Main Article Content

Izmail Kantarzhi
Aleksandr Gogin


The paper is dedicated to numerical modeling of interaction of sea wind waves with port protective structures. A classification of existing numerical wave models is presented depending on their accuracy and demands on computing power. The main studied effect of the interaction of waves with port protective structures is diffraction of waves in protected water area. In this paper is studied a test case with conservative wave diffraction – two converging breakwaters on a flat bottom with varying of entrance width and approaching waves period. The test case was physically modeled in a wave basin, as well as numerically modeled using the Boussinesq wave model implemented in the MIKE 21 software. As part of setting up the numerical model, the most correct way to model protective structures on the numerical model is proposed and justified – with rejection of wall enclosing sponge layers from entrance section side and with gradual decrease of sponge coefficients towards entrance section. Satisfactory agreement was obtained with a spread of values 10-15% as a result of results comparing of numerical and physical modeling. This made it possible to conclude that the proposed method for protective structures modeling allows to correctly calculate diffraction of waves in protected water area, and the wave model used can be considered verified by results of physical experiments.


Download data is not yet available.

Article Details

How to Cite
Kantarzhi, I., & Gogin, A. (2023). INTERACTION OF SEA GRAVITY WAVES WITH PORT PROTECTION STRUCTURES IN NUMERICAL MODELS. International Journal for Computational Civil and Structural Engineering, 19(1), 55-68.
Author Biography

Izmail Kantarzhi, National Research Moscow State University of Civil Engineering, Moscow, RUSSIA

Professor, Doctor of Technical Sciences; Professor of Department of Hydraulics and Hydraulic Engineering, Moscow State University of Civil Engineering 


Popova E.A., Sizova Yu.S. (2020) Puti realizacii gosudarstvennyh programm razvitiya Severnogo morskogo puti za schet privlecheniya chastnyh investicij [Ways to implement state programs for the development of the Northern Sea Route by attracting private investment]. Voprosy regional'noj ekonomiki, no 2, pp. 129–136. DOI:

Ruksha V.V. (2018) Razvitie atomnogo morskogo flota [Development of the nuclear marine fleet]. Regional'naya energetika i energosberezhenie, no 2, p. 62.

Kantarzhi I.G., Mordvintsev K.P., Gogin A.G. (2019) Numerical analysis of the protection of a harbor against waves. Power technology and engineering, vol. 5, pp. 45–52. DOI:

Gorgutsa Yu.V. (2020) Metod opredeleniya parametrov pomekh po meteofaktoram obrabotke sudov v morskih portah [Method for determining the parameters of interference by meteorological factors for the processing of ships in seaports]. Morskie intellektual'nye tekhnologii, n. 1–1, pp. 107–112. DOI:

Malyuzhinets G.D. (1959) Razvitie predstavlenij o yavleniyah difrakcii (k 130-letiyu so dnya smerti Tomasa YUnga) [Development of ideas about the phenomena of diffraction (to the 130th anniversary of the death of Thomas Young)]. Uspekhi fizicheskikh nauk, vol. 69, no 10, pp. 321–334. DOI:

Leontovich M.A. (1944) Ob odnom metode resheniya zadach o rasprostranenii elektromagnitnyh voln vdol' poverhnosti zemli [On one method for solving problems of the propagation of electromagnetic waves along the surface of the earth]. Izv. Academy of Sciences of the USSR, vol. 8, no 1, pp. 16–22.

Leontovich M.A., Fok V.A. (1946) Reshenie zadachi o rasprostranenii elektromagnitnyh voln vdol' poverhnosti Zemli po metodu parabolicheskogo uravneniya [Solving the problem of propagation of electromagnetic waves along the surface of the Earth using the parabolic equation method]. ZHurnal eksperimental'noj i teoreticheskoj fiziki, vol. 16, pp. 557–573.

Fok V.A. (1970) Problemy difrakcii i rasprostraneniya elektromagnitnyh voln [Problems of diffraction and propagation of electromagnetic waves]. Moscow: Sov. radio. (in Russian)

Zagryadskaya N.N. (1995) Primenenie metoda parabolicheskogo priblizheniya v zadachah difrakcii poverhnostnyh voln [Application of the parabolic approximation method in problems of surface wave diffraction]. ZHurnal tekhnicheskoj fiziki, vol. 65, no 8, pp. 25–37.

