Main Article Content

Vladimir Erofeev
Aleksandr Ilyakhinsky
Elena Nikitina
Vladimir Родюшкин
Pavel Khazov
Andrey Satanov


The aim of the study was to study the possibility of using the Dirichlet distribution as a statistical model of the process of dynamic interaction of large-span structures with aerodynamic load. As an object of research, a model of a hangar building was chosen for the maintenance of two AirbusA-380 aircraft at a scale of 1: 500 blown in a wind tunnel at five directions of wind flow at angles of 0 °, 30 °, 45 °, 60 °, 90 ° to the front of the structure ... It is shown that the statistical model of the Dirichlet distribution has sufficient flexibility and realism and compares favorably with the models built on the basis of the normal distribution, beta distribution, gamma distribution and Poisson distribution when describing the processes of intense dynamic interaction of wind load with structural elements. The problem of finding an integral assessment of the state of the processes of interaction of the wind load with the hangar building for the maintenance of two aircraft was reduced to calculating the self-organization parameter of the distribution over the surface of the building model of the aerodynamic coefficients, which was taken as the ratio of the total weighted amount of the Dirichlet models detected in the analyzed numerical series of the registered signal i-th dimension with negative external entropy to the total weighted number of Dirichlet models with positive external entropy.

The study showed that the dimensionless informational and statistical indicator of self-organization makes it possible from a unified standpoint to assess the states that differ from each other in terms of external signs, the processes of interaction and their dynamics. The integral indicator can be used to rank the efficiency of operating systems and can be useful in assessing the state of the processes of dynamic interaction of the operating pressure and objects and structures of various shapes and purposes.


Download data is not yet available.

Article Details

How to Cite
Erofeev, V., Ilyakhinsky, A., Nikitina, E., Родюшкин V., Khazov, P., & Satanov, A. (2023). STATISTICAL MODEL OF AERODYNAMIC IMPACT ON THE LARGE-SPAN COVERAGE. International Journal for Computational Civil and Structural Engineering, 19(3), 20–30.
Author Biography

Vladimir Erofeev, Mechanical Engineering Research Institute of the RAS – Branch of Federal Research Center «A.V. Gaponov – Grekhov Institute of Applied Physics of the Russian Academy of Sciences»

доктор физико-математических наук, профессор, директор


Eremeev P.G. Sovremennije stal’nie konstruktsii bol’sheproletnikh pokritij unikal’nikh zdanij i sooruzhenij [Modern steel structures of large-span roofs of unique buildings and structures]. Mos-cow, ASV, 2009. 336 p.

Simiu E., Scanlan R. Wind effects on structures. New York, Wiley,1978. 488 p.

Retter E.I. Arkhitekturno-stroitelnaya aerodinamika [Architectural and con-structional aerodynamics]. Moscow, Stroyizdat, 1984. 294 p.

Savitsky G.A. Vetrovaya nagruzka na sooruzheniya [Wind load on structures]. Moscow, Izd-vo lit po str-vu, 1972. 111 p.

Hoerner S.F., Fluid-dynamic drag: theo-retical, experimental and statistical in-formation. - Wachington, 1965. - 455p.

Stankovic, S., Campbell N., Harries A. Urban Wind Energy - London

Taylor &Francis, 2009. - 200p.

Mohamed А. Comparision of the numer-ical study of the effect of building pro-trusion aerodynamics with the results of aerodynamic tests // 15th Australian wind energy society workshop. - Syd-ney. - 2012.- 4 p.

Mou, B., He, B.-J., Zhao, D.-X., & Chau, K.-W. (2017). Numerical simula-tion of the effects of building dimen-sional variation on wind pressure distri-bution. Engineering Applications of Computational Fluid Mechanics, 11(1), pp 293–309. DOI:

Fevralskikh A.V. Chislennoe issledovanie aerodinamicheskoy interferentsii startovoy sistemy podduva i kryla ekranoplana [Numerical study of aerodynamic interference of the launch air-inflation system and the wing of a wing-in-groundcraft]. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra – Transactions of the Krylov State Scientific Center, 2019, Vol. 4(390), Pp. 117-124. DOI:

Gnyrya A.I., Korobkov S.V., Koshin A.A., Terekhov V.I. Modelirovanie vetrovykh nagruzok pri obtekanii vozdushnym potokom sistemy modeley zdaniy pri variatsii ikh raspolozheniya [Simulation of wind loads with air flow around a system of building models with a variation in their location]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitelnogo universiteta – Bulletin of the Tomsk State University of Architecture and Civil Engineering, 2018, No 4, Pp.65-73.

