SEISMIC FRAGILITY EVALUATION OF SOIL-PILE-STRUCTURE INTERACTION EFFECTS SUBJECTED TO MAINSHOCK-AFTERSHOCK RECORDS
Main Article Content
Abstract
In most current seismic design on bridges, only mainshock actions are considered without incorporating the effect of mainshock-aftershock (MA) sequences and interaction soil-pile.However, a large mainshock usually triggers numerous aftershocks in a short period. This paperstudy the effect of mainshock-aftershock sequences on the behavior of interaction Soil-pile-structure system (ISPS). abeam on nonlinearWinkler foundation (BNWF) model is usingand subjected to non-linear static analysis and incremental dynamic analysis (IDA) leading finally to the fragility curves which are developed. These analyses aim to capture the collapse state of structures under aftershock events preceded by various mainshock levels. Results obtained from capacity curve, incremental dynamic and fragility curves of ISSP system.The analytical results show that in the MA sequences,for dense soil the vulnerable of mainshock-aftershock (MS-AS) loading are more damage due to mainshock loading for all diameter of the pile and the mass. For soft soil are more vulnerable to damage due to mainshock-aftershock (MS-AS) loading. But in the stiff clay the effect of mainshock-aftershock (MS-AS) loading for all the diameter of pile and for masse are neglected.
Keywords:bridge,interaction soil-pile-structure, Winkler foundation, dynamic analysis, fragility curves,mainshock-aftershock.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
C.E. Administration, Earthquake Site Work Outline and Technical Guidelines, Earthquake press, Beijing, 1998
Chang L, Peng F, Ouyang Y, Elnashai AS, Spencer Jr BF. Bridge seismicretrofit program planning to maximize postearthquake transportation networkcapacity. J Inf Syst 2012;18(2):75–88. http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000082. DOI: https://doi.org/10.1061/(ASCE)IS.1943-555X.0000082
USGS, United states geological survey, 2012. <http://www.usgs.gov/>
Li Y, Song R, Van De Lindt JW. Collapse fragility of steel structures subjected to earthquake mainshock–aftershock sequences. J Struct Eng 2014.http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001019 DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001019
Zhang J, Makris N. Kinematic response functions and dynamic stiffnesses of bridgeembankments. Earthq Eng Struct Dynam 2002;31:1933–66 DOI: https://doi.org/10.1002/eqe.196
Kotsoglou A, Pantazopoulou S. Bridge–embankment interaction under transverse ground excitation. Earthq Eng Struct Dynam 2007;36:1719–40. DOI: https://doi.org/10.1002/eqe.715
Mylonakis G, Nikolaou S, Gazetas G. Footings under seismic loading: analysis anddesign issues with emphasis on bridge foundations. Soil DynamEarthqEng2006;26:824–53. DOI: https://doi.org/10.1016/j.soildyn.2005.12.005
Elgamal A, Yan L, Yang Z, Conte JP. Three-dimensional seismic response ofHumboldt Bay bridge-foundation-ground system. J Struct Eng 2008;134:1165–76. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1165)
Mylonakis G, Gazetas G. Seismic soil-structure interaction: beneficial ordetrimental? J Earthq Eng 2000/07/01 2000;4:277–301. DOI: https://doi.org/10.1080/13632460009350372
Stefanidou SP, Sextos AG, Kotsoglou AN, Lesgidis N, Kappos AJ. Soil-structureinteraction effects in analysis of seismic fragility of bridges using an intensity-basedground motion selection procedure. Eng Struct 2017;151:366–80. DOI: https://doi.org/10.1016/j.engstruct.2017.08.033
Ucak A, Tsopelas P. Effect of soil–structure interaction on seismic isolated bridges.J Struct Eng 2008;134:1154–64. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1154)
Jeremi´c B, Kunnath S, Xiong F. Influence of soil–foundation–structure interactionon seismic response of the I-880 viaduct. Eng Struct 2004/02/01/2004;26:391–402. DOI: https://doi.org/10.1016/j.engstruct.2003.10.011
] Xiang N, Alam MS. Comparative seismic fragility assessment of an existing isolatedcontinuous bridge retrofitted with different energy dissipation devices. J BridgeEng 2019;24:04019070.L. Su, H.-P. Wan, Y. Dong, D. M. Frangopol, and . DOI: https://doi.org/10.1061/(ASCE)BE.1943-5592.0001425
Yang C-SW, Werner SD, DesRoches R. Seismic fragility analysis of skewed bridges in the central southeastern United States. Eng Struct 2015/01/15/2015;83: 116–28. DOI: https://doi.org/10.1016/j.engstruct.2014.10.025
Rahmani A, Taiebat M, Liam Finn WD, Ventura CE. Evaluation of substructuring method for seismic soil-structure interaction analysis of bridges. Soil Dynam Earthq Eng 2016/11/01/2016;90:112–27. DOI: https://doi.org/10.1016/j.soildyn.2016.08.013
Xie Y, DesRoches R. Sensitivity of seismic demands and fragility estimates of a typical California highway bridge to uncertainties in its soil-structure interactio modeling. Eng Struct 2019/06/15/2019;189:605–1 DOI: https://doi.org/10.1016/j.engstruct.2019.03.115
Noori HR, Memarpour MM, Yakhchalian M, Soltanieh S. Effects of ground motion directionality on seismic behavior of skewed bridges considering SSI. Soil Dynam Earthq Eng 2019/12/01/2019;127:105820. DOI: https://doi.org/10.1016/j.soildyn.2019.105820
Mallick M, Raychowdhury P. Seismic analysis of highway skew bridges with nonlinear soil–pile interaction. Transport Geotech 2015/06/01/2015;3:36–47. DOI: https://doi.org/10.1016/j.trgeo.2015.03.002
Carbonari S, Morici M, Dezi F, Gara F, Leoni G. Soil-structure interaction effects in single bridge piers founded on inclined pile groups. Soil Dynam Earthq Eng 2017/ 01/01/2017;92:52–67. DOI: https://doi.org/10.1016/j.soildyn.2016.10.005
Gonz´ alez F, Padron ´ LA, Carbonari S, Morici M, Aznarez ´ JJ, Dezi F, et al. Seismicresponse of bridge piers on pile groups for different soil damping models and lumped parameter representations of the foundation. Earthq Eng Struct Dynam 2019;48:306–27. DOI: https://doi.org/10.1002/eqe.3137
Vlassis A, Spyrakos C. Seismically isolated bridge piers on shallow soil stratum with soil–structure interaction. Comput Struct 2001;79:2847–61. DOI: https://doi.org/10.1016/S0045-7949(01)00105-5
Ajamy, A., Asgarian, B., Ventura, C.E., Zolfaghari, M.R.: Seismic fragility analysis of jacket type offshoreplatforms considering soil-pile-structure interaction. Eng. Struct. 174, 198–211 (2018). https://doi.org/10. DOI: https://doi.org/10.1016/j.engstruct.2018.07.066
/j.engstruct.2018.07.066 DOI: https://doi.org/10.1088/1475-7516/2018/07/066
Ajamy, A., Zolfaghari, M.R., Asgarian, B., Ventura, C.E.: Probabilistic seismic analysis of offshore platformsincorporating uncertainty in soil–pile–structure interactions. J. Constr. SteelRes. 101, 265–279 (2014). DOI: https://doi.org/10.1016/j.jcsr.2014.05.024
https://doi.org/10.1016/j.jcsr.2014.05.024 DOI: https://doi.org/10.1016/j.jcsr.2014.05.024
Shafieezadeh, A., DesRoches, R., Rix, G.J., Werner, S.D.: Three-dimensional wharf response to far-field andimpulsive near-field ground motions in liquefiable soils. J. Struct. Eng. 139(8), 1395–1407 (2013). https://doi.org/10.1061/(asce)st.1943-541x.0000642 DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000642
Stefanidou, S.P., Sextos, A.G., Kotsoglou, A.N., Lesgidis, N., Kappos, A.J.: Soil-structure interaction effectsin analysis of seismic fragility of bridges using an intensity-based ground motion selection procedure.
Eng. Struct. 151, 366–380 (2017). https://doi.org/10.1016/j.engstruct.2017.08.033 DOI: https://doi.org/10.1016/j.engstruct.2017.08.033
Chara, C., Mitropoulou, C.C., Kostopanagiotis, C., Kopanos, M., Ioakim, D., Lagaros, N.D.: Influence of soilstructure interaction on fragility assessment of building structures. In: Structures, pp. 85–98. Elsevier (2016). https://doi.org/10.1016/j.istruc.2016.02.005 DOI: https://doi.org/10.1016/j.istruc.2016.02.005
Wang, X., Ye, A., Ji, B.: Fragility-based sensitivity analysis on the seismic performance of pile-group supported bridges in liquefiable ground undergoing scour potentials. Eng. Struct. 198, 109427 (2019). https://doi.org/10.1016/j.engstruct.2019.109427 DOI: https://doi.org/10.1016/j.engstruct.2019.109427
program SeismoStruct v7 (SeismoSoft and 2022)
Calabrese, A., Almeida, J. P., & Pinho, R. (2010). Numericalissues in distributed inelasticity modeling of RC frameelements for seismic analysis. Journal of EarthquakeEngineering, 14(S1), 38–68. DOI: https://doi.org/10.1080/13632461003651869
Menegotto, M., & Pinto, P. E. (1973). Method of analysis forcyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending moment(pp. 15–22). Lisbon, Portugal: IASBE Proceedings
Mander JB, Priestley MJN, Park R. Theoretical stress-strain model for confinedconcrete. Struct Eng 1998;114(8):1804–26. DOI: https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
Richart, F. E., Brandtzæg, A., & Brown, R. L. (1928). A studyof the failure of concrete under combined compressivestresses. University of Illinois Bulletin, 26(12).
