POLYMER COMPOSITES FOR EXTERNAL REINFORCEMENT OF BUILDING STRUCTURES
Main Article Content
Abstract
Key aspects of developing effective systems for the external reinforcement of building structures, made of composite polymer materials containing carbon fibers and no-bake polymer binders, ensuring shape formation in the temperature range of 15 - 40 °С no more than 24 hours, characterized by operability in the temperature range from minus 45 ° C to plus 60 ° C.. PCM-based SVA has a number of advantages compared to clips and metal profiles traditionally used for repairing building structures: the load-bearing capacity of the rods increases, the cost of the strengthening of load-bearing structures is reduced, and the seismic resistance of engineering structures is increased. In relation to composite SVA building structures, the following types of construction chemicals are used: primer, putty, adhesive, protective coating. The production of unidirectional tapes was carried out on a Dornier double rapier loom, modernized for processing carbon fibers. The results of experimental studies of the developed polymer binders and carbon reinforcing fillers are presented. It is shown that the developed materials can be successfully used to strengthen and repair engineering structures. The technological features of strengthening and repairing building structures with composite external reinforcement systems using the contact molding method and ready-made lamellas are described. Installation of composite clamps on vertical surfaces is carried out by fixing the canvas in the extreme position, followed by laying, smoothing and rolling along its length. Rolling is done from the middle to the edges. Before gluing the blanks, the lamellas are laid out on a work table (workbench) and thoroughly wiped with a rag moistened with acetone. Results of the large-scale implementation of these new materials and technologies in the construction industry are presented.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Kalgin A., Fakhratov M., Chulkov V., Chulkova V. (ed.) (2006) Proizvodstvo i ispol'zovanie stroitel'nyh materialov: organizac.-antropotehn. nadezhnost' [Production and use of construction materials: organizational-anthropotechnical reliability]. Moscow: SvR-ARGUS. (in Russian)
Boudenne, A.; Ibos, L.; Candau, Y.; Thomas, S. Handbook of Multiphase Polymer Sys-tems[Wiley: Hoboken] NJ, USA, 2011; Volume 1. DOI: https://doi.org/10.1002/9781119972020
Kalgin A., Fakhratov M., Chulkov V., Chulkova V. (ed.) (2011) Proizvodstvo i ispol'zovanie stroitel'nyh materialov, izdelij i sistem [Production and use of construction materials: organizational-anthropotechnical reliability] Moscow: SvR-ARGUS. (in Russian)
Simakov O. (2019) Primenenie v kachestve vneshnego armirovanija zhelezobetonnyh jele-mentov tkanyh setok iz uglerodnyh volokon [Using woven mesh made of carbon fibers as external reinforcement for reinforced concrete elements]. Izvestija vysshih uchebnyh zavedenij. Tehnologija tekstil'noj promyshlennosti, no 3(381), pp. 57-61.
Suleymanov A., Shakirov A. (2023) Jeksperimental'noe issledovanie naprjazhenno-deformirovannogo sostojanija zhelezobetonnyh balok, usilennyh ugleplastikom [Experimental study of the stress-strain state of reinforced concrete beams reinforced with carbon fiber plastic]. Stroitel'nye materialy, no 4, pp. 10-17.doi: 10.31659/0585-430X-2023-812-4-10-17 DOI: https://doi.org/10.31659/0585-430X-2023-812-4-10-17
Mailyan D., Georgiev S. (2023) K opredeleniju progibov gibkih vnecentrenno szhatyh zhelezobeton-nyh stoek, usilennyh v poperechnom napravlenii kompozitnymi materialami [Deflec-tions of flexible eccentrically compressed reinforced concrete pillars, reinforced with composite materials in the transverse direction]. Zhelezobetonnye konstrukcii, vol. 2, no 2, pp. 32-41.doi: 10.22227/2949-1622.2023.2.32-41 DOI: https://doi.org/10.22227/2949-1622.2023.2.32-41
Merkulov S., Esipov S., Esipova D. (2022) Kompozitnye sistemy vneshnego armirovanija zhelezobetonnyh konstrukcij [Composite systems of external reinforcement of reinforced concrete structures]. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shuhova, no 4, pp. 39-48.doi: 10.34031/2071-7318-2021-7-4-39-48 DOI: https://doi.org/10.34031/2071-7318-2021-7-4-39-48
Simakov O. (2023) Pereraspredelenie izgibajushhih momentov v perekrytijah s vneshnim armirovaniem [Redistribution of bending moments in floor slabs with external reinforcement]. Promyshlennoe i grazhdanskoe stroitel'stvo, no 2, pp. 53-56.doi: 10.33622/0869-7019.2023.02.53-56 DOI: https://doi.org/10.33622/0869-7019.2023.02.53-56
Denisova A., Kuzhman E., Shekhovtsov A. (2023) Vlijanie temperatury na rabotu kompozicionnogo materiala, primenjaemogo pri usilenii zhelezobetonnyh konstrukcij, pri rastjazhenii [The effect of temperature on performance of a composite material used to strengthen reinforced concrete structures under tension]. Zhilishhnoe stroitel'stvo, no 5, pp. 46-53.doi: 10.31659/0044-4472-2023-5-46-53 DOI: https://doi.org/10.31659/0044-4472-2023-5-46-53
Fedotov M., Budadin O., Kozelskaya S., Ovchinnikov I., Shelemba I. (2022) Vneshnee armirovanie kompozitnymi materialami i opticheskij monitoring nadezhnosti jekspluatacii stroitel'nyh sooruzhenij [External reinforcement with composite materials and optical monitoring of the reliability of operation of building structures]. Konstrukcii iz kompozicionnyh materialov, no 1(165), pp. 57-67.doi: 10.52190/2073-2562_2022_1_57 DOI: https://doi.org/10.52190/2073-2562_2022_1_57
Fedotov M., Koshman N., Gusev B., Speransky A., Loskutov M., Ovchinnikov I., Bokarev S., Shelemba I., Budadin O., Kozelskaya S. (2019) Opyt primenenija kompozitnyh sistem vneshnego armirovanija i opticheskogo monitoringa stroitel'nyh sooruzhenij [Experience in the use of composite systems of external reinforcement and optical monitoring of building structures]. Transportnye sooruzhenija, vol. 6, no 4, p. 8.doi: 10. 10.15862/09SATS419 DOI: https://doi.org/10.15862/09SATS419
Rubin O., Antonov A., Karablin N., Baklykov I. (2023) Podhod k ocenke sostojanija metallokonstrukcij glavnogo korpusa teplovoj jelektrostancii i predlozhenija po usileniju dlja obespechenija sejsmostojkosti [Approach to assessing the state of metal structures of the main building of a thermal power plant and reinforcement options to ensure seismic resistance]. Vestnik evrazijskoj nauki, vol. 15, no 3.
