КОНЕЧНЫЙ ЭЛЕМЕНТ ДЛЯ ОБЪЕМНОЙ ТЕОРИИ УПРУГОСТИ НА ОСНОВЕ КУСОЧНО ПОСТОЯННЫХ АППРОКСИМАЦИЙ НАПРЯЖЕНИЙ.

##plugins.themes.bootstrap3.article.main##

Юрий Тюкалов

Аннотация

Представлен объемный конечный элемент, основанный на кусочно-постоянных аппроксимациях напряжений. Решение строится на основе функционала дополнительной энергии и принципа возможных перемещений. На основе принципа возможных перемещений составлены уравнения равновесия узлов сетки, которые добавляются к функционалу дополнительной энергии при помощи множителей Лагранжа. В качестве возможных перемещений принимаются линейные функции. Поля напряжений непрерывны вдоль границ конечных элементов и разрывны внутри элементов. Приведены результаты расчета консольной балки и изгибаемой пластины. Полученные решения сравниваются с решениями методом конечных элементов в перемещениях. Предложенный конечный элемент позволяет получить более точные значения напряжений.

Скачивания

Данные скачивания пока недоступны.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Тюкалов Y. (2023). КОНЕЧНЫЙ ЭЛЕМЕНТ ДЛЯ ОБЪЕМНОЙ ТЕОРИИ УПРУГОСТИ НА ОСНОВЕ КУСОЧНО ПОСТОЯННЫХ АППРОКСИМАЦИЙ НАПРЯЖЕНИЙ. International Journal for Computational Civil and Structural Engineering, 19(1), 168–177. https://doi.org/10.22337/2587-9618-2023-19-1-168-177
Раздел
Материалы выпуска

Библиографические ссылки

Abdikarimov, R., Amabili, M., Vatin, N.I., Khodzhaev, D. Dynamic stability of orthotropic viscoelastic rectangular plate of an arbitrarily varying thickness. Applied Sciences (Switzerland). 2021. 11(13). DOI:10.3390/app11136029. DOI: https://doi.org/10.3390/app11136029

Cho, J.R. Natural element approximation of hierarchical models of plate-like elastic structures. Finite Elements in Analysis and Design. 2020. 180(September). Pp. 103439. DOI:10.1016/j.finel.2020.103439. URL: https://doi.org/10.1016/j.finel.2020.103439. DOI: https://doi.org/10.1016/j.finel.2020.103439

Gao, X.-W., Gao, L.-F., Zhang, Y., Cui, M., Lv, J. Free element collocation method: A new method combining advantages of finite element and mesh free methods. Computers & Structures. 2019. 215. Pp. 10–26. DOI:10.1016/j.compstruc.2019.02.002. URL: https://linkinghub.elsevier.com/retrieve/pii/S0045794918313488 (date of application: 26.03.2019). DOI: https://doi.org/10.1016/j.compstruc.2019.02.002

Góis, W., Proença, S.P.B. Generalized Finite Element Method on Hybrid Stress Approach: Formulation and Numerical Performance. Buenos Aires. 2010. XXIX. Pp. 4687–4705. URL: http://www.ufabc.edu.br/%5Cnhttp://www.set.eesc.usp.br/%5Cnhttp://www.amcaonline.org.ar.

Tyukalov, Y.Y. Calculation of bending plates by finite element method in stresses. IOP Conference Series: Materials Science and Engineering. 2018. 451(1). DOI:10.1088/1757-899X/451/1/012046. DOI: https://doi.org/10.1088/1742-6596/451/1/012046

Tyukalov, Y.Y. Method of plates stability analysis based on the moments approximations. Magazine of Civil Engineering. 2020. 95(3). Pp. 90–103. DOI:10.18720/MCE.95.9. URL: http://engstroy.spbstu.ru/.

Tyukalov, Y.Y. Calculation of the circular plates ’ stability in stresses. IOP Conference Series: Materials Science and Engineering. 2020. DOI:10.1088/1757-899X/962/2/022041. DOI: https://doi.org/10.1088/1757-899X/962/2/022041

Tyukalov, Y.Y. Calculation method of bending plates with assuming shear deformations. Magazine of Civil Engineering. 2019. 85(1). Pp. 107–122. DOI:10.18720/MCE.85.9.

Tyukalov, Y.Y. Stress finite element models for determining the frequencies of free oscillations. Magazine of Civil Engineering. 2016. 67(07). Pp. 39–54. DOI:10.5862/MCE.67.5. URL: http://www.engstroy.spbstu.ru/index_2016_07/05.html. DOI: https://doi.org/10.5862/MCE.67.5

Tyukalov, Y.Y. Finite element models in stresses for plane elasticity problems. Magazine of Civil Engineering. 2018. 77(1). Pp. 23–37. DOI:10.18720/MCE.77.3.

Tyukalov, Y.Y. Finite element models in stresses for bending plates. Magazine of Civil Engineering. 2018. 82(6). Pp. 170–190. DOI:10.18720/MCE.82.16.

Tyukalov, Y.Y. Refined finite element of rods for stability calculation. Magazine of Civil Engineering. 2018. 79(3). Pp. 54–65. DOI:10.18720/MCE.79.6.

Tyukalov, Y.Y. Equilibrium finite elements for plane problems of the elasticity theory. Magazine of Civil Engineering. 2019. 91(7). Pp. 80–97. DOI:10.18720/MCE.91.8. URL: http://engstroy.spbstu.ru/.

Tyukalov, Y.Y. The functional of additional energy for stability analysis of spatial rod systems. Magazine of Civil Engineering. 2017. 70(2). Pp. 18–32. DOI:10.18720/MCE.70.3.

Tyukalov, Y.Y. Calculation of circular plates with assuming shear deformations. IOP Conference Series: Materials Science and Engineering. 2019. 687(3). DOI:10.1088/1757-899X/687/3/033004. DOI: https://doi.org/10.1088/1757-899X/687/3/033004

Tyukalov, Y.Y. Finite element model of Reisner’s plates in stresses. Magazine of Civil Engineering. 2019. 5(89). Pp. 61–78. DOI:10.18720/MCE.89.6. URL: http://engstroy.spbstu.ru/.

Zhou, J., Wang, K., Li, P. A hybrid fundamental-solution-based 8-node element for axisymmetric elasticity problems. Engineering Analysis with Boundary Elements. 2019. 101. Pp. 297–309. DOI:10.1016/j.enganabound.2019.01.015. URL: https://linkinghub.elsevier.com/retrieve/pii/S0955799718305940 (date of application: 26.03.2019). DOI: https://doi.org/10.1016/j.enganabound.2019.01.015

Ye, J., Yan, Y., Li, J., Hong, Y., Tian, Z. 3D explicit finite element analysis of tensile failure behavior in adhesive-bonded composite single-lap joints. Composite Structures. 2018. 201(May). Pp. 261–275. DOI:10.1016/j.compstruct.2018.05.134. URL: https://doi.org/10.1016/j.compstruct.2018.05.134. DOI: https://doi.org/10.1016/j.compstruct.2018.05.134

Xu, R., Bouby, C., Zahrouni, H., Ben Zineb, T., Hu, H., Potier-Ferry, M. 3D modeling of shape memory alloy fiber reinforced composites by multiscale finite element method. Composite Structures. 2018. 200(May). Pp. 408–419. DOI:10.1016/j.compstruct.2018.05.108. URL: https://doi.org/10.1016/j.compstruct.2018.05.108. DOI: https://doi.org/10.1016/j.compstruct.2018.05.108

Nguyen, M.N., Bui, T.Q., Truong, T.T., Tanaka, S., Hirose, S. Numerical analysis of 3-D solids and composite structures by an enhanced 8-node hexahedral element. Finite Elements in Analysis and Design. 2017. 131. Pp. 1–16. DOI:10.1016/j.finel.2017.04.002. DOI: https://doi.org/10.1016/j.finel.2017.04.002

Liu, B., Lu, S., Wu, Y., Xing, Y. Three dimensional micro/macro-mechanical analysis of the interfaces of composites by a differential quadrature hierarchical finite element method. Composite Structures. 2017. 176. Pp. 654–663. DOI:10.1016/j.compstruct.2017.05.068. URL: http://dx.doi.org/10.1016/j.compstruct.2017.05.068. DOI: https://doi.org/10.1016/j.compstruct.2017.05.068

Liu, B., Lu, S., Ji, J., Ferreira, A.J.M., Liu, C., Xing, Y. Three-dimensional thermo-mechanical solutions of cross-ply laminated plates and shells by a differential quadrature hierarchical finite element method. Composite Structures. 2019. 208(May 2018). Pp. 711–724. DOI:10.1016/j.compstruct.2018.10.022. DOI: https://doi.org/10.1016/j.compstruct.2018.10.022