Pyke RM. Nonlinear soil models for irregular cyclic loadings. J Geotech Eng Div,ASCE 1979;105(6):715–26. DOI: https://doi.org/10.1061/AJGEB6.0000820
Allotey N, Naggar MH El. A consistent soil fatigue framework based on the number of equivalent cycles. Geotech Geol Eng 2007;26(1):65–77. DOI: https://doi.org/10.1007/s10706-007-9147-2
Allotey N, Naggar MH El. Generalized dynamic Winkler model for nonlinear soil–structure interaction analysis. Can Geotech J 2008;45(4):560–73. DOI: https://doi.org/10.1139/T07-106
Brandenberg SJ, Boulanger RW, Kutter BL, Chang D. Behavior of pile foundations inlaterally spreading ground during centrifuge tests. J Geotech Geoenviron Eng2005;131(11):1378–91. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1378)
Dezi F, Carbonari S, Leoni G. A model for the 3D kinematic interaction analysis ofpile groups in layered soils. Earthq Eng Struct Dyn 2009;38(11):1281–305 . DOI: https://doi.org/10.1002/eqe.892
Dezi F, Carbonari S, Morici M. A numerical model for the dynamic analysis of inclined pile groups: a numerical model for
the dynamic analysis of inclined pile groups. Earthq Eng Struct Dyn 2016;45(1):45–68. the dynamic analysis of inclined pile groups. Earthq Eng Struct Dyn 2016;45(1):45–68. DOI: https://doi.org/10.1002/eqe.2615
Vamvatsikos Dimitrios, Cornell C Allin. Incremental dynamic analysis. EarthquakeEng Struct Dyn 2002;31(3):491–514 DOI: https://doi.org/10.1002/eqe.141
Mander JB, Dhakal RP, Mashiko N, Solberg KM. Incremental dynamic analysis applied to seismic financial risk assessment of bridges. Eng Struct2007;29(10):2662–7 DOI: https://doi.org/10.1016/j.engstruct.2006.12.015
Chomchuen Prakit, Boonyapinyo Virote. Incremental dynamic analysis with multimodes for seismic performance evaluation of RC bridges. Eng Struct2017;132:29–43 DOI: https://doi.org/10.1016/j.engstruct.2016.11.026
Kazemi F, Mohebi B, Yakhchalian M. Evaluation of the P-delta effect oncollapsecapacity of adjacent structures subjected to far-field ground motions.CivilEngJ2018;4(5):1066–73. DOI: https://doi.org/10.28991/cej-0309156
performance ofadjacent pounding structures using viscous dampers. In: The16thEuropeanConference on Earthquake Engineering; 2018. p. 18–21.
Kostov M. Seismic fragility analyses. In “Regional Workshop On ExternalEventsPSA 6-10 November 2000, Sofia,” 2000.
Duan X, Pappin JW. “A procedure for establishing fragility functions for seismicloss estimate of existing buildings based on nonlinear pushover analysis,”in14thWorld Conference on Earthquake Engineering. Beijing: China; 2008. p. 12–7.
Kumitani S, Takada T. Probabilistic assessment of buildings damage consideringaftershocks of earthquakes. 14th World Conference on EarthquakeEngineering.2008.
Haran Pragalath DC, Davis R, Sarkar P. Reliability evaluation of RC framebytwomajor fragility analysis methods. Asian J. Civil Eng. (BuildingAndHousing)2015;16:47–66.
Ioannou Ioanna, Douglas John, Rossetto Tiziana. Assessing the impact of groundmotion variability and uncertainty on empirical fragility curves.SoilDynEarthquake Eng 2015;69:83–92. DOI: https://doi.org/10.1016/j.soildyn.2014.10.024
Kappos Andreas J, Panagopoulos Georgios, Panagiotopoulos Christos,Penelis Gregorios. A hybrid method for the vulnerability assessment of R/CandURM buildings. Bull Earthq Eng 2006;4(4):391–413. DOI: https://doi.org/10.1007/s10518-006-9023-0
Muntasir Billah AHM, Shahria Alam M. Seismic fragility assessment of highway bridges: a state-of-the-art review. Struct Infrastruct Eng 2015;11(6):804–32. DOI: https://doi.org/10.1080/15732479.2014.912243
Ibrahim Yasser E, El-Shami Mostafa M. Seismic fragility curves for mid-risereinforced concrete frames in Kingdom of Saudi Arabia. IES J PartA:CivilStructEng 2011;4(4):213–23. DOI: https://doi.org/10.1080/19373260.2011.609325
Shinozuka M, Feng MQ, Kim H-K, Kim S-H. Nonlinear static procedurefor+fragilitycurvedevelopment.JEngMech2000;126(12):1287–95. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287)
Shinozuka M, Feng M, Kim H, Uzawa T, Ueda T. “Statistical analysis offragilitycurves. Technical Report.“ Multidisciplinary Center for EarthquakeEngineeringResearch,MCEER-032003.
Xue Q, Wu C-W, Chen C-C, Chen K-C. The draft code for performance-based seismic design of buildings in Taiwan. Eng Struct 2008;30(6):1535–47. DOI: https://doi.org/10.1016/j.engstruct.2007.10.002
COSMOSVirtualDataCenter.:〈http://strongmotioncenter.org/vdc/scripts/default.plx〉