MODELING OF SEISMIC WAVES STRESSES IN A HALF-PLANE WITH A VERTICAL CAVITY FILLED WITH WATER (THE RATIO OF WIDTH TO HEIGHT IS ONE TO TEN)
Main Article Content
Abstract
The problem of mathematical modeling of unsteady seismic waves in an elastic half-plane with a ver-tical rectangular cavity filled with water is considered. The problem of modeling problems of the transition peri-od is an actual scientific problem. A quasi-regular approach is proposed to solve a system of linear ordinary dif-ferential equations of the second order in displacements with initial conditions and to approximate the region un-der study. The method is based on the schemes: a point, a line and a plane. An algorithm and a set of programs for solving flat (two-dimensional) problems that allow obtaining a stress-strain state in complex objects have been developed. To assess the reliability of the developed methodology, algorithm and software package, the problem of the effect of a plane longitudinal wave in the form of a Heaviside function on an elastic half-plane was solved. The numerical solution corresponds quantitatively to the analytical solution. The problem of mathe-matical modeling of unsteady elastic stress waves in a half-plane with a cavity filled with water (the ratio of width to height is one to ten) under seismic influence is solved. A system of equations consisting of 8016008 un-knowns is solved. Contour stresses and components of the stress tensor are obtained in the characteristic areas of the problem under study. A cavity filled with water, with a width-to-height ratio of one to ten, reduces the amount of elastic contour stress.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.