OPTIMAL SEISMIC PROTECTION OF STRUCTURES ON BEARINGS WITH BILINEAR HYSTERETIC CHARACTERISTIC

Main Article Content

Elena Poznyak
Olga Novikova
https://orcid.org/0000-0002-6499-170X
Vladimir Radin
Alexey Kiselev
Yulia Ivanova

Abstract

The design of optimal seismic protection systems on bearings with hysteresis behavior leads to a conditional multidimensional global optimization problem with a nonlinear and non-differentiable objective function. In this paper, bearings with bilinear characteristic with hysteresis are considered, i.e. for each nonlinear bearing there are four parameters to optimize: ultimate elastic displacement and stiffness for the elastic mode and ultimate displacement and stiff-ness for the inelastic mode.


We study the seismic response of an elastic beam on four nonlinear bearings under vertical seismic ground motion. The perturbation functional as an integral of the quadratic form of the state vector with a weight matrix formed from the stiffness and inertia matrices of the system on equivalent elastic supports is considered as the objective function. Minimization of the functional means the minimum of the total energy of the system on equivalent elastic bearings. Genetic algorithm is used to solve the optimization problem.

Downloads

Download data is not yet available.

Article Details

How to Cite
Poznyak, E., Novikova, O., Radin, V., Kiselev, A., & Ivanova, Y. (2024). OPTIMAL SEISMIC PROTECTION OF STRUCTURES ON BEARINGS WITH BILINEAR HYSTERETIC CHARACTERISTIC. International Journal for Computational Civil and Structural Engineering, 20(2), 88-98. https://doi.org/10.22337/2587-9618-2024-20-2-88-98
Section
Articles

References

Radin V.P., Poznyak E.V., Chirkov V.P., Novikova O.V. Dinamicheskie harakteristiki i nastrojka vibroizolyatorov s bilinejnym gisterezisom [Dynamic characteristics and adjustment of vibration isolators with bilinear hysteresis]. Izvestiya vysshih uchebnyh zavedenij. Mashinostroenie, 2022, No. 12, pp. 14–23. (in Russian). doi: 10.18698/0536–1044–2022–12–14–23 DOI: https://doi.org/10.18698/0536-1044-2022-12-14-23

Radin V.P., Poznyak E.V., Novikova O.V., Chirkov V.P. Razrabotka i issledovanie modeli zdaniya na rezinometallicheskih sejsmooporah [Development and Study of a Building Model on Lead Rubber Bearings]. Vestnik MEI, 2022, No. 2, pp. 105–112. (in Russian). doi: 10.24160/1993–6982–2022–2–105–112 DOI: https://doi.org/10.24160/1993-6982-2022-2-105-112

K. Ye, Y. Xiao, L. Hu A direct displace-ment-based design procedure for base-isolated building structures with lead rubber bearings (LRBs), Engineering Structures, Volume 197, 2019, https://doi.org/10.1016/j.engstruct.2019.109402 DOI: https://doi.org/10.1016/j.engstruct.2019.109402

A. E. Çerçevik, Ö. Avşar, O. Hasançebi Optimum design of seismic isolation systems using metaheuristic search methods, Soil Dynamics and Earthquake Engineering, Vol-ume 131, 2020, https://doi.org/10.1016/j.soildyn.2019.106012 DOI: https://doi.org/10.1016/j.soildyn.2019.106012

P.Shoaei, M. Mahsuli Reliability-based de-sign of steel moment frame structures isolat-ed by lead-rubber bearing systems, Struc-tures, Volume 20, 2019, pp. 765-778, https://doi.org/10.1016/j.istruc.2019.06.020 DOI: https://doi.org/10.1016/j.istruc.2019.06.020

P. Shoaei, H. T. Orimi, S. M. Zahrai Seis-mic reliability-based design of inelastic base-isolated structures with lead-rubber bearing systems, Soil Dynamics and Earthquake En-gineering, Volume 115, 2018, pp. 589-605, https://doi.org/10.1016/j.soildyn.2018.09.033 DOI: https://doi.org/10.1016/j.soildyn.2018.09.033

R.S. Jangid Optimum lead–rubber isolation bearings for near-fault motions, Engineering Structures, Volume 29, Issue 10, 2007, pp. 2503-2513, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2006.12.010 DOI: https://doi.org/10.1016/j.engstruct.2006.12.010

T. Zordan, T. Liu, B. Briseghella, Q. Zhang Improved equivalent viscous damping model for base-isolated structures with lead rubber bearings, Engineering Structures, Volume 75, 2014, pp. 340-352, https://doi.org/10.1016/j.engstruct.2014.05.044 DOI: https://doi.org/10.1016/j.engstruct.2014.05.044

Bakaeva L., Egarmin K., Galikhanova E. Effect of using rubber-metal seismic bearings on the dynamic and static characteristics of a multi–storey building. AlfaBuil, 2019, No. 5(12), pp. 15-26, doi: 10.34910/ALF.12.2. – EDN SERRFG.

S. Eem, D. Hahm Large strain nonlinear model of lead rubber bearings for beyond de-sign basis earthquakes, Nuclear Engineering and Technology, Volume 51, Issue 2, 2019, pp. 600-606, https://doi.org/10.1016/j.net.2018.11.001 DOI: https://doi.org/10.1016/j.net.2018.11.001

Karpenko A.P. Sovremennye algoritmy poiskovoj optimizacii. Algoritmy, vdohnovlennye prirodoj [Modern search en-gine optimization algorithms. Algorithms in-spired by nature]: ucheb. posobie. – M.: Izd-vo MGTU im. N.E. Baumana, 2014. (in Rus-sian).

Lead Rubber Bearings, S03. FIP Indusriale. https://www.pretensa.com.pt/upload/pdf/content_our_work/FZhd5uLx/S03_LRB-eng.pdf

Y. Tu, G. Yang, Q. Cai, L. Wang, X. Zhou Optimal design of SINS's Stewart plat-form bumper for restoration accuracy based on genetic algorithm, Mechanism and Ma-chine Theory, Volume 124, 2018, pp. 42-54, https://doi.org/10.1016/j.mechmachtheory.2018.01.016 DOI: https://doi.org/10.1016/j.mechmachtheory.2018.01.016

A. Tsipianitis, Y. Tsompanakis Optimizing the seismic response of base-isolated liquid storage tanks using swarm intelligence algo-rithms, Computers & Structures, Volume 243, 2021, 106407, https://doi.org/10.1016/j.compstruc.2020.106407 DOI: https://doi.org/10.1016/j.compstruc.2020.106407

J. Pérez-Aracil, C. Camacho-Gómez, P. Reynolds, E. Pereira, S. Salcedo-Sanz Op-timal vibration isolation and alignment over non-rigid bases with the CRO-SL ensemble, Engineering Applications of Artificial Intel-ligence, Volume 113, 2022, 104984, https://doi.org/10.1016/j.engappai.2022.104984 DOI: https://doi.org/10.1016/j.engappai.2022.104984

S. Etedali, K. Hasankhoie, M. R. Sohrabi Optimal design of pure-friction isolators with and without restoring device: A multi-objective cuckoo search-based approach for seismic-excited structures, Structures, Volume 25, 2020, pp. 708-719, https://doi.org/10.1016/j.istruc.2020.03.041 DOI: https://doi.org/10.1016/j.istruc.2020.03.041

Similar Articles

You may also start an advanced similarity search for this article.