pp. 53-57. doi:10.1680/MACR.1991.43.154.53 DOI: https://doi.org/10.1680/macr.1991.43.154.53
Cadoni E., Solomos G., Albertini C. (2009) Mechanical characterisation of con-crete in tension and compression at high strain rate using a modified Hopkinson bar. Magazine of Concrete Research, vol. 61, no 3, pp. 221-230. doi:10.1680/MACR.2006.00035 DOI: https://doi.org/10.1680/macr.2006.00035
Fedorova N.V., Medyankin M.D., Busho-va O.B. (2020) Eksperimentalnoe opredele-nie parametrov statiko-dinamicheskogo de-formirovaniya betona pri rezhimnom nagru-zhenii [Experimental determination of the parameters of the static-dynamic deformation of concrete under loading modal]. Stroitelstvo i rekonstruktsiya, no 3, pp. 72–81. DOI: https://doi.org/10.33979/2073-7416-2020-89-3-72-81
Korobkova M.V. (2015) Ispytaniya bet-onnykh obraztsov s dempfiruyushchimi do-bavkami na dinamicheskuyu prochnost [Tests of Concrete Samples with Damping Additives on Dynamic Strength]. Stroitelnye materialy, vol. 6, pp. 9–12.
Fedorova N.V., Medyankin M.D., Busho-va O.B. (2020) Opredelenie parametrov statiko-dinamicheskogo deformirovaniya betona [Determination of static-dynamic de-formation parameters of concrete]. Promysh-lennoe i grazhdanskoe stroitelstvo, no 1, pp. 4–11.
Al-Salloum Y., Almusallam T., Ibrahim S.M., Abbas H., Alsayed S. (2015) Rate dependent behavior and modeling of con-crete based on SHPB experiments. Cement and Concrete Composites, vol. 55, pp. 34–44. doi:10.1016/j.cemconcomp.2014.07.011 DOI: https://doi.org/10.1016/j.cemconcomp.2014.07.011
Malvar L.J., Ross C.A. (1998) Review of strain rate effects for concrete in tension. ACI Materials Journal, vol. 95, no 6, pp. 735-739. doi:10.14359/418 DOI: https://doi.org/10.14359/418
Fu H.C., Erki M.A., Seckin M. (1991) Re-view of Effects of Loading Rate on Con-crete in Compression. Journal of Structural Engineering, vol. 117, no 12, pp. 3645–3659. doi:10.1061/(ASCE)0733-9445(1991)117:12(3645) DOI: https://doi.org/10.1061/(ASCE)0733-9445(1991)117:12(3645)
Guo Y.B., Gao G.F., Jing L., Shim V.P.W. (2022) Dynamic Properties of Mor-tar in High-strength Concrete. International Journal of Impact Engineering, vol. 165. doi:10.1016/J.IJIMPENG.2022.104216. DOI: https://doi.org/10.1016/j.ijimpeng.2022.104216
Ali M.A., Tomann C., Aldakheel F., Mahlbacher M., Noii N., Oneschkow N., Drake K.H., Lohaus L., Wriggers P., Haist M. (2022) Influence of Moisture Con-tent and Wet Environment on the Fatigue Behaviour of High-Strength Concrete. Mate-rials, vol. 15, no 3. doi:10.3390/MA15031025 DOI: https://doi.org/10.3390/ma15031025
Salem S., Eissa E., Zarif E., Sherif S., Shazly M. (2023) Influence of moisture con-tent on the concrete response under dynamic loading. Ain Shams Engineering Journal, vol. 14, no 5. doi:10.1016/J.ASEJ.2022.101976. DOI: https://doi.org/10.1016/j.asej.2022.101976
Qi C., Xia C., Dyskin A., Zhao F. (2021) Effect of crack interaction and friction on the dynamic strength of rock-like materials with many cracks. Engineering Fracture Mechanics, vol. 257. doi:10.1016/J.ENGFRACMECH.2021.108006 DOI: https://doi.org/10.1016/j.engfracmech.2021.108006
Yu W., Jin L., Du X. (2021) Influence of pre-static loads on dynamic compression and corresponding size effect of concrete: Mesoscale analysis. Construction and Build-ing Materials, vol. 300. doi:10.1016/J.CONBUILDMAT.2021.124302 DOI: https://doi.org/10.1016/j.conbuildmat.2021.124302
Alanazi N., Kolawole J.T., Buswell R., Susmel L. (2022) The Theory of Critical Distances to assess the effect of cracks/manufacturing defects on the static strength of 3D-printed concrete. Engineer-ing Fracture Mechanics, vol. 269. doi:10.1016/J.ENGFRACMECH.2022.108563 DOI: https://doi.org/10.1016/j.engfracmech.2022.108563
Fu Q., Zhang Z., Zhao X., Hong M., Guo B., Yuan Q., Niu D. (2021) Water satura-tion effect on the dynamic mechanical be-haviour and scaling law effect on the dy-namic strength of coral aggregate concrete. Cement and Concrete Composites, vol. 120. doi:10.1016/J.CEMCONCOMP.2021.104034 DOI: https://doi.org/10.1016/j.cemconcomp.2021.104034
Selyutina N.S., Petrov Y.V. (2020) Fracture of saturated concrete and rocks under dy-namic loading. Engineering Fracture Me-chanics, vol. 225. doi:10.1016/J.ENGFRACMECH.2018.11.052 DOI: https://doi.org/10.1016/j.engfracmech.2018.11.052
Bazhenov Y.M., Udaltsov V.S. (1964) Ob effekte zaderzhki razrusheniya betona na pri dinamicheskom nagruzhenii [On the effect of delaying the failure of concrete under dynamic loading]. Materialy XV Itogovoy nauchno-issledovatelskoy konferentsii VNO VIKA, no 11, pp. 8-11.
Rakhmanov V.A., Rozovsky E.L., Tsupkov I. (1987) Vliyanie dinamicheskogo vozdeystviya na prochnostnye i deforma-tivnye svoystva tyazhelogo betona [The influence of dynamic influence on the strength and deformation properties of heavy concrete]. Beton i zhelezobeton, no 7, pp. 19-20.
Fedorova N.V., Ngoc V.T. (2020) Defor-mation and failure of monolithic reinforced concrete frames under special actions. Jour-nal of Physics: Conference Series, vol. 1425, no 1. doi:10.1088/1742-6596/1425/1/012033 DOI: https://doi.org/10.1088/1742-6596/1425/1/012033
Savin, S., Kolchunov, V., Fedorova, N., Tuyen Vu, N. (2023) Experimental and Numerical Investigations of RC Frame Sta-bility Failure under a Corner Column Re-moval Scenario. Buildings, Vol. 13, no 4. doi:10.3390/BUILDINGS13040908 DOI: https://doi.org/10.3390/buildings13040908
Tuyen V.N., Ivanovich K.V., Vitalyevna F.N. (2024) Dynamic response model of re-inforced concrete building frame under col-umn removal scenario. Structures, vol. 63. doi:10.1016/J.ISTRUC.2024.106356 DOI: https://doi.org/10.1016/j.istruc.2024.106356
Geniev G.A. (1998) Metod opredeleniya dinamicheskikh predelov prochnosti betona [Method for determining the dynamic strength limits of concrete]. Beton i zhelezo-beton, no 1, pp. 18-19.