Zagryadskaya N.N. (2006) Morskie volny na akvatoriyah i u sooruzhenij vertikal'nogo tipa [Sea waves in water areas and near vertical structures]. S.-P.: Publishing House of the Polytechnic University. (in Russian)

Krylov Yu.M. et al. (1986) Veter, volny i morskie porty [Wind, waves and seaports]. L.: Gidrometizdat. (in Russian)

Penney W.G. et al. (1952) Part I. The diffraction theory of sea waves and the shelter afforded by breakwaters. Philos. Trans. R. Soc. London. Ser. A, Math. Phys. sci. The Royal Society London, vol. 244, no 882, pp. 236–253. DOI:

Sommerfeld A. (1896) Mathematische theorie der diffraction. Math. Ann. Springer, vol. 47, no 2, pp. 317–374. DOI:

Krylov Yu.M. (1966) Spektral'nye metody issledovaniya i rascheta vetrovyh voln [Spectral methods of research and calculation of wind waves]. L.: Gidrometeoizdat. (in Russian)

Galenin B.G. (1988) Methods for calculating the protection of the water area of seaports from waves (PhD Thesis). Moscow.

Zavyalov V.K. (1976) Research and calculations of the wave regime in the fenced water areas of ports and outports (PhD Thesis). Leningrad: LPI M.I. Kalinina.

Berkhoff J.C.W. (1973) Computation of combined refraction—diffraction. Coastal Engineering, pp. 471–490. DOI:

Berkhoff J.C.W. (1976) Mathematical models for simple harmonic linear water waves: wave diffraction and refraction (PhD Thesis). Delft: Technische University.

Shelushinin Yu.A. (2019) Dostovernost' fizicheskogo modelirovaniya gidrotekhnicheskih sooruzhenij na primere ob"ektov imeretinskoj nizmennosti [Reliability of physical modeling of hydraulic structures on the example of objects of the Imereti lowland] // Olimpijskoe nasledie i krupnomasshtabnye meropriyatiya: vliyanie na ekonomiku, ekologiyu i sociokul'turnuyu sferu prinimayushchih destinacij, pp. 260–264.

Kantarzhi I.G., Mordvintsev K.P. (2015) CHislennoe i fizicheskoe modelirovanie v MGSU morskih portovyh gidrotekhnicheskih sooruzhenij [Numerical and physical modeling in MGSU of marine port hydraulic structures]. Nauka i bezopasnost', no 2, pp. 2–16.

Kantarzhi I., Anshakov A., Gogin A. (2021) Composite modeling of wind waves in designing of port hydraulic structures. Proceedings of the International Offshore and Polar Engineering Conference, Rhodes, 06.2021, pp. 2254–2261.

Afanasiev K.E. et al. (2012) CHislennoe modelirovanie raboty opytovogo volnoproduktora odinochnyh voln [Numerical modeling of the operation of an experimental single-wave wave generator]. Prikladnye tekhnologii gidroakustiki i gidrofiziki, pp. 201–203.

Zheleznyak M.I. (2014) CHislennoe modelirovanie rezonansnyh svojstv gavanej s pomoshch'yu nelinejnoj negidrostaticheskoj modeli SWASH [Numerical simulation of the resonant properties of harbors using the non-linear non-hydrostatic SWASH model], Matematicheskie mashiny i sistemy, no 3, pp. 78–87.

Komen G.J. et al. (1996) Dynamics and modeling of ocean waves, Cambridge: Cambridge University Press.

Lavidas G., Venugopal V. (2018) Application of numerical wave models at European coastlines: A review. Renew. Sustain. Energy Rev. vol. 92, pp. 489–500. DOI:

Holthuijsen L.H., Herman A., Booij N. (2003) Phase-decoupled refraction–diffraction for spectral wave models. Coastal Engineering, vol. 49, no 4, pp. 291–305. DOI:

Borsboom M.J.A. (1998) A Boussinesq-type wave model with improved linear and nonlinear behavior. Rep. H3203, vol. 51, paper no X0231.

DHI Water Environment (2017) Boussinesq Waves Module. user guide. Denmark, DHI Water Environment.

Larsen J., Dancy H. (1983) Open boundaries in short wave simulations—a new approach, Coastal Engineering, vol. 7, no 3. pp. 285–297. DOI:

Similar Articles

You may also start an advanced similarity search for this article.