СИСТЕМА УПРАВЛЕНИЯ ПАРАМЕТРАМИ ЭЛЕКТРОПРОГРЕВА ЖЕЛЕЗОБЕТОННЫХ МОНОЛИТНЫХ КОНСТРУКЦИЙ

Основное содержимое статьи

Степан Леонтьев
Андрей Талейко

Аннотация

В статье представлены результаты разработки системы управления параметрами электропрогрева монолитных железобетонных конструкций. Последовательность разработки включала в себя следующие этапы: сбор исходных данных; построение виртуальной модели конструкций в программе Elcut; анализ динамики изменения параметров модели в зависимости от внешних факторов; фиксация числовых значений параметров модели; построение математической модели зависимости выходного напряжения трансформатора от температур бетона, окружающей среды и времени электропрогрева; разработка и описание принципиальной схемы функционирования предложенной системы управления.


Разработанная авторами система управления может послужить основой при создании автоматизированного комплекса электропрогрева монолитных железобетонных конструкций, применение которого позволит значительно снизить энергопотребление и трудозатраты связанные с их электропрогревом.

Скачивания

Данные скачивания пока недоступны.

Информация о статье

Как цитировать
Леонтьев, С., & Талейко, А. (2023). СИСТЕМА УПРАВЛЕНИЯ ПАРАМЕТРАМИ ЭЛЕКТРОПРОГРЕВА ЖЕЛЕЗОБЕТОННЫХ МОНОЛИТНЫХ КОНСТРУКЦИЙ. International Journal for Computational Civil and Structural Engineering, 19(1), 85–96. https://doi.org/10.22337/2587-9618-2023-19-1-85-96
Раздел
Материалы выпуска

Библиографические ссылки

Ryazanova G.N., Popova, D.M. Analiz sushchestvuyushchih metodov vozvedeniya konstrukcij iz monolitnogo betona i zhelezobetona v zimnih usloviyah [Analysis of existing methods of construction of monolithic concrete and reinforced concrete structures in winter conditions] // Urban construction and architecture, 2018, 30(1), pp. 16-23. (in Russian). DOI: 10.17673/Vestnik.2018.01.3 DOI: https://doi.org/10.17673/Vestnik.2018.01.3

Bofang Z. Construction of mass concrete in winter. In: thermal stresses and temperature control of mass concrete // Butterworth-Heinemann: Tshingua University Press, 2014, pp. 431-438. DOI: https://doi.org/10.1016/B978-0-12-407723-2.00021-X

Fedorova G., Mestnikov V., Matveeva O., Nikolayev, E. Features of High-Strength Concrete Creation for Concreting of Monolithic Constructions in the Far North Conditions // Procedia Engineering, 2013, No. 57, pp. 264-269. DOI: https://doi.org/10.1016/j.proeng.2013.04.036

Gnam P.A., Kiviharju R.K. Tekhnologii zimnego betonirovaniya v Rossii [Technologies of winter concreting in Russia] // Construction of Unique Buildings and Structures, 2016, 9 (48), pp. 7-25, (in Russian). DOI: 10.18720/CUBS.48.1.3.

Nassif, A.Y., Petrou, M.F.: Influence of cold weather during casting and curing on the stiffness and strength of concrete // Construction and Building Materials, 2013, Vol. 44. pp. 161–167. https://doi.org/10.1016/j.conbuildmat.2013.03.016 DOI: https://doi.org/10.1016/j.conbuildmat.2013.03.016

Zhang G., Yu H.Y., Li H.M., Yingzi Y. Experimental study of deformation of early age concrete suffering from frost damage // Construction and Building Materials, 2019, Vol. 215. pp. 410–421. https://doi.org/10.1016/j.conbuildmat.2019.04.187 DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.187

Ortiz J., Aguado A., Agulló L., García T. Influence of environmental temperatures on the concrete compressive strength: simulation of hot and cold weather conditions // Cement and Concrete Research, 2005, № 35(10), pp.1970-1979. DOI:10.1016/j.cemconres.2005.01.004. DOI: https://doi.org/10.1016/j.cemconres.2005.01.004

Zach J., Sedlmajer M., Hroudova J. Nevaril A. Technology of concrete with low generation of hydration heat // Procedia Engineering, 2013, No. 65, pp. 296-301. https://doi.org/10.1016/j.proeng.2013.09.046 DOI: https://doi.org/10.1016/j.proeng.2013.09.046

Dudin M.O., Barabanshchikov Y.G. Specifika montazha elektricheskogo provoda v tekhnologii progreva betona [Specifity of wiring into technology of heating concrete] // Construction of Unique Buildings and Structures, 2015, № 6(33), pp. 47-61, (in Russian). DOI: 10.18720/CUBS.33.4

Shishkin V.V. Covershenstvovanie metoda zimnego betonirovaniya s primeneniem nagrevatel'nyh provodov [Improvement of the method of winter concreting with the use of heating wires] // Industrial and Civil Engineering, 2019, №6, pp. 51-58, (in Russian). DOI: 10.33622/0869-7019.2019.06.51-58. DOI: https://doi.org/10.33622/0869-7019.2019.06.51-58

