CALCULATION MODEL OF A MULTI-STOREY REINFORCED CONCRETE FRAME WITH COMPLEXLY STRESSED BEAMS UNDER ACCIDENTAL IMPACT
Main Article Content
Abstract
A computational model is presented for determining deformations in complexly stressed beams of a structurally non-linear reinforced concrete frame in a transcendental state caused by a special emergency action in the form of a sudden removal of one of the structural elements. The determination of the stress-strain state after the formation of spatial cracks in the reinforced concrete elements of the frame was carried out using the calculated spatial section. At the same time, dynamic additional loads in the design section of the reinforced concrete frame element from a special impact are determined on an energy basis using the “bending moment-curvature” and “torque-angle of rotation” diagrams. The considered calculation algorithm includes the determination of forces in compressed concrete, longitudinal and transverse reinforcement for primary and secondary design schemes and verification of special limit state criteria. The results of a numerical analysis of the effect of cracking, the ratio of torque and bending moment on the stress state in transverse and longitudinal reinforcement and on the dissipative properties of a frame structural system are presented
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Kolchunov V.I., Fedorova N.V., Savin S.Yu. (2022) Dinamicheskie effekty v staticheski neopredelimyh fizicheski i konstruktivno nelinejnyh sistemah [Dynamic effects in statically indeterminate physically and structurally nonlinear systems]. Industrial and civil engineering. No. 9. pp.42-51. (in Russian)
Kodysh E.N. (2018) Proektirovanie zashchity zdanij i sooruzhenij ot progressiruyushchego obrusheniya s uchetom vozniknoveniya osobogo predel'nogo sostoyaniya [Designing the protection of buildings and structures from progressive collapse, taking into account the occurrence of a special limiting state]. Industrial and civil engineering. No. 10. pp. 95-101. (in Russian)
Eremeev P.G. (2022) Metody proektirovaniya na progressiruyushchee obrushenie: garmonizaciya rossijskih i mezhdunarodnyh normativnyh dokumentov [Design methods for progressive collapse: harmonization of Russian and international regulatory documents]. Industrial and civil engineering. No 4. pp. 23-28. (in Russian)
Fedorova N.V., Ngoc V.T. (2019) Deformation and failure of monolithic reinforced concrete frames under special actions. Journal of Physics: Conference Series, Vol.1425, pp.012033. DOI: https://doi.org/10.1088/1742-6596/1425/1/012033
Lin K., Lu X., Li Y., Guan H. (2019) Experimental study of a novel multi-hazard resistant prefabricated concrete frame structure. Soil Dynamics and Earthquake Engineering. Vol.119. pр.390–407. DOI: https://doi.org/10.1016/j.soildyn.2018.04.011
Fedorova N.V., Kolchunov V.I., Vu N. T., Iliushchenko T.A. (2021) Determination of stiffness parameters of reinforced concrete structures using the decomposition method for calculating their survivability. IOP Conference Series: Materials Science and Engineering. Vol. 1030. No. 1. pp. 012078. DOI: https://doi.org/10.1088/1757-899X/1030/1/012078
Geniev G.A., Kolchunov V.I., Klyueva N.V. (2004) Prochnost' i deformativnost' zhelezobetonnyh konstrukcij pri zaproektnyh vozdejstviyah [Strength and deformability of reinforced concrete structures under design impacts]: monograph. Мoscow: ASV. (in Russian)
Kolchunov Vl.I., Demyanov A.I., Matveev M.I. (2020) Osnovnye rezul'taty eksperimental'nyh issledovanij zhelezobetonnyh konstrukcij kruglogo secheniya pri kruchenii s izgibom [The main results of experimental studies of reinforced concrete structures of circular cross section in torsion with bending]. Buildings and Reconstruction, No. 3 (89). pp. 3-13. (in Russian) DOI: https://doi.org/10.33979/2073-7416-2020-89-3-3-13
Li S., Shan S., Zhai C., Xie L. (2016) Experimental and numerical study on progressive collapse process of RC frames with full-height infill walls. Engineering Failure Analysis. Vol. 59. pp. 57-68. DOI: https://doi.org/10.1016/j.engfailanal.2015.11.020
Sheffield C., Kersul A., Hoon V., Amini A. An instrumented full-scale building progressive collapse test. Proc., 14th Int. Symp. on Interaction of the Effects of Munitions with Structures, Seattle. 2011
Yi W.J., He Q.F., Xiao Y., Kunnath S.K. (2008) Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures. ACI Structural Journal. Vol. 105. No. 4. pp.433. DOI: https://doi.org/10.14359/19857
Yu J., Tan K.H. (2013) Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages. Engineering Structures. Vol. 55. pp. 90-106. DOI: https://doi.org/10.1016/j.engstruct.2011.08.040
Yu J., Tan K.H. (2014) Special detailing techniques to improve structural resistance against progressive collapse. Journal of Structural Engineering. Vol. 140. No 3. pp.04013077. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000886
Fedorova N. V., Vu N. T., Iliushchenko T.A. (2020). The effect of energy dissipation on the dynamic response of reinforced concrete structure. IOP Conference Series: Materials Science and Engineering. Vol. 962. No 2. pp.022063. DOI: https://doi.org/10.1088/1757-899X/962/2/022063
Fedorova N.V., Khalina T.A. (2017) Issledovanie dinamicheskih dogruzhenij v zhelezobetonnyh konstruktivnyh sistemah pri vnezapnyh strukturnyh perestrojkah [Investigation of dynamic loading in reinforced concrete structural systems during sudden structural changes]. Industrial and civil engineering. No. 5, pp. 32-36 (in Russian)
Karpenko N.I., Kolchunov Vl.I., Kolchunov V.I., Travush V.I., Demyanov A.I. (2021) Deformirovanie zhelezobetonnyh konstrukcij pri izgibe s krucheniem [Deformation of reinforced concrete structures during bending with torsion]. Stroitelnye materialy. No. 6. pp. 47-56. (in Russian) DOI: https://doi.org/10.31659/0585-430X-2021-792-6-48-56
Karpenko N.I., Kolchunov Vl.I., Travush V.I. (2021) Calculation model of a complex stress reinforced concrete element of a boxed section during torsion with bending. Russian Journal of Building Construction and Architecture. No. 3 (51). pp. 7-26. DOI: https://doi.org/10.36622/VSTU.2021.51.3.001
Golyshev A.B., Kolchunov Vl.I. (2009) Soprotivlenie zhelezobetona [Reinforced concrete resistance]. Kyiv: Osnova (in Russian)
Fedorova N.V., Moskovtseva V.S., Amelina M.A., Demyanov A.I. (2023) Opredelenie dinamicheskih usilij v slozhnonapryazhennyh elementah zhelezobetonnyh ram pri osobom vozdejstvii [Determination of dynamic forces in complexly stressed elements of reinforced concrete frames under special impact]. News of higher educational institutions. Construction. No 2. (in Russian)
Kolchunov V.I., Moskovtseva V.S. (2022) ZHivuchest' zhelezobetonnyh karkasov mnogoetazhnyh zdanij so slozhnonapryazhennymi elementami [Survivability of reinforced concrete frames of multi-storey buildings with complex stress elements]. Structural mechanics of engineering constructions and buildings. No. 18(3). pp.195-203. (in Russian) DOI: https://doi.org/10.22363/1815-5235-2022-18-3-195-203
Fedorova N.V., Moskovtseva V.S., Savin S.Yu. (2022) Deformirovanie i razrushenie zhelezobetonnyh ram so slozhnonapryazhennymi elementami v zapredel'nyh sostoyaniyah [Deformation and destruction of reinforced concrete frames with complexly stressed elements in transcendent states]. Collection of scientific papers of the RAASN. Russian Academy of Architecture and Building Sciences, Vol. 2. pp. 458-468. (in Russian).