MATHEMATICAL MODELING OF SWIRLING FLOW IN A VORTEX DUST SEPARATOR

Main Article Content

Vadim Akhmetov

Abstract

The problem of swirling flow motion in an axisymmetric channel is numerically investigated. The results of flow field calculation are obtained by solving the Navier-Stokes equations. Various flow regimes with formation of axial recirculation zones are presented. A convective diffusion model is used to determine the concentration of flow particles and the formation of characteristic sedimentation zones. The obtained numerical solutions are compared with the results of available experimental data.

Downloads

Download data is not yet available.

Article Details

How to Cite
Akhmetov, V. (2025). MATHEMATICAL MODELING OF SWIRLING FLOW IN A VORTEX DUST SEPARATOR. International Journal for Computational Civil and Structural Engineering, 21(2), 75-82. https://doi.org/10.22337/2587-9618-2025-21-2-75-82
Section
Articles

References

Gupta A.K, Lilley D.G, Syred N. Swirl Flows 1984 (Abacus Press)

Alekseenko S.V., Kuibin P.A., Okulov V.L. Introduction to theory of concentrated vortices. Moskow–Izhevsk: Institute of Computer Science. 2005. 504 p.

Wang Y., Xingjian Wang X., Yang V. Evolution and transition mechanisms of internal swirling flows with tangential entry // Physics of Fluids. 2018. Vol. 30. 013601.

Ogus G., Baelmans M., Vanierschot M. On the flow structures and hysteresis of laminar swirling jets // Physics of Fluids. 2016. Vol. 28. 123604.

Akhmetov V. K., Shkadov V. Ya., Shkadova V. P. Mixing of hot gases in an axisymmetric channel with a pre-swirled flow // Fluid Dynamics. 2006. Vol. 41. Pp. 504-513.

Orlandi P. Two-dimensional and three-dimensional direct numerical simulation of co-rotating vortices // Physics of Fluids. 2007. Vol. 19. 013101.

Akhmetov V.K.. Shkadov V.Ya. Ustoychivost svobodnykh i ogranichennykh zakruchennykh techeniy s zonami retsirkulyatsii // Inzhenernaya fizika. 2008. № 6. S. 6-13 (in Russian).

Oberleithner K., Paschereit C., Seele R., Wygnanski T. Formation of turbulent vortex breakdown: intermittency, criticality, and global instability // AIAA Journal. 2012. Vol. 50. № 7. Pp. 1437-1452.

Escudier M.P., Nickson A.K., Poole R.J. Influence of outlet geometry on strongly swirling turbulent flow through a circular tube // Physics of Fluids. 2006. Vol. 18. 125103.

Mergheni M.A., Riahi Z., Sautet J.C., Nasrallah S.B. Swirl effects on dynamics characteristics of a coaxial jet // Thermal Science. 2017. Vol. 21. № 6. Pp. 2543-2552.

Blanco-Rodríguez F.J., Rodríguez-García J.O., Parras L., del Pino C. Optimal response of Batchelor vortex // Physics of Fluids. 2017. Vol. 29. 064108.

Yadav N.K., Samanta A. The stability of compressible swirling pipe flows with density stratification // Journal of Fluid Mechanics. 2017. Vol. 823. Pp. 689-715.

Delbende I., Rossi M. Nonlinear evolution of a swirling jet instability // Physics of Fluids. 2005. Vol. 17. 044103.

Akhmetov V.K. Gidrodinamicheskaya ustojchivost' kontrvihrevyh techenij // Gidrotekhnicheskoe stroitel'stvo. 2018. № 2. S. 13-18 (in Russian).

Kutateladze S.S., Volchkov E.P., Terekhov V.I. Aerodynamics and heat and mass exchange in bounded vortex flows. Novosibirsk: Institute of thermophysics, 1987. 283 p. (in Russian).

Akhmetov V.K., Shkadov V.Ya. Chislennoe issledovanie recirkulyacionnyh zon v vihrevoj kamere // Aeromekhanika i gazovaya dinamika. 2003. № 3. S. 39-45 (in Russian).

Akhmetov V.K., Volshanik V.V. Investigation of the propagation an aerated submerged jet // Hydrotechnical Construction. 1994. Vol. 28. № 10. С. 605-609.

Mang J., Minkov E., Schaflinger U., Ungarish M. Particle entrainment in a bounded rotating flow with a drain // Trans. ASME. J. Fluids Eng. 1998. Vol. 120. Pp. 676–679.

Tsai R., Chang Y.P., Lin T.Y. Combined effects of thermophoresis and electrophoresis on particle deposition onto a wafer // J. Aerosol Sci. 1998. V. 29. № 7. Pp. 811-825.

Similar Articles

You may also start an advanced similarity search for this article.