REFLECTION OF WAVES FROM HYDROTECHNICAL STRUCTURES IN DETERMINING THE PORT WATER WAVES
Main Article Content
Abstract
The article considers the influence of taking into account wave reflection and the discrepancy between the results of waves without reflection and with reflection in numerical modeling, compares the results of numerical modeling and the analytical method for determining dangerous directions of waves when servicing ships in the port. The reflectivity of hydraulic structures and the factors on which it depends are considered. Empirical formulas for obtaining the reflection coefficient for the designs of slope structures are presented. An expression for the reflection coefficient is used not only for smooth slopes, but also for permeable ones. The results are compared with the methodology given in normative SP 38.13330.2018. The stepwise behavior of the reflection coefficient is analyzed, depending on the gentleness of the wave and the slope laying.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
A. S. Afremov, A. N. Kulikova, N. A. Smolina (2011) Obespechenie bezopasnosti stoyanki prishvartovannogo krupnotonnazhnogo sudna v usloviyax vetra i volneniya [Ensuring the safety of moored large-tonnage vessel parking in conditions of wind and waves ], Tr. Central Research Institute named after academician A. N. Krylov, No. 59, pp. 109-122.
Holthuijsen L.H. (2007) Waves in oceanic and coastal waters, Cambridge University Press. Сambridge
Booij N, Haagsma IJ, Holthuijsen L, Kieftenburg A, Ris R, van der Westhuysen A, Zijlema MSWAN Cycle III version 40.51. User manual. The Netherlands 4.
H. Gerritsen, J. Sutherland, R. Deigaard, M. Sumer, C. J. E. Fortes, J. P. Sierra, U. Schmidtke (2011) Composite modeling of interactions between beaches and structures. Journal of Hydraulic Research. no.2, pp.49 https://doi.org/10.1080/00221686.2011.589134
H. Gerritsen, J. Sutherland, J. A Santos, S. Caires (2011) Composite modeling, CRC Press, Users Guide to Physical Modeling and Experimentation: Experience of the HYDRALAB
Kantarzhi I.G., Anshakov A.S. (2021) Interactive numerical model of hydrometeorologic factors in Kola Bay, E3S Web of Conferences 263, 03016, https://doi.org/10.1051/e3sconf/2021263016
Anshakov A.S., Kantarzhi I.G. (2021) Verifikaciya chislennogo gidrodinamicheskoj modeli Kol`skogo zaliva [Verification of the numerical hydrodynamic model of the Kola bay] Vestnik MGSU [Monthly Journal on Construction and Architecture]; 16(4):473-485. doi: 10.22227/1997-0935.2021.4.473-485 (rus.).
Kantarzhi I.G., Kuznetsov K.I. (2014) Naturny`e izmereniya volneniya pri opredelenii nagruzok na morskie gidrotexnicheskie sooruzheniya [In-kind measurements of waves when determining loads on marine hydraulic structures] Engineering and construction journal. No. 4(48). P. 49–62.
Kantarzhi I.G. (2014) Fizicheskoe i chislennoe modelirovanie voln u portovy`x gidrotexnicheskix sooruzhenij. Beregovaya zona – vzglyad v budushhee [Physical and numerical modeling of waves near port hydraulic structures. Coastal zone – a look into the future] Proceedings of the XXV international coastal conference. Sochi: GEOS Publishing House, Vol. 2. pp. 128–131.
Gritsuk I. I., Debolskiy V. K., Ponomarev N. K. (2011) Issledovanie gidravlicheskoj krupnosti chasticz graviya, prednaznachennogo dlya sozdaniya iskusstvennogo osnovaniya podvodny`x truboprovodov [The investigation of gravel particles settling velocity to build up artificial submarine pipeline foundations], Privolzhsky Scientific Journal, No. 1, pp. 41-45.
Kantarzhi I.G., Anshakov A.S. (2018) Vliyanie podkhodnogo kanala na volnovoy rezhim v akvatorii porta [Influence of the approach navigation channel on wave regime in waterbody of port’s area]. Stroitel’stvo: nauka i obrazovanie [Construction: Science and Education]. vol. 8, issue 1 (27), pp. 8. Available at: http://nso-journal.ru.
Kantarzhi I. G., Gogin A. G. (2020) Modelirovanie vozdejstviya vetrovy`x voln na prichal s oshvartovanny`m sudnom [Modeling of thw berth with a moored ship under wind waves loads] Hydrotechnical construction. No. 1. pp. 50-56.; doi:http://dx.doi.org/10.34831/EP.2020.1.53901
Kantarzhi I. G., Mordvintsev K. P., Gogin A. G. (2019) Chislennoe issledovanie zashhishhennosti akvatorii porta [Numerical study of wave penetration in port waters] Hydrotechnical construction, No. 5. pp. 45-52.
Thompson E.F., Chen H.S., Hadley L.L. (1996) Validation of numerical model for wind waves and swell in harbors, Journal of Waterway, Port, Coastal, and Ocean Engineering. vol. 122. No. 5. pp. 245-257.
Goda Y. (2010) Random seas and design of maritime structures. – World Scientific Publishing Company, vol. 33.
Pratola L. et al. (2021) Investigation on the reflection coefficient for seawalls protected by a rubble mound structure //Journal of Marine science and Engineering. vol. 9. No. 9. pp. 937.
Irribarren CR, Nogales C. Protection des ports (1949)//XVII, International Navigation Congress, Section II, Comm. vol. 4. pp. 27-47.
Battjes JA (1974) Surf similarity //Coastal Engineering 1974. pp. 466-480.
Seelig WN et al. (1981) Estimation of wave reflection and energy dissipation coefficients for beaches, revetments, and breakwaters.
Zanuttigh B., van der Meer J.W. (2008) Wave reflection from coastal structures in design conditions, Coastal engineering. vol. 55. No. 10. pp. 771-779.
Orimoloye S., Karunarathna H., Reeve D.E. (2020) Reflection analysis of impermeable slopes under bimodal sea conditions //Journal of Marine Science and Engineering. vol. 8. No. 2. pp. 133.
Formentin SM, Zanuttigh B., van der Meer J.W. (2017) A neural network tool for predicting wave reflection, overtopping and transmission // Coastal Engineering Journal. vol. 59. No. 1. pp. 1750006-1-1750006-31.
Díaz-Carrasco P. et al. (2023) Simple and explicit neural network-derived formula to estