THE EFFECT OF HOLLOW STRUCTURE PARAMETER ON THE 3D-PRINTED WALL BEARING CAPACITY. EXPERIMENTAL MODEL

Main Article Content

Galina Slavcheva
Артем Левченко
Maria Shvedova
Davut Karakchi-Ogli
Dmitriy Babenko
Pavel Yurov

Abstract

We present the results of experimental studies and modelling of the evaluation of the bearing capacity of hollow 3D-printed walls with the printed shell performing bearing functions. The bearing capacity of hollow 3D-printed walls was experimentally assessed depending on the ratio of the void areas and casting layers in the wall structure. It was established that in case of central loading, a 3D-printed wall with bearing casting layers can serve as a bearing wall similar to traditional types of masonry construction without filling voids with structural concrete and reinforcement. We established the value of strength reduction of hollow 3D-printed walls, which amounted to ~0.1 – 0.25 MPa per 1 % of the increased area of voids. The limit value of the hollow structure parameter was determined, which must not exceed K = 0.75 in order to ensure the bearing capacity of self-bearing and non-bearing 3D-printed walls. We obtained an experimental model of the relationship between the hollow structure parameter and the bearing capacity, which allowed predicting the bearing capacity of a 3D-printed wall under central loading. It was suggested to take into account the hollow structure parameter K when calculating the elements of unreinforced 3D-printed walls under central compression according to the first group of limit states.

Downloads

Download data is not yet available.

Article Details

How to Cite
Slavcheva, G. ., Левченко, А., Shvedova, M. ., Karakchi-Ogli, D. ., Babenko, D. ., & Yurov, P. . (2023). THE EFFECT OF HOLLOW STRUCTURE PARAMETER ON THE 3D-PRINTED WALL BEARING CAPACITY. EXPERIMENTAL MODEL. International Journal for Computational Civil and Structural Engineering, 19(2), 31-41. https://doi.org/10.22337/2587-9618-2023-19-2-31-41
Section
Articles

References

Monastyrev P.V., Ezerskij V.A., Ivanov I.A., Bal'tozar A. D. (2019) Analiz tekhnologij 3d -pechati sten maloetazhnyh zdanij i ih klassifikaciya [Analysis of 3d printing technologies for walls of low-rise buildings and their classification]. Sovremennye problemy v stroitel'stve: postanovka zadach i puti ih resheniya. Kursk, 2019, pp. 70-80. (in Russian)

Karpova E., Skripkiunas G., Sedova A., Tsimbalyuk Y. (2021) Additive manufacturing of concrete wall structures. E3S Web of Conferences, no 281, pp. 03007.https://doi.org/10.1051/e3sconf/202128103007. DOI: https://doi.org/10.1051/e3sconf/202128103007

Suleymanova L.A., Ognev N.V. (2017) Ocenka vozvedeniya sten zdaniya s pomoshch'yu 3d-printera v sravnenii s tradicionnym stroitel'stvom iz betonnyh blokov [Building evaluation with a 3D printer in search of concrete block construction applications]. Universitetskaya nauka, no. 2 (4). pp. 13-15. (in Russian)

Luneva D.A., Kozhevnikova E.O., Kaloshina S.V. (2017) Tekhnologiya 3D-pechati s ispol'zovaniem metoda poslojnogo ekstrudirovaniya v stroitel'stve [3D printing technology using layer-by-layer extrusion in construction]. Material IX Vserossijskoj molodezhnoj konferencii aspirantov, molodyh uchenyh i studentov «Sovremennye tekhnologii v stroitel'stve. Teoriya i praktika», no 9, pp. 251-261. (in Russian)

Watson N. D., et al. (2019) Large-scale additive manufacturing of concrete using a 6-axis robotic arm for autonomous habitat construction. Solid Freeform Fabrication: Proceedings of the 30th Annual International, Austin, Texas, 2019, pp. 1583-1595.

Aleksanin A.V., Makarevich A.I. (2017) Ispol'zovanie additivnyh tekhnologij pri vozvedenii zdanij [The use of additive technologies in the construction of buildings]. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im.

V.G. Shuhova, no 6, pp. 66-69. (in Russian)

Krushelnitskaya E.A., Ognev N.V., Zhang Jiandong Xie Di. (2018) Materialy dlya stroitel'nyh 3d-printerov i varianty konstruktivnogo resheniya zdanij [Materials for construction 3D printers and options for constructive solutions for buildings]. Mezhdunarodnyj studencheskij stroitel'nyj forum, Belgorod, 2018, pp. 255-259. (in Russian)

Khoshnevis B., et al. (2006) Mega-scale fabrication by contour crafting. Int. J. Ind. Syst. Eng., no 1, pp. 301-320. http://dx.doi.org/10.1504/IJISE.2006.009791. DOI: https://doi.org/10.1504/IJISE.2006.009791

Mechtcherine V., et al. (2018) 3D-printed steel reinforcement for digital concrete construction - Manufacture, mechanical properties and bond behavior. Construction and Building Materials, no 179, pp. 125-137. https://doi.org/10.1016/ DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.202

j.conbuildmat.2018.05.202. DOI: https://doi.org/10.1055/a-0670-1074

Pessoa S., Guimarães A.S., Lucas S.S., Simões N. (2021) 3D printing in the construction industry - A systematic review of the thermal performance in buildings. Renewable and Sustainable Energy Reviews, vol. 141, pp. 110794. https://doi.org/10.1016/j.rser.2021.110794 DOI: https://doi.org/10.1016/j.rser.2021.110794

Furet B., Poullain P., Garnier S. (2019) 3D printing for construction based on a complex wall of polymer-foam and concrete. Additive Manufacturing, vol. 28, pp. 58-64. https://doi.org/10.1016/ DOI: https://doi.org/10.1016/j.addma.2019.04.002

j.addma.2019.04.002. DOI: https://doi.org/10.1088/1475-7516/2019/04/002

Molodin V.V., Gasenko I.I., Timi P.L. (2020) Tekhnologiya 3d-pechati odnostadijnym polistirolbetonom [3D printing technology with single-stage polystyrene concrete]. Nauka i Innovacionnye tekhnologii, no 1 (14), pp. 278-287, DOI: 10.33942/sit.nes033 (in Russian) DOI: https://doi.org/10.33942/sit.nes033

Ferretti E., et al. (2022) Mechanical Properties of a 3D Printed Wall Segment made with an Earthen Mixture. Materials (Basel), no 15(2), pp. 438, DOI: 10.3390/ma15020438. DOI: https://doi.org/10.3390/ma15020438

Lukina E.V. (2021) Obzor populyarnyh stroitel'nyh materialov, primenyaemyh v maloetazhnom stroitel'stve (kirpich, gazobeton). Sravnenie ih osnovnyh harakteristik [Overview of popular building materials used in low-rise construction (brick, aerated concrete). Comparison of their main characteristics]. Innovacionnaya nauka, no 8-1, pp. 66-68. (in Russian)

RU 2729085 C1, 04.08.2020. Dvuhfaznaya smes' na osnove cementa dlya kompozitov v tekhnologii stroitel'noj 3D-pechati [Two-phase mixture based on cement for composites in the construction 3D printing technology], 8p. (in Russian)

Brick Industry Association: Reston, Virginia (2007) Technical Notes on Brick Construction. Specifications and classification of Brick, Virginia, BIA, 13p

ASTM C652-21. (2021) Standard Specification for Hollow Brick (Hollow Masonry Units Made From Clay or Shale). ASTM International, 7p.

Similar Articles

You may also start an advanced similarity search for this article.