ENHANCING THE DAMPING BEHAVIOUR OF STEEL CRANE STRUC-TURES BY INTRODUCING A CONCRETE CORE

Main Article Content

Irina Shkoda
Olga Vediaikina
Daria Loshkaryova

Abstract

The potential use of steel tube confined concrete columns in crane structures is being explored as a means of enhancing damping during the movement of carrying and lifting machines. This is with a view to mitigating the impact of dynamic effects that may arise during operation. The results of experimental studies of tube confined concrete specimens for stability under central compression by static loading are given. This paper presents a methodology for dynamic tests of specimens, which is used to determine the damping ratio of vibrations and the inelastic resistance coefficient of composite materials. The results demonstrate that tube confined concrete specimens possess enhanced damping behaviour in comparison to steel and reinforced concrete structures. This observation suggests that they are an effective solution for load-bearing structures designed to support moving overhead cranes.

Downloads

Download data is not yet available.

Article Details

How to Cite
Shkoda, I., Vediaikina, O., & Loshkaryova, D. (2024). ENHANCING THE DAMPING BEHAVIOUR OF STEEL CRANE STRUC-TURES BY INTRODUCING A CONCRETE CORE. International Journal for Computational Civil and Structural Engineering, 20(4), 57-71. https://doi.org/10.22337/2587-9618-2024-20-4-57-71
Section
Articles

References

Potapov A.N., Zyambaev N.A. Dinamicheskij raschet podkranovoj fermy pri konstruktivno nelinejnoj rabote ee elementov [Dynamic calcu-lation of crane truss at structurally nonlinear op-eration of its elements]. Vestnik YuUrGU. Seriya «Stroitel'stvo i arhitektura». 2015. Т. 15. № 3. P. 26–31.

Musilek, J. Horizontal Forces on Crane Runway Caused by Skewing of the Crane. IOP: Confer-ence Series: Materials Science and Engineering. 2019. Vol. 471. Issue 5, 052001. DOI: 10.1088/1757-899X/471/5/052001.

Musilek, J. Dynamical Model for Determination of Horizontal Forces on Crane. Runway during Motion of the Crane. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 603. Issue 5:052076. DOI: 10.1088/1757-899X/603/5/052076.

Ahtulova L.N., Ahtulov A.L., Kirasirov O.M., Mashonskij V.A. Vizual'noe modelirovanie dvuhbalochnogo mostovogo krana kak slozhnoj dinamicheskoj sistemy. [Visual modeling of double girder overhead travelling crane as a complex dynamic system]. Omsk Scientific vestnik. 2014. №1 (127). P. 147-152.

Fedyaeva G. A., Kochevinov D. V., Lozbinev V.P., Lozbinev F.Yu. Modelirovanie dinamiki elektromekhanicheskoj sistemy mostovogo krana [Modeling of dynamics of electromechanical system of overhead crane]. Vestnik Bryansk State Technical University. 2014. № 1 (41). P. 63-67.

Korytov M.S., Shcherbakov V.S., Shershneva E.O. Obosnovanie znachenij koefficientov regulyatorov gasheniya kolebanij gruza mostovogo krana [Justification of the values of coefficients of overhead crane load vibration damping regulators]. Vestnik SibADI. 2017. № 1(53). P. 12–19.

Vib. J., Lee L., Huang P., Shih Y., et al. Paral-lel neural network combined with sliding mode control in overhead crane control system. Con-trol. 2014. № 20. P. 749–760.

Kruglov S.P., Aksamentov D.N. Metod adaptivnogo upravleniya mostovym kranom s pryamym otslezhivaniem peremeshcheniya gruza [Method of adaptive control of overhead crane with direct tracking of load movement]. Mechatronics, automation, control. 2020. № 21(12). P. 682–688.

Aksamentov D.N., Kruglov S.P., Kovyrshin S.V. Ustanovka po issledovaniyu algoritmov uspokoeniya kolebanij gruza mostovogo krana [Installation on research of algorithms of oscilla-tion calming of overhead crane load vibrations] Transportation infrastructure of the Siberian re-gion. 2019. Т. 2. P. 288–292.

Krishan A.L., Rimshin V.I., Rakhmanov V.A. et al. Nesushchaya sposobnost' korotkih trubobetonnyh kolonn kruglogo secheniya [Bear-ing capacity of short round section tubular con-crete columns]. Izvestia of higher educational institutions. Technology of textile industry. 2017. № 4 (370). P. 220-225.

Vedernikova, A.A. Chislennye issledovaniya trubobetonnyh elementov pri vnecentrennom szhati [Numerical Studies of Pipe Concrete Ele-ments under Eccentric Compression]. Inzhenernyj vestnik Dona. 2022. № 11 (95). S.639-654.

Khazov P.A. Trekhosnoe napryazhennoe sostoyanie betona pri prodol'nom deformirovanii trubobetonnyh obrazcov [Triaxial stress state of concrete under longitudinal deformation of tube-concrete samples]. Problems of strength and plasticity. 2023. №3 (85). P. 312-322.

Karpenko N.I., Korsun V.I., Karpenko S.N., Anushchenko A.M. Kriterij prochnosti betona pri trekhosnom szhatii [Strength criterion of con-crete under triaxial compression]. Volga Region Scientific Journal. 2022. №4 (64). P. 8-16.

SP 266.1325800.2016 Konstrukcii stalezhelezobetonnye. Pravila proektirovaniya (s Izmeneniem N 1, s Popravkoj) [Steel reinforced concrete structures. Design rules (with Change N 1, with Amendment)]. - M.: Ministry of Con-struction of Russia, 2016. 80 p.

Faqi Liu, Yuyin Wang, Leroy Gardner, Amit H. Varma. Experimental and numerical studies of reinforced concrete columns confined by cir-cular steel tubes exposed to fire. Journal of Structural Engineering-ASCE. 2019. Vol. 145 (11): 04019130.

Khazov P.A., Erofeev V.I., Lobov D.M., Pomazov A.P., Sitnikova A.K. Experimental study of the calculated lengths and longitudinal bending coefficients of the composite pipe-concrete specimens [Eksperimental'noe issledovanie raschetnyh dlin i koefficientov prodol'nogo izgiba kompozitnyh trubobetonnyh obrazcov]. Volga Region Scientific Journal. 2022. №4 (64). P. 16-24.

Khazov P.A., Erofeev V.I., Lobov D.M., Sitnikova A.K., Pomazov, A.P. Experimental study of the strength of composite pipe-concrete specimens of small-sized sections [Eksperimental'noe issledovanie prochnosti kompozitnyh trubobetonnyh obrazcov malogabaritnyh sechenij]. Volga Region Scien-tific Journal. 2022. № 3 (63). P.36-43.

Khazov P.A., Erofeev V.I., Nikitina E.A., Pomazov A.P. Experimental and analytical models of longitudinal deformation in pipe-concrete specimens with small cross-sections. Structural Mechanics of Engineering Construc-tions and Buildings. 2023. Vol. 19. N. 4. P. 410-418. DOI: 10.22363/1815-5235-2023-19-4-410-418

Morino S., Tsuba K. Design and Construction of Concrete-Filled Steel Tube Column System in Japan. Earthquake and Engineering Seismology. 2005. No. 1. Vol. 4. P. 51-73.

Wang J., Sun Q., Li J. Experimental study on seismic behavior of high-strength circular con-crete-filled thin-walled steel tubular columns. Engineering Structures. 2019. Vol. 182. P. 403-415.

Prasanta K., Arun C.B., Konjengbam D.S. Experimental investigation of partially confined concrete-filled steel tubular square columns un-der lateral cyclic loading. Journal of Construc-tional Steel Research. 2023. Vol. 201.

Li P., Zhang T., Wang C. Behavior of Con-crete-Filled Steel Tube Columns Subjected to Axial Compression. Advances in Materials Sci-ence and Engineering. 2018. P. 1-15.

Lu Y., Na Li, Li S., Liang H. Behavior of steel fiber reinforced concrete-filled steel tube col-umns under axial compression. Construction and Building Materials. 2015. No 95. P. 74-85.

Wang Z.B., Tao Z., Han L.H., Uy B., Lam D., Kang, W.H. Strength, stiffness and ductility of concrete-filled steel columns under axial com-pression. Engineering Structures. 2017. Vol. 135. P. 209-221.

Dai X.H., Lam D., Jamaluddin N. Numerical analysis of slender elliptical concrete filled col-umns under axial compression. Thin-Walled Structures. 2014. No 77. P. 26–35.

Xiaozhong, Li. Numerical Study on the Axial Compressive Behavior of Steel-Tube-Confined Concrete-Filled Steel Tubes [Электронный ре-сурс]/ Li Xiaozhong, Sumei Zhang, Yu Tao, Bing Zhang. Experimental Tests and Numerical Analysis of Construction Materials. 2024. 17(1). 155. Режим доступа: URL: https://DOI.org/10.3390/ma17010155.

Hao, Dinh Phana. Numerical analysis of com-pressive behavior of circular concrete filled steel tubular columns with high to ultra-high strength materials. Journal of Science and Technology in Civil Engineering (STCE) - HUCE. 2023. 17(2):83-98. DOI: 10.31814/stce.huce2023-17(2)-08.

Singh, N. D. Study and Buckling Analysis of Concrete Filled Steel Tubes Columns using ANSYS / N. D. Singh, Sh. Vaghmarey. Interna-tional Research Journal of Engineering and Technology (IRJET). 2018. Vol. 05. Issue 12. P. 1259-1267.

Xiong, Yongming & Ming, Yang & shi, heng. Axial compression behavior of concrete-filled prefabricated aligned steel fiber UHPC tubes. Journal of Building Engineering. 2024. 10.1016/j.jobe.2024.109353.

Fanghong, Wu & Xu, Lihua & Zeng, Yanqin & Yu, Min & Li, Ben. Behavior of CA-UHPC filled circular steel tube stub columns under axial compression. Journal of Constructional Steel Research. 2023. 211. 108204. 10.1016/j.jcsr.2023.108204.

RSCIM: Testing machines. P-125. Mode of ac-cess: https://rscim.ru/produkciya/ispitatelnie-pressi/laboratornye-pressy-tipa-p/p-125

Khazov, P.A.; Pomazov, A.P. Strength and longitudinal bending of pipe-concrete rods under central compression (in Russian) [Prochnost' i prodol'nyj izgib trubobetonnyh sterzhnej pri central'nom szhatii]. Building mechanics and constructions. 2023. №2 (73). P. 77-86.

Plyaskin A.S., Ustinov A.M., Plyaskin A.S. Natural investigations of frequency characteris-tics of reinforced concrete columns of monolithic frame in the process of installation [Natural'nye issledovaniya chastotnyh harakteristik zhelezobetonnyh kolonn monolitnogo karkasa v processe montazha. Investments, construction, real estate. 2018. P. 421-425.

Kopanica D.G., Kaparulin S.L., Plyaskin A.S., Ustinov A.M., Kalichkina A.S. Natural studies of frequency characteristics of reinforced con-crete columns of monolithic frame during as-sembly [Vzaimosvyaz' napryazhennogo sostoyaniya szhatoj kolonny i chastoty sobstvennyh kolebanij]. Investments, construc-tion and real estate as a material basis for mod-ernization and innovative development of the economy Materials of the Fifth All-Russian Sci-entific and Practical Conference with Interna-tional Participation: In 2 parts. 2015. P. 294-300.

Kopanica D.G., Kaparulin S.L., Plyaskin A.S. Spectral analysis of physical condition of models of reinforced concrete columns subjected to axial compression [Spektral'nyj analiz fizicheskogo sostoyaniya modelej zhelezobetonnyh kolonn podverzhennyh osevomu szhatiyu]. Concrete and Reinforced Concrete - A Look into the Future Scientific Proceedings of the III All-Russian (II International) Conference on Concrete and Rein-forced Concrete: in 7 volumes. 2014. P. 179-182

Khazov, P.A., Shkoda, I.V., Tyagunova, L.Yu. Methodology for determining the dynamic parameters of the material at free vibrations [Metodika opredeleniya dinamicheskih parametrov materiala pri svobodnyh kolebaniyah]. Bulletin of Tomsk State Universi-ty. 2023. Vol. 25. №6. С. 89-101.

Biderman V.L. Theory of mechanical vibrations: Textbook for universities [Teoriya mekhanicheskih kolebanij: Uchebnik dlya vuzov]. High School, 1980. 408 p.

Similar Articles

You may also start an advanced similarity search for this article.