ELASTOPLASTIC DEFORMATION OF STEEL CONCRETE BEAMS WITH LOCAL COMMISSION UNDER THREE-POINT BENDING

Main Article Content

Pavel Khazov
https://orcid.org/0000-0003-1220-6930
Vladimir Erofeev
Olga Vediaikina
https://orcid.org/0009-0007-1686-2579
Artyom Pomazov
https://orcid.org/0009-0009-5465-3692
Dmitrij Kozhanov

Abstract

In recent decades, there has been increased interest in studying the stress-strain state of concrete-filled steel tube constructions – composite elements consisting of a steel shell tube and a concrete core in a state of triaxial compression. In this combination, steel and concrete can achieve better strength and deformation characteristics than when they work separately, which makes it possible to design safe and economical structures. This article presents the results of an experimental study of the deformation process of bent concrete-filled steel tube elements of small circular sections. It is shown that with three-point transverse bending of a tubular concrete beam, in addition to deflection due to the curvature of the rod axis, deformations of local crumpling in places of application of concentrated loads have a significant effect on vertical displacement. The possibility of applying the classical theory of bending of a hollow steel beam according to the Bernoulli model is evaluated. The test results and deformation diagrams of hollow steel pipes (analytical and experimental data) and steel-reinforced concrete pipe beams filled with concrete are compared. A qualitative and quantitative assessment of the contribution of the presence of a concrete core to the bearing capacity and deformability (including local crumpling) of the element was carried out. The presence of a concrete core in a composite rod gives a significant weighting of the structure, however, in the case of off-center compression of the load-bearing vertical elements of multi-storey buildings, the effectiveness of using tubular concrete elements is very effective.

Downloads

Download data is not yet available.

Article Details

How to Cite
Khazov, P., Erofeev, V., Vediaikina, O., Pomazov, A., & Kozhanov, D. (2024). ELASTOPLASTIC DEFORMATION OF STEEL CONCRETE BEAMS WITH LOCAL COMMISSION UNDER THREE-POINT BENDING. International Journal for Computational Civil and Structural Engineering, 20(2), 34-45. https://doi.org/10.22337/2587-9618-2024-20-2-34-45
Section
Articles

References

Khazov, P.A. Trekhosnoe napriazhennoe sostoianie betona pri prodol'nom deformirovanii trubobetonnykh obraztsov. [Triaxial stress state of concrete under longi-tudinal deformation of tube-concrete sam-ples]. Problemy prochnosti i plastichnosti. 2023. T. 85. Vol. 2. S. 5-15. DOI: https://doi.org/10.32326/1814-9146-2023-85-2-312-322

Khazov P.A., Erofeev V.I., Lobov D.M., Sitnikova A.K., Pomazov A.P. Eksperimental'noe issledovanie prochnosti kompozitnykh trubobetonnykh obraztsov malogabaritnykh sechenii. [The experimental research of the strength of composite steel tube confined concrete samples of small-sized sections]. Privolzhskii nauchnyi zhurnal. 2022. Vol. 3 (63). S.36-43.

Khazov P.A., Erofeev V.I., Lobov D.M., Pomazov A.P., Sitnikova A.K. Eksperimental'noe issledovanie raschetnykh dlin i koeffitsientov prodol'nogo izgiba kompozitnykh trubobetonnykh obraztsov. [Experimental study of reduced lengths and longitudinal bending coefficients of compo-site concrete-filled steel tube samples]. Privolzhskii nauchnyi zhurnal. 2022. Vol. 4 (64). S. 16-24.

Bragov A.M., Lomunov A.K., Konstantinov A.IU., Lamzin D.A., Balandin V.V. Otsenka radial'noi deformatsii obraztsa na osnove teoretiko-eksperimental'nogo analiza metodiki dinamicheskikh ispytanii materialov v zhestkoi oboime. [Estimation of radial strain of specimen on the basis of the theoretical and experimental analysis of a technique dynamic tests of materials in a rig-id ferrule]. Problemy prochnosti i plastichnosti. 2016. T. 78. Vol. 4. S. 378-387. DOI: https://doi.org/10.32326/1814-9146-2016-78-4-378-387

Krishan A.L., Rimshin V.I., Rakhmanov V.A. i dr. Nesushchaia sposobnost' korotkikh trubobetonnykh kolonn kruglogo secheniia. [Bearing capacity of short concrete filled steel tube columns of circular cross-section]. Izvestiia vysshikh uchebnykh zavedenii. Tekhnologiia tekstil'noi promyshlennosti. 2017. Vol. 4 (370). S. 220-225.