Tuo S., Chunlin D., Jiaqi Z., Pingxiang D., Zhihong F. Temperature field of concrete cured in winter conditions using thermal control measures // Advances in Materials Science and Engineering, 2022, vol. 2022, pp. 1-12. DOI: https://doi.org/10.1155/2022/7255601. DOI: https://doi.org/10.1155/2022/7255601

Barna L.A., Seman P.M., Korhonen C.J. Energy-efficient approach to cold-weather concreting // Journal of Materials in Civil Engineering, 2011, Vol. 23, №11, pp. 1544–1551. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000262

Varuna M., Raikar D., Sunil S. Studies on temperature differential for different types of overlay over cement concrete pavement // Proceedings of 5th International Conference of Transportation Research Group of India. Bhopal, 2019, pp 365-376. DOI: 10.1007/978-981-16-9921-4_27. DOI: https://doi.org/10.1007/978-981-16-9921-4_27

Kumar S.S., Ravindraraj B.J. Study of temperature differential in different concrete slabs of varying slab thickness in different regions // International journal of Civil Engineering and Technology, 2018, № 9(4), pp. 1008 – 1013.

Le Q.X., Dao V.TN., Torero J.L., Maluk C., Bisby L. Effects of temperature and temperature gradient on concrete performance at elevated temperatures // Advances in Structural Engineering, 2018, № 21(8), pp. 1223–1233. https://doi.org/10.1177/1369433217746347. DOI: https://doi.org/10.1177/1369433217746347

Marzouk H., Hussein A. Effect of curing age on high-strength concrete at low temperatures // Journal of Materials in Civil Engineering, 1995, Vol. 7, No. 3, pp. 161–167. DOI:10.1061/(ASCE)0899-1561(1995)7:3(161). DOI: https://doi.org/10.1061/(ASCE)0899-1561(1995)7:3(161)

Zhurov N.N., Komissarov S.V. Sistema temperaturno-prochnostnogo kontrolya betona v rannem vozraste [System temperature-strength concrete control at early age] // Vestnik MGSU, 2010, № 4(5), pp. 296-301. (in Russian).

Korobkov S. Gnyrya A., Kuznetsov S. Computer Simulation of Electric Heating of Concrete Column // Lecture Notes in Networks and Systems, 2022, Vol. 403, pp. 349-357. DOI: 10.1007/978-3-030-96383-5_39. DOI: https://doi.org/10.1007/978-3-030-96383-5_39

Dhananjay M., Abhilash K. Study of thermal gradient in concrete slabs through experimental approach // Global Journal of Reserches in Engineering: E Civil and Structural Engineering, 2014, №14(5), pp. 1–17.

Khoa H.N., Cong V.C. Analyzing temperature field and thermal stress in massive concrete by finite element method // Journal of Construction Science and Technology. Buildings, 2012, №14(12), pp. 17–27.

Zinevich L.V. Primenenie chislennogo modelirovaniya pri proektirovanii tekhnologii obogreva i vyderzhivaniya betona monolitnyh konstrukcij [Application of numerical modeling in the design of heating technology and concrete curing of monolithic structures] // Magazine of Civil Engineering, 2011, No. 2. pp. 24-28. (in Russian).

Dudin M.O., Vatin N.I., Barabanshchikov Yu.G. Modelirovanie nabora prochnosti betona v programme elcut pri progreve monolitnyh konstrukcij provodom [Modeling a set of concrete strength in the program ELCUT at warming of monolithic structures by wire] // Magazine of Civil Engineering, 2015, №2, pp. 33-45. (in Russian). DOI 10.5862/MCE.54.4. DOI: https://doi.org/10.5862/MCE.54.4

Gnyrya A., Korobkov S., Gaag I. Numerical solution of the thermal problem for electric heating of concrete structures in winter // Proceedings of Ural Environmental Science Forum “Sustainable Development of Industrial Region” (UESF-2021). Chelyabinsk, 2021, pp. 1-10. DOI 10.1051/e3sconf/202125809048.

Zhang G., Yang Y.Z., Li H.M. Calcium-silicate-hydrate seeds as an accelerator for saving energy in cold weather concreting // Construction and building materials, 2020, Vol. 264, pp.1-15. DOI:10.1016/j.conbuildmat.2020.120191. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120191

Alzaza A., Ohenoja K., Langas I., Arntsen B., Poikelispaa M., Illikainen M. Low-temperature (−10°C) curing of Portland cement paste – Synergetic effects of chloride-free antifreeze admixture, C–S–H seeds, and room-temperature pre-curing // Cement and Concrete Composites, 2022, Vol 125, pp. 1-13. DOI: https://doi.org/10.1016/j.cemconcomp.2021.104319

Похожие статьи

1 2 3 4 5 6 7 8 9 10 > >> 

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.