Muschanov V.F., Zubenko A.V., Drozdov A.A. Issledovanie aerodinamicheskikh koeffitsientov provisayuschikh membrannykh pokrytiy inzhenernykh sooruzheniy [Study of the aerodynamic coefficients of sagging membrane coatings of engineering struc-tures]. Metallicheskie konstruktsii – Steel Constructions, 2017, vol. 23, No 2, Pp. 81-96.

Lampsi B.B., Shilov S.S., Khazov P.A. Chislennoe i fizicheskoe modelirovanie vetrovyh potokov na bol'sheproletnoe pokrytie [Numerical and physical mod-eling of wind loads on long-span shell structures]. Vestnik MGSU – (Monthly Journal on Construction and Architec-ture, 2022. Vol. 1, Pp. 21-31. DOI:

Satanov, A.A., Simonov A.V., Khazov P. A. Opredelenie aerodinamicheskih harakteristik bol'sheproletnogo zdaniya eksperimental'nymi metodami [Experi-mental study of the aerodynamic charac-teristics of the large-span building] // Structural mechanics and structures, 2023. Vol. 1 (36). Pp. 63-74.

Anushchenko A.M., Erofeev V.I., Khazov P.A., Satanov A.A., Fevral'skikh A.V. Issledovanie obtekaniya vozdushnymi potokami bol'sheproletnoj poverhnosti chislennym i eksperimental'nym metodami [Investiga-tion of the air flow around a large-span surface by numerical and experimental methods] // Privolzhsky Scientific Jour-nal, 2021. Vol. 1. Pp. 9-18.

Tryanina N. Yu., Obletov E. N., Samokhvalov I. A. Aerodinamicheskoe vozdejstvie na panel'nye antenny bazovyh stancij [Aerodynamic impact on base station panel antennas]. Privolzhsky Scientific Journal, 2022. Vol. 1. Pp. 23-30.

K.B. Rajasekarababu, G. Vinayagamurthy, and S.S. Rajan, Exper-imental and computational investigation of outdoor wind flow around a setback building, Build. Simul., 2019, Vol. 12, Pp. 891–904. DOI:

Valger, S.A. On numerical modeling of aerodynamics of urban developments on unstructured computational grids. Thermophys. Aeromech. 28, Pp. 507–522 (2021). DOI:

Khazov P.A., Anuschenko A.M., Onischuk E.A., Schyolokova Yu.D. Chislennoe i eksperimentalnoe issledovanie raspredeleniya vetrovoy nagruzki na krivolineynoe bolsheprolyotnoe pokrytie [Numerical and experimental study of the distribu-tion of the wind load on the curvilinear large-span covering]. Privolzhskiy nauchny zhurnal – Privolzhsky Scientific Journal, 2020. No 1, pp.16-21. =

Sereda Yu.S. Osnovi diagnostiki i prognozirovaniya [Fundamentals of Di-agnostics and Forecasting]. Nizhny Novgorod, Tipografiya «Povolzhie», 2005. 188 p.

Ilyakhinsky A.V., Sereda Yu.S. Statisticheskie modeli v zadachakh zondirovanija [Statistical models in probing problems]. Izvestiya VUZov, Radiofizika – Radiophysics and Quan-tum Electronics, 1989, vol.32, No 12, pp. 1502-1505. DOI:

Egan J.P. Signal Detection Theory and ROC Analysis, New York, 1975. 277 p.

Vatutin V.A., Televina T.M., Chistiakov V.P. Veroyatnostniye metodi v fizicheskikh issledovaniyakh [Probabil-istic Methods in Physics Research]. Moscow, Nauka,1985. 208 p.

Erofeev V.I., Ilyakhinsky A.V., Nikitina E.A., Pakhomov P.A., Rodyushkin V.M. Ultrasonic sensing Method for evaluat-ing the limit state of metal structures as-sociated with the onset of plastic defor-mation. Physical Mesomechanics, 2020, vol. 23, No 3, pp. 241-245. DOI:

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.