Krishan A.L., Gareev M.SH., Mukhametova F.I., Sitina IU.A. Rezul'taty issledovaniia NDS szhatykh trubobetonnykh elementov s predvaritel'no obzhatym iadrom. [Results of a study of the stress-strain state of compressed pipe-concrete elements with a pre-compressed core]. Vestnik MGTU im. G.I. Nosova. 2005. Vol. 4. S. 74-77.

Krishan A.L., Zaikin A.I., Kupfer M.S. Opredelenie razrushaiushchei nagruzki szhatykh trubobetonnykh elementov. [deter-mination of the breaking load of compressed tube-concrete elements]. Beton i zhelezobeton. 2008. Vol. 2. S. 22-25.

Krishan A.L. Trubobetonnye kolonny dlia mnogoetazhnykh zdanii. [The concrete-filled steel tube columns for high-rise buildings]. Stroitel'naia mekhanika inzhenernykh konstruktsii i sooruzhenii. 2009. Vol. 4. S. 75-80.

Krishan A.L., Surovtsev M.M. Eksperimental'nye issledovaniia prochnosti gibkikh trubobetonnykh kolonn. [Experi-mental reserches of strength of flexible con-crete-filled tube (CFT) columns]. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova. 2013. Vol. 1(21). S. 90-92.

Nesvetaev G.V., Rezvan I.V. Otsenka prochnosti trubobetona. [Resistibility evalua-tion of the composite columns]. Fundamental'nye issledovaniia. 2011. no 12-3. S. 580-583.11. Lehman D.E., Kuder K.G., Gunnarrson A.K., Roeder C.W., Berman J.W. Circular Concrete-Filled Tubes for Im-proved Sustainability and Seismic Resilience. Journal of Structural Engineering. 2015. Vol. 141.

Lehman D.E., Kuder K.G., Gunnarrson A.K., Roeder C.W., Berman J.W. Circular Concrete-Filled Tubes for Improved Sustain-ability and Seismic Resilience. Journal of Structural Engineering. 2015. No 141. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001103

Li P., Zhang T., Wang C. Behavior of Con-crete-Filled Steel Tube Columns Subjected to Axial Compression. Advances in Materials Science and Engineering. 2018. P. 1-15. DOI: https://doi.org/10.1155/2018/4059675

Lu Y., Na Li, Li S., Liang H. Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Con-struction and Building Materials. 2015. No 95. P. 74-85. DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.114

Dai X.H., Lam D., Jamaluddin N. Numerical analysis of slender elliptical concrete filled columns under axial compression. Thin-Walled Structures. 2014. No 77. Pp. 26–35. DOI: https://doi.org/10.1016/j.tws.2013.11.015

Lazovic Radovanovic M.M., Nikolic J.Z., Radovanovic J.R., Kostic S.M. Structural Behaviour of Axially Loaded Concrete-Filled Steel Tube Columns during the Top-Down Construction Method. Applied Sciences. 2022. No 12(8). DOI: https://doi.org/10.3390/app12083771

Manikandan K.B., Umarani C. Understand-ings on the Performance of Concrete-Filled Steel Tube with Different Kinds of Concrete Infill. Advances in Civil Engineering. 2021. Vol. 2021. 12 p. DOI: https://doi.org/10.1155/2021/6645757

Wang J., Sun Q., Li J. Experimental study on seismic behavior of high-strength circular concrete-filled thin-walled steel tubular col-umns. Engineering Structures. 2019. Vol. 182. P. 403-415. DOI: https://doi.org/10.1016/j.engstruct.2018.12.098

Prasanta K., Arun C.B., Konjengbam D.S. Experimental investigation of partially con-fined concrete-filled steel tubular square col-umns under lateral cyclic loading. Journal of Constructional Steel Research. 2023. Vol. 201. DOI: https://doi.org/10.1016/j.jcsr.2022.107751

Zhang T., Gong Y.Z., Ding, F.X., Liu, X.M., Yu Z.W. Experimental and numerical investigation on the behavior of concrete-filled rectangular steel tubes under bending. Structural Engineering and Mechanics, An Int'l Journal. 2021. Vol. 78. №. 3. P. 231-253.

Terry P. J., Bradford M. A., Gilbert R. I. Creep and shrinkage in concrete-filled steel tubes. Tubular structures VI. 2021. P. 293-298. DOI: https://doi.org/10.1201/9780203735015-43

Tran V. L., Thai D. K., Nguyen D. D. Prac-tical artificial neural network tool for predict-ing the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete. Thin-Walled Struc-tures. 2020. Vol. 151. DOI: https://doi.org/10.1016/j.tws.2020.106720

Lai M. H., Ho J. C. M. A theoretical axial stress-strain model for circular concrete-filled-steel-tube columns. Engineering Struc-tures. 2016. Vol. 125. P. 124-143. DOI: https://doi.org/10.1016/j.engstruct.2016.06.048

Wang Z.B., Tao Z., Han L.H., Uy B., Lam D., Kang, W.H. Strength, stiffness and duc-tility of concrete-filled steel columns under axial compression. Engineering Structures. 2017. Vol. 135. P. 209-221. DOI: https://doi.org/10.1016/j.engstruct.2016.12.049

Karpenko N.I., Karpenko S.N. Opredelenie prochnosti i orientatsii ploshchadok razrusheniia pri razlichnykh vidakh obemnogo napriazhennogo sostoianiia. [De-termination of the strength and orientation of destruction concretes surfaces for different types of bulk stress state]. International Jour-nal for Computational Civil and Structural Engineering. 2015. Vol. 11, Iss. 4. P. 52–61.

Karpenko N.I., Korsun V.I., Karpenko S.N., Anushchenko A. M. Kriterii prochnosti betona pri trekhosnom szhatii. [strength crite-rion of concrete under triaxial compression]. Privolzhskii nauchnyi zhurnal. 2022. Vol.4 (64). S. 8-16.

Korsun, V., Kalmykov Yu., Niedoriezov A., Korsun A. The Influence of the Initial Con-crete Strength on its Deformation under Triaxial Compression. Procedia Engineering. 2015. № 117. Р. 959–969. DOI: https://doi.org/10.1016/j.proeng.2015.08.190

Markov I.P., Konstantinov A.IU. Dinamicheskie ispytaniia obemno-szhimaemogo kompozitsionnogo materiala. [Dynamic testing of volumetric compressible composite material]. Problemy prochnosti i plastichnosti. 2018. T. 80. Vol. 3. S. 409-417. DOI: https://doi.org/10.32326/1814-9146-2018-80-3-409-417

Geel van H. J. G. M. Concrete behaviour in multiaxial compression: experimental re-search. Technische Universiteit Eindhoven. 1998. P. 178.

He Z., Song Y. Triaxial strength and failure criterion of plain high-strength and high-performance concrete before and after high temperatures. Cement and Concrete Re-search. 2010. № 40. Р. 171–178. DOI: https://doi.org/10.1016/j.cemconres.2009.08.024

Sovjak R., Vogel F., Beckmann B. Triaxial compressive strength of ultra high perfor-mance concrete. ActaPolytechnica. 2013. № 53 (6). Р. 901–905. DOI: https://doi.org/10.14311/AP.2013.53.0901

Khazov P. A., Vediaikina O. I., KHokhlova I. S., Artem'eva D. V. Deformirovanie i razrushenie trubobetonnykh obraztsov pri poperechnom izgibe. [Deformation and de-struction of concrete-filled steel tube samples during transverse bending]. Privolzhskii nauchnyi zhurnal. 2023. Vol. 2 (66). S.69-74. DOI: https://doi.org/10.31659/0044-4472-2023-12-66-71

Prochnost' tonkostennykh metallicheskikh konstruktsii [Strength of thin-walled metal structures]. / B.B. Lampsi . Moskva : Stroiizdat, 1987. 279 p.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)