Smerdov D. (2022) Jeksperimental'nye issledovanija vlijanija temperaturnoj relaksacii i naprjazhenija polimernyh kompozicionnyh materialov, rabotajushhih v sostave izgibaemyh zhelezobetonnyh jelementov, pri dlitel'nom vozdejstvii nagruzok [Experimental studies of the effect of temperature relaxation and stress of polymer composite materials as part of reinforced concrete elements in bending under prolonged exposure to loading]. Vestnik Tomskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta, vol. 24, no 1, pp. 150-163.doi: 10.31675/1607-1859-2022-24-1-150-163 DOI: https://doi.org/10.31675/1607-1859-2022-24-1-150-163
Gusev B., Budadin O., Fedotov M., Kozelskaya S., Shelemba I. (2020) Opyt monitoringa tehnicheskogo sostojanija i usilenija povrezhdennyh stroitel'nyh konstrukcij polimernymi kompozicionnymi materialami [Experience in monitoring the technical condition and reinforcement of damaged building structures with polymer composite materials]. Voprosy oboronnoj tehniki. Nauchno-tehnicheskij sbornik. Serija 15. Kompozicionnye nemetallicheskie materialy v mashinostroenii, no 3-4, pp. 85-94.
Fedotov M., Budadin O., Kozelskaya S., Ovchinnikov I., Shelemba I. (2020) Monitoring volokonno-opticheskimi datchikami nadezhnosti jekspluatacii stroitel'nyh konstrukcij s vneshnim kompozitnym armirovaniem [Using fiber-optic sensors to monitor the reliability of operation of building structures with external composite reinforcement], Kontrol'. Diagnostika, no 7, pp. 54-64.doi: 10.14489/td.2020.07.pp.054-064 DOI: https://doi.org/10.14489/td.2020.07.pp.054-064
Shmoilov E., Chursova L., Panina N., Grebeneva T. (2021) Patent № 2772286 C1 Russian Fed-eration, IPC C08L 63/02, C08G 59/56. Cold-curing epoxy composition: № 2021115519.
Shmoilov E., Panina N., Chursova L., Golikov E. (2019) Patent № 2706661 C1 Russian Federa-tion, IPC C08L 63/00, B32B 27/38. The epoxy binder, the prepreg that it contains, and a product made from it: № 2019114163.
Shmoilov E., Chursova L., Kogan D. (2019) Patent № 2688608 C1 Russian Federation, IPC C08L 63/00, C08L 79/02, C08K 5/17. Cold-curing epoxy binder for external reinforcement systems: № 2018123955.
Shmoilov E., Chursova L., Panina N. (2023) Patent № 2791395 C1 Russian Federation, IPC C08L 63/00, C08L 79/02, C08K 5/17. Cold-curing adhesive composition: № 2022129044.
Fedotov M., Shmoilov E., Kozelskaya S. (2023) Development of a complex system for reinforc-ing building structures with carbon composite polymer materials, diagnostics of their quality and evaluation of their service life. Proceedings of the Advanced engineering science: Collection of ar-ticles of the 14th International Science Forum, Moscow, May 17, 2023, pp. 292-298.
Spiridon I., Darie R.N., Kangas H. Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. [Compos] Part B Eng. 2016, 92, 19–27. DOI: https://doi.org/10.1016/j.compositesb.2016.02.032
Liao G., Li Z., Cheng Y., Xu D., Zhu D., Jiang S., Guo J., Chen X., Xu G., Zhu Y. Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling. [Mater] Des. 2018, 139, 283–292. DOI: https://doi.org/10.1016/j.matdes.2017.11.027
Ma Y., Ueda M., Yokozeki T., Sugahara T., Yang Y., Hamada H. A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites. [Compos. Struct] 2017, 160, 89–99. DOI: https://doi.org/10.1016/j.compstruct.2016.10.037
Sharma M., Rao I.M., Bijwe J. Influence of orientation of long fibers in carbon fiber-polyetherimide composites on mechanical and tribological properties. Wear 2009, 267, 839. DOI: https://doi.org/10.1016/j.wear.2009.01.015
Scaffaro R., Di Bartolo A., Dintcheva N.T. Matrix and Filler Recycling of Carbon and Glass
Fiber-Reinforced Polymer Composites: A Review. [Polymers] 2021; 13(21):3817. DOI: https://doi.org/10.3390/polym13213817