LOCAL STABILITY AND NATURAL MOTIONS OF THE MULTI-FACE DOME ROD STRUCTURE
Main Article Content
Abstract
The research object is a cyclically symmetric construction of a two-tier dome in the form of a convex polyhedron. Load and deflection critical parameters were determined for this construction pyramidal element. The behavior features of the conservative system in the dome's central assembly vertical displacement critical region value analysis has been carried out. The elastic rod model fluctuating and construction deviations from its equilibrium state reaction have been researched. System's behavior at natural motions and nonlinear restoring force is refined on the base of the findings carried out.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Lyapunov А.M. Obshhaya zadacha ob ustojchivosti dvizheniya [The general problem of traffic stability]. Leningrad, Moscow, ONTI, 1935. 386 p. (in Russian)
Savel'ev V.А. Ustojchivost' setchatykh kupolov [Mesh Dome Stability] Metallicheskie konstruktsii. Rabota shkoly prof. N.S. Streletskogo [Metal constructions. School work prof. N.S. Streletsky]. Moscow, Strojizdat, 1966. Pp. 325‒339. (in Russian)
Zhuravlev А.А. Proshhelkivanie sterzhnevoj konstruktsii setchatogo kupola v forme 980-grannika [Clicking the core structure of the mesh dome in the shape of a 980-sided.]. Izvestiya vuzov. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 1983. No. 3. Pp. 34 – 39. (in Russian)
Zhuravlev А.А. K voprosu o mestnoj ustojchivosti setchatykh kupolov s treugol'noj reshetkoj [On the issue of local stability of mesh domes with a triangular lattice.]. Izvestiya vuzov. Stroitel'stvo i arkhitektura [News of Higher Educational Institutions. Construction and architecture.]. Novosibirsk, 1971. No. 5. Pp. 77–80. (in Russian)
Beskopyl'nyj А., Zhuravlev А., Shilov А. Buckling analysis of rod structure of the two-tier dome. MATEC Web of Conferences. 2018. No. 193 DOI: https://doi.org/10.1051/matecconf/201819304024
Bogolyubov N.N., Mitropol'skiy Yu.A. Asimptoticheskiye metody v teorii nelineynykh kolebaniy [Asymptotic methods in the theory of nonlinear oscillations]. Moscow, Gostekhizdat, 1955. 447 p. (in Russian)
Timoshenko S.P. Kolebaniya v inzhenernom dele [Fluctuations in engineering]. Moscow, Fizmatgiz, 1959. 439 p. (in Russian)
Sikorskij Yu.S. Ehlementy teorii ehllipticheskikh funktsij s prilozheniyami k mekhanike [Elements of the theory of elliptic functions with applications to mechanics]. Moscow. 2006. 368 p. (in Russian)
Yanke E., Ehmde F. Tablitsy funktsij s formulami i krivymi [Function tables with formulas and curves]. Moscow, Fizmatgiz, 1959. 420 p. (in Russian)
Krylov А.N. Lektsii o priblizhennykh vychisleniyakh [Lectures on approximate calculations]. Leningrad, Moscow, Izdatel'stvo Аkademii nauk SSSR [Publishing House of the USSR Academy of Sciences]. 1935. 541 p. (in Russian)