THE EFFECT OF HOLLOW STRUCTURE PARAMETER ON THE 3D-PRINTED WALL BEARING CAPACITY. EXPERIMENTAL MODEL
Main Article Content
Abstract
We present the results of experimental studies and modelling of the evaluation of the bearing capacity of hollow 3D-printed walls with the printed shell performing bearing functions. The bearing capacity of hollow 3D-printed walls was experimentally assessed depending on the ratio of the void areas and casting layers in the wall structure. It was established that in case of central loading, a 3D-printed wall with bearing casting layers can serve as a bearing wall similar to traditional types of masonry construction without filling voids with structural concrete and reinforcement. We established the value of strength reduction of hollow 3D-printed walls, which amounted to ~0.1 – 0.25 MPa per 1 % of the increased area of voids. The limit value of the hollow structure parameter was determined, which must not exceed K = 0.75 in order to ensure the bearing capacity of self-bearing and non-bearing 3D-printed walls. We obtained an experimental model of the relationship between the hollow structure parameter and the bearing capacity, which allowed predicting the bearing capacity of a 3D-printed wall under central loading. It was suggested to take into account the hollow structure parameter K when calculating the elements of unreinforced 3D-printed walls under central compression according to the first group of limit states.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Monastyrev P.V., Ezerskij V.A., Ivanov I.A., Bal'tozar A. D. (2019) Analiz tekhnologij 3d -pechati sten maloetazhnyh zdanij i ih klassifikaciya [Analysis of 3d printing technologies for walls of low-rise buildings and their classification]. Sovremennye problemy v stroitel'stve: postanovka zadach i puti ih resheniya. Kursk, 2019, pp. 70-80. (in Russian)
Karpova E., Skripkiunas G., Sedova A., Tsimbalyuk Y. (2021) Additive manufacturing of concrete wall structures. E3S Web of Conferences, no 281, pp. 03007.https://doi.org/10.1051/e3sconf/202128103007. DOI: https://doi.org/10.1051/e3sconf/202128103007
Suleymanova L.A., Ognev N.V. (2017) Ocenka vozvedeniya sten zdaniya s pomoshch'yu 3d-printera v sravnenii s tradicionnym stroitel'stvom iz betonnyh blokov [Building evaluation with a 3D printer in search of concrete block construction applications]. Universitetskaya nauka, no. 2 (4). pp. 13-15. (in Russian)
Luneva D.A., Kozhevnikova E.O., Kaloshina S.V. (2017) Tekhnologiya 3D-pechati s ispol'zovaniem metoda poslojnogo ekstrudirovaniya v stroitel'stve [3D printing technology using layer-by-layer extrusion in construction]. Material IX Vserossijskoj molodezhnoj konferencii aspirantov, molodyh uchenyh i studentov «Sovremennye tekhnologii v stroitel'stve. Teoriya i praktika», no 9, pp. 251-261. (in Russian)
Watson N. D., et al. (2019) Large-scale additive manufacturing of concrete using a 6-axis robotic arm for autonomous habitat construction. Solid Freeform Fabrication: Proceedings of the 30th Annual International, Austin, Texas, 2019, pp. 1583-1595.
Aleksanin A.V., Makarevich A.I. (2017) Ispol'zovanie additivnyh tekhnologij pri vozvedenii zdanij [The use of additive technologies in the construction of buildings]. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im.
V.G. Shuhova, no 6, pp. 66-69. (in Russian)
Krushelnitskaya E.A., Ognev N.V., Zhang Jiandong Xie Di. (2018) Materialy dlya stroitel'nyh 3d-printerov i varianty konstruktivnogo resheniya zdanij [Materials for construction 3D printers and options for constructive solutions for buildings]. Mezhdunarodnyj studencheskij stroitel'nyj forum, Belgorod, 2018, pp. 255-259. (in Russian)
Khoshnevis B., et al. (2006) Mega-scale fabrication by contour crafting. Int. J. Ind. Syst. Eng., no 1, pp. 301-320. http://dx.doi.org/10.1504/IJISE.2006.009791. DOI: https://doi.org/10.1504/IJISE.2006.009791
Mechtcherine V., et al. (2018) 3D-printed steel reinforcement for digital concrete construction - Manufacture, mechanical properties and bond behavior. Construction and Building Materials, no 179, pp. 125-137. https://doi.org/10.1016/ DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.202
j.conbuildmat.2018.05.202. DOI: https://doi.org/10.1055/a-0670-1074
Pessoa S., Guimarães A.S., Lucas S.S., Simões N. (2021) 3D printing in the construction industry - A systematic review of the thermal performance in buildings. Renewable and Sustainable Energy Reviews, vol. 141, pp. 110794. https://doi.org/10.1016/j.rser.2021.110794 DOI: https://doi.org/10.1016/j.rser.2021.110794
Furet B., Poullain P., Garnier S. (2019) 3D printing for construction based on a complex wall of polymer-foam and concrete. Additive Manufacturing, vol. 28, pp. 58-64. https://doi.org/10.1016/ DOI: https://doi.org/10.1016/j.addma.2019.04.002
j.addma.2019.04.002. DOI: https://doi.org/10.1088/1475-7516/2019/04/002
Molodin V.V., Gasenko I.I., Timi P.L. (2020) Tekhnologiya 3d-pechati odnostadijnym polistirolbetonom [3D printing technology with single-stage polystyrene concrete]. Nauka i Innovacionnye tekhnologii, no 1 (14), pp. 278-287, DOI: 10.33942/sit.nes033 (in Russian) DOI: https://doi.org/10.33942/sit.nes033
Ferretti E., et al. (2022) Mechanical Properties of a 3D Printed Wall Segment made with an Earthen Mixture. Materials (Basel), no 15(2), pp. 438, DOI: 10.3390/ma15020438. DOI: https://doi.org/10.3390/ma15020438
Lukina E.V. (2021) Obzor populyarnyh stroitel'nyh materialov, primenyaemyh v maloetazhnom stroitel'stve (kirpich, gazobeton). Sravnenie ih osnovnyh harakteristik [Overview of popular building materials used in low-rise construction (brick, aerated concrete). Comparison of their main characteristics]. Innovacionnaya nauka, no 8-1, pp. 66-68. (in Russian)
RU 2729085 C1, 04.08.2020. Dvuhfaznaya smes' na osnove cementa dlya kompozitov v tekhnologii stroitel'noj 3D-pechati [Two-phase mixture based on cement for composites in the construction 3D printing technology], 8p. (in Russian)
Brick Industry Association: Reston, Virginia (2007) Technical Notes on Brick Construction. Specifications and classification of Brick, Virginia, BIA, 13p
ASTM C652-21. (2021) Standard Specification for Hollow Brick (Hollow Masonry Units Made From Clay or Shale). ASTM International, 7p.