Main Article Content

Vladimir Agapov
Alexey Markovich


A finite element method, as well as the algorithm and the program for solid reinforced concrete structures analysis have been developed, taking into account plastic deformations of concrete. A modified Willam & Warnke failure criterion was used, supplemented by a flow criterion. Two models of volumetric deformation of concrete have been developed: an elastic model under brittle fracture and an ideal elastic-plastic model. An eight-node solid finite element with linear approximation of displacement functions, which implements the deformation models above mentioned, is constructed. This finite element is adapted to the PRINS computational software, and as part of this program it can be used for physically nonlinear analysis of building structures containing three-dimensional reinforced concrete elements. Modern building codes prescribe to carry out calculations of concrete and reinforced concrete structures in a nonlinear formulation, taking into account the real properties of concrete and reinforcement. To verify the developed finite element, a series of test calculations of a beam in the condition of pure bending was carried out. Comparison of the calculation results with experimental data confirmed the high accuracy and reliability of the results obtained.


Download data is not yet available.

Article Details

How to Cite
Agapov, V., & Markovich, A. (2023). NONLINEAR ANALYSIS OF SOLID REINFORCED CONCRETE STRUCTURES WITH CRACKS. International Journal for Computational Civil and Structural Engineering, 19(4), 14–26.


Agapov V.P. Metod konechnyh elementov v statike, dinamike i ustojchivosti konstrukcij [Finite element method in statics, dynamics and stability of structures]. Izdatel'stvo ASV, 2005. 245 p. (In Russ.)

Zienkiewicz O.C., Taylor R.L. The Finite Element for Solid and Structural Mechanics. Sixth edition. McGraw-Hill, 2005, 631 p. DOI:

Bathe K.J., Wilson E.L. Numerical methods in finite element analysis. – N.J.: Prentice-Hall, 1976, 528 p.

Crisfield M.A. Non-linear finite element analysis of solids and structures. John Wiley & Sons Ltd, 1977, 488 p.

Oden J.T. Finite elements in nonlinear continua. McGraw, Hill Book Company, New York, 1972, 464 p.

MSC NASTRAN 2016. Nonlinear User’s Guide SOL 400. – MSC Software, 2016, 790 p.

ANSYS Theory Reference. Release 5.6. ANSYS Inc. Canonsburg, PA, 1999, 1286 p.

ABAQUS 6.11. Theory manual. DS Simulia, 2011

ADINA. Theory and Modelling Guide. ADINA R & D, Inc. 71 Elton Avenue Watertown, MA 02472, USA, 705 p.

DIANA FEA User’s Manual. Release 10. – DIANA FEA BV, 2017

Shanno D.F. Conditioning of Quasi-Newton methods for function minimization, Math. Comp., 24, 1970, pp. 647-656 DOI:

Dennis J.E., Jr. and Jorge J. More. Quasi-Newton Methods, Motivation and Theory. SIAM Review, Vol. 19, No. 1, January 1977. pp. 46-89 DOI:

H. Matthies and G. Strang. The Solution of Nonlinear Finite Element Equations. International Journal for Numerical Methods in Engineering, Vol. 14, 1979, p. 1613-1626 DOI:

Willam K.J., Warnke E.P. Constitutive Model for the Triaxial Behavior of Concrete. Proceedings of IABSE. Structural Engineering Report 19, Section III, 1975, pp. 1-30

SP 63.13330.2018 «SNiP 52-01-2003 Betonnye i zhelezobetonnye konstrukcii. Osnovnye polozheniya» [Concrete and reinforced concrete structures. Key points]. 2018. 148 p.

CEB, CEB-FIP Model Code 1990 / CEB Bulletin d'Information № 213/214, Comite Euro-International du Beton, Lausanne, Switzerland, 1993. 437 p.

Rekomendacii po opredeleniyu prochnostnyh i deformacionnyh harakteristik betona pri neodnoosnyh napryazhennyh sostoyaniyah [Recommendations for determining the strength and deformation characteristics of concrete in non-uniaxial stress states]. M. NIIZhB Gosstroya USSR, 1985, 72 p.

Kupfer, H., Hilsdorf, H., Rusch, H. Behavior of Concrete under Biaxial Stresses, ACI Journal, Proceedings Vol. 66, No. 8, August, 1969, pp. 656-666 DOI:

Launay P., Gachon H. Strain and Ultimate Strength of Concrete under Triaxial Stress, Am. Concrete Inst. Spec. Publ. 34, pap. 13, 1972

Mills L.L., Zimmerman R.M. Compressive Strength of Plain Concrete under Multiaxial Loading Conditions, ACI Journal, Vol. 67, No. 10, 1970, October, pp. 802-807 DOI:

Korsun V.I. Sopostavitel'nyj analiz kriteriev prochnosti dlya betonov [Comparative analysis of strength criteria for concrete] / V.I. Korsun, A.V. Nedorezov, S.Yu. Makarenko // Sovremennoe promyshlennoe i grazhdanskoe stroitel'stvo [Modern industrial and civil construction]. – 2014. – T. 10. – № 1. – P. 65-78. – EDN THXXCZ (In Russ.)

Hansen T.C. Triaxial test with concrete and cement paste: Report № 319 / T. C. Hansen. – Lyngby : Technical University of Denmark, 1995. – 54 p

Agapov V.P. and Markovich A.S. The family of multilayered finite elements for the analysis of plates and shells of variable thickness: La familia de elementos finitos multicapa para el análisis de placas y cascos de espesor variable. South Florida Journal of Development. 2021;2(4):034-5048. DOI:

Agapov V.P., Markovich A.S. Dynamic method for determining critical loads in the PRINS computer program. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(5):380-389. (In Russ.) DOI: 10.22363/1815-5235-2020-16-5-380-389 DOI:

Agapov V.P., Markovich A.S. Investigation of the accuracy and convergence of the results of thin shells analysis using the PRINS program. Structural Mechanics of Engineering Constructions and Buildings. 2021; 17(6):617-627. (In Russ.) DOI: 10.22363/1815-5235-2021-17-6-617-627 DOI:

Obernikhin D.V., Nikulin A.I. Experimental studies of strength, crack resistance and deformability of reinforced concrete beams of trapezoidal and rectangular cross sections. Innovative science. 2016; 8(2):73-77.

Rimshin V.I., Amelin P.A. Numerical calculation of bent reinforced concrete elements of rectangular section in the Abaqus software. Structural Mechanics of Engineering Constructions and Buildings. 2022;18(6):552-563. (In Russ.) DOI:

Cedolin L., S. Deipoli. Finite element studies of shear-critical R/C beams. ASCE Journal of the Engineering Mechanics Division. June 1977. Vol. 103. No. EM3, Pp. 395-410. DOI:

von Mises R. Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse. 1913; 1:582-592.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.