CHARACTERISTIC METHOD FOR SOLVING FILTRATION PROBLEM

Main Article Content

Liudmila Kuzmina
Yuri Osipov
Artem Pesterev

Abstract

During construction, a liquid solution of a grout or waterproof filler is pumped into porous rock to improve its properties. The filtration of a suspension moving at a variable speed in a porous medium is simulated. A one-dimensional problem of filtration in a homogeneous porous medium with a curvilinear concentration front of suspended and retained particles is considered. For the numerical solution of the problem by the method of finite differences, the method of characteristics is used. The transition to characteristic variables allows one to straighten the front and construct a discrete grid with a constant step. When calculating the solution using an explicit difference scheme, additional points are used that do not coincide with the grid nodes. A detailed description of the algorithm for calculating a solution at the grid nodes and an example of a numerical solution of the problem are given.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kuzmina, L., Osipov, Y., & Pesterev, A. (2023). CHARACTERISTIC METHOD FOR SOLVING FILTRATION PROBLEM . International Journal for Computational Civil and Structural Engineering, 19(3), 39–48. https://doi.org/10.22337/2587-9618-2023-19-3-39-48
Section
Articles

References

Zhou Z., Zang H., Wang S., Du X., Ma D., Zhang J. Filtration Behavior of Cement-Based Grout in Porous Media // Transport in Porous Media, 2018, vol. 125, pp. 435–463 DOI: https://doi.org/10.1007/s11242-018-1127-x

Tsuji M., Kobayashi S., Mikake S., Sato T., Matsui H. Post-Grouting Experiences for Reducing Groundwater Inflow at 500 m Depth of the Mizunami Underground Research Laboratory, Japan // Procedia Engineering, 2017, vol. 191, pp. 543–550. DOI: https://doi.org/10.1016/j.proeng.2017.05.216

Zhu G., Zhang Q., Liu R., Bai J., Li W., Feng X. Experimental and Numerical Study on the Permeation Grouting Diffusion Mechanism considering Filtration Effects // Geofluids, 2021, 6613990. DOI: https://doi.org/10.1155/2021/6613990

Wang X., Cheng H., Yao Z., Rong C., Huang X., Liu X. Theoretical Research on Sand Penetration Grouting Based on Cylindrical Diffusion Model of Tortuous Tubes // Water, 2022, vol. 14, 1028, pp. 1–15. DOI: https://doi.org/10.3390/w14071028

Salnyi I., Stepanov M., Karaulov A. Experience in strengthening foundations and foundations on technogenic soils // E3S Web of Conferences, 2022, vol. 363(5), 02004. DOI: https://doi.org/10.1051/e3sconf/202236302004

Christodoulou D., Lokkas P., Droudakis A., Spiliotis X., Kasiteropoulou D., Alamanis N. The development of practice in permeation grouting by using fine-grained cement suspensions // Asian Journal of Engineering and Technology, 2021, vol. 9(6), pp. 92–101. DOI: https://doi.org/10.24203/ajet.v9i6.6846

Ramachandran V., Fogler H.S. Plugging by hydrodynamic bridging during flow of stable colloidal particles within cylindrical pores // Journal of Fluid Mechanics, 1999, vol. 385, pp. 129–156. DOI: https://doi.org/10.1017/S0022112098004121

Rabinovich A., Bedrikovetsky P., Tartakovsky D. Analytical model for gravity segregation of horizontal multiphase flow in porous media // Physics of Fluids, 2020, vol. 32(4), pp. 1–15. DOI: https://doi.org/10.1063/5.0003325

Tartakovsky D.M., Dentz M. Diffusion in Porous Media: Phenomena and Mechanisms // Transport in Porous Media, 2019, vol. 130, pp. 105–127. DOI: https://doi.org/10.1007/s11242-019-01262-6

Santos A., Bedrikovetsky P. Size exclusion during particle suspension transport in porous media: stochastic and averaged equations // Computational and Applied Mathematics, 2004, vol. 23(2-3), pp. 259–284. DOI: https://doi.org/10.1590/S0101-82052004000200009

Kuzmina L.I., Osipov Yu.V., Zheglova Yu. G. Analytical model for deep bed filtration with multiple mechanisms of particle capture // International Journal of Non-Linear Mechanics, 2018, vol. 105, pp. 242–248. DOI: https://doi.org/10.1016/j.ijnonlinmec.2018.05.015

Osipov Yu., Safina G., Galaguz Yu. Calculation of the filtration problem by finite differences methods // MATEC Web Conference, 2018, vol. 251(3), 04021. DOI: https://doi.org/10.1051/matecconf/201825104021

Safina G.L. Filtration problem with nonlinear filtration and concentration functions // International Journal for Computational Civil and Structural Engineering, 2022, vol. 18(1), pp. 129–140. DOI: https://doi.org/10.22337/2587-9618-2022-18-1-129-140

Galaguz Y.P. Realization of the TVD-scheme for a numerical solution of the filtration problem // International Journal for Computational Civil and Structural Engineering, 2017, vol. 13(2), pp. 93–102. DOI: https://doi.org/10.22337/2587-9618-2017-13-2-93-102

Safina G.L. Numerical solution of filtration in porous rock // E3S Web of Conferences, 2019, vol. 97, 05016. DOI: https://doi.org/10.1051/e3sconf/20199705016

Khuzhayorov B.K., Ibragimov G., Saydullaev U., Pansera B.A. An Axi -Symmetric Problem of Suspensions Filtering with the Formation of a Cake Layer // Symmetry, 2023, vol. 15(6), 1209. DOI: https://doi.org/10.3390/sym15061209

Vyazmina E.A., Bedrikovetskii P.G., Polyanin A.D. New classes of exact solutions to nonlinear sets of equations in the theory of filtration and convective mass transfer // Theoretical Foundations of Chemical Engineering, 2007, vol. 41(5), pp. 556–564. DOI: https://doi.org/10.1134/S0040579507050168

Kuzmina L.I., Osipov Yu.V., Vetoshkin N.V. Calculation of long-term filtration in a porous medium // International Journal for Computational Civil and Structural Engineering, 2018, vol. 14(1), pp. 92–101. DOI: https://doi.org/10.22337/2587-9618-2018-14-1-92-101

Galaguz Y.P., Safina G.L. Modeling of fine migration in a porous medium // MATEC Web of Conferences, 2016, vol. 86, 03003. DOI: https://doi.org/10.1051/matecconf/20168603003

Safina G.L. Calculation of retention profiles in porous medium // Lecture Notes in Civil Engineering, 2021, vol. 170, pp. 21–28. DOI: https://doi.org/10.1007/978-3-030-79983-0_3

Kuzmina L.I., Osipov Y.V. Exact solution to non-linear filtration in heterogeneous porous media // International Journal of Non-Linear Mechanics, 2023, vol. 150, 104363. DOI: https://doi.org/10.1016/j.ijnonlinmec.2023.104363

Galaguz Yu.P., Kuzmina L.I., Osipov Yu.V. Problem of Deep Bed Filtration in a Porous Medium with the Initial Deposit // Fluid Dynamics, 2019, vol. 54(1), pp. 85–97. DOI: https://doi.org/10.1134/S0015462819010063

Sun N.Z. Mathematical Modeling of Groundwater Pollution, Springer New York, NY, 2014.

Chaudhry M.H. Applied Hydraulic Transients, Springer New York, NY, 2013. DOI: https://doi.org/10.1007/978-1-4614-8538-4

Koo B. Comparison of finite-volume method and method of characteristics for simulating transient flow in natural-gas pipeline // Journal of Natural Gas Science and Engineering, 2022, vol. 98, 104374. DOI: https://doi.org/10.1016/j.jngse.2021.104374

Kuzmina L., Osipov Y. Filtration in porous medium with particle release // Advances in Transdisciplinary Engineering, 2022, vol. 31, pp. 40–48. DOI: https://doi.org/10.3233/ATDE220849

Kuzmina L., Osipov Y. Particles transport with deposit release in porous media // Lecture Notes in Civil Engineering, 2022, vol. 170, pp. 539–547. DOI: https://doi.org/10.1007/978-3-030-79983-0_49

Courant R., Hilbert D. Partial Differential Equations, Reprint of the 1962 Original, Edited, Wiley-InterScience, New York, 1989.

Alfeld P. A trivariate Clough-Tocher scheme for tetrahedral data // Computer Aided Geometric Design, 1984, vol. 1(2), pp. 169–181. DOI: https://doi.org/10.1016/0167-8396(84)90029-3

Farin G. Triangular Bernstein-Bezier patches // Computer Aided Geometric Design, 1986, vol. 3(2), pp. 83–127. DOI: https://doi.org/10.1016/0167-8396(86)90016-6

Kruger T., Kusumaatmaja H., Kuzmin A., Shardt O., Silva G., Viggen E.M. The Lattice Boltzmann Method, Springer International Publishing, Switzerland, 2017. DOI: https://doi.org/10.1007/978-3-319-44649-3

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.