ASSESSMENT THE PROBABILITY OF FAILURE OF A REINFORCED CONCRETE FRAME UNDER A COLUMN REMOVAL SCENARIO USING THE FIRST-ORDER RELIABILITY METHOD

Main Article Content

Ngoc Tuyen Vu
https://orcid.org/0000-0001-5755-8345
Nataliya Fedorova
https://orcid.org/0000-0002-5392-9150
Duong Thanh Qui

Abstract

The article considers issues related to the assessment of survivability of structural reinforced concrete systems in special limit states under the scenario of removal of one of the load-bearing columns within the framework of the probabilistic approach. Probabilistic models of basic (stochastic) variables included in the load and resistance functions are presented. Statistical parameters of the uncertainty of the resistance model and the model of the effect of external actions are obtained and integrated as a basic variable in probabilistic modeling. The functions of the limit state of the structural system in a special calculated situation with a sudden removal of the central column of the first floor are determined. Probabilistic modeling is performed using the first-order reliability method (FORM) for structural reinforced concrete systems designed according to the current standards of the Russian Federation. As a result, the values of the failure probabilities and the corresponding reliability indices are obtained for the considered structural systems.

Downloads

Download data is not yet available.

Article Details

How to Cite
Vu, N. T., Fedorova, N., & Duong, T. Q. (2025). ASSESSMENT THE PROBABILITY OF FAILURE OF A REINFORCED CONCRETE FRAME UNDER A COLUMN REMOVAL SCENARIO USING THE FIRST-ORDER RELIABILITY METHOD. International Journal for Computational Civil and Structural Engineering, 21(2), 14-29. https://doi.org/10.22337/2587-9618-2025-21-2-14-29
Section
Articles

References

Kiakojouri F., De Biagi V., Chiaia B., Sheidaii M.R. (2020) Progressive collapse of framed building structures: Current knowledge and future prospects. Engineer-ing Structures, no. 206. doi:10.1016/J.ENGSTRUCT.2019.110061.

Ellingwood B.R., Dusenberry D.O. (2005) Building Design for Abnormal Loads and Progressive Collapse. Computer-Aided Civil and Infrastructure Engineering, vol. 3, no. 20, pp. 194–205. doi:10.1111/J.1467-8667.2005.00387.X.

Adam J.M., Parisi F., Sagaseta J., Lu X. (2018) Research and practice on progressive collapse and robustness of building struc-tures in the 21st century. Engineering Struc-tures, no. 173, pp. 122–149. doi:10.1016/j.engstruct.2018.06.082.

Alshaikh I.M.H., Bakar B.H.A., Alwesabi E.A.H., Akil H.M. (2020) Experimental in-vestigation of the progressive collapse of re-inforced concrete structures: An overview. Structures, no. 25, pp. 881–900. doi:10.1016/J.ISTRUC.2020.03.018.

Wang Y., Zhang B., Gu X.L., Lin F. (2022) Experimental and numerical investi-gation on progressive collapse resistance of RC frame structures considering transverse beam and slab effects. Journal of Building Engineering, no. 47. doi:10.1016/J.JOBE.2021.103908.

Azim I., Yang J., Farjad Iqbal M., Faisal Javed M., Nazar S., Wang F., Liu Q. feng. (2020) Semi-analytical model for compres-sive arch action capacity of RC frame struc-tures. Structures, no. 27, pp. 1231–1245. doi:10.1016/J.ISTRUC.2020.06.011.

Kang S.B., Wang S., Gao S. (2020) Ana-lytical study on one-way reinforced concrete beam-slab sub-structures under compressive arch action and catenary action. Engineering Structures, no. 206. doi:10.1016/J.ENGSTRUCT.2019.110032.

Pham A.T., Tan K.H. (2018) Static and Dynamic Responses of Reinforced Concrete Structures under Sudden Column Removal Scenario Subjected to Distributed Loading. Journal of Structural Engineering, vol. 1, no. 145. doi:10.1061/(ASCE)ST.1943-541X.0002214.

Kai Q., Li B. (2012) Dynamic performance of RC beam-column substructures under the scenario of the loss of a corner column—Experimental results. Engineering Structures, no. 42, pp. 154–167. doi:10.1016/J.ENGSTRUCT.2012.04.016.

Wang H., Li S., Zhai C. (2023) Experi-mental and numerical investigation on pro-gressive collapse of self-centering precast concrete frame with infill walls. Journal of Building Engineering, no. 78. doi:10.1016/J.JOBE.2023.107472.

Amiri S., Saffari H., Mashhadi J. (2018) Assessment of dynamic increase factor for progressive collapse analysis of RC struc-tures. Engineering Failure Analysis, no. 84, pp. 300–310. doi:10.1016/J.ENGFAILANAL.2017.11.011.

Liu M., Pirmoz A. (2016) Energy-based pulldown analysis for assessing the progres-sive collapse potential of steel frame build-ings. Engineering Structures. no. 123, pp. 372–378. doi:10.1016/J.ENGSTRUCT.2016.05.020.

Weng J., Lee C.K., Tan K.H. (2020) Sim-plified Dynamic Assessment for Reinforced-Concrete Structures Subject to Column Re-moval Scenarios. Journal of Structural Engi-neering, vol. 12, no. 146. doi:10.1061/(ASCE)ST.1943-541X.0002833.

Yu J., Guo Y. (2016) Nonlinear SDOF model for dynamic response of structures under progressive collapse. Journal of Engi-neering Mechanics, vol. 142, no. 3.

Yu J., Yin C., Guo Y. (2017) Nonlinear SDOF Model for Progressive Collapse Re-sponses of Structures with Consideration of Viscous Damping. Journal of Engineering Mechanics, vol. 9, no. 143. С. 04017108. doi:10.1061/(ASCE)EM.1943-7889.0001339.

Ellingwood B.R. (2006) Mitigating Risk from Abnormal Loads and Progressive Col-lapse. Journal of Performance of Construct-ed Facilities, vol. 4, no. 20, pp. 315–323. doi:10.1061/(ASCE)0887-3828(2006)20:4(315).

Ellingwood B.R. (2007) Strategies for miti-gating risk to buildings from abnormal load events. International Journal of Risk Assess-ment and Management, vol. 6, no. 7, pp. 828–845. doi:10.1504/IJRAM.2007.014662.

Izzuddin B.A., Pereira M.F., Kuhlmann U., Rölle L., Vrouwenvelder T., Leira B.J. (2012) Application of Probabilistic Robust-ness Framework: Risk Assessment of Multi-Storey Buildings under Extreme Loading. Structural Engineering International, vol. 1, no. 22, pp. 79–85. doi:10.2749/101686612X13216060213518.

Xu G., Ellingwood B.R. (2011) Probabilis-tic Robustness Assessment of Pre-Northridge Steel Moment Resisting Frames. Journal of Structural Engineering, vol. 9, no. 137, pp. 925–934. doi:10.1061/(ASCE)ST.1943-541X.0000403.

Brunesi E., Parisi F. (2017) Progressive col-lapse fragility models of European rein-forced concrete framed buildings based on pushdown analysis. Engineering Structures, no. 152, pp. 579–596. doi:10.1016/J.ENGSTRUCT.2017.09.043.

Chen C.H., Zhu Y.F., Yao Y., Huang Y., Long X. (2016) An evaluation method to predict progressive collapse resistance of steel frame structures. Journal of Construc-tional Steel Research, no. 122, pp. 238–250. doi:10.1016/J.JCSR.2016.03.024.

Beck A.T., Ribeiro L. da R., Valdebenito M. (2020) Risk-based cost-benefit analysis of frame structures considering progressive collapse under column removal scenarios. Engineering Structures, no. 225. doi:10.1016/J.ENGSTRUCT.2020.111295.

Tuyen V.N., Ivanovich K.V., Vitalyevna F.N. (2024) Dynamic response model of re-inforced concrete building frame under col-umn removal scenario. Structures, vol. 63. doi:10.1016/J.ISTRUC.2024.106356.

Similar Articles

You may also start an advanced similarity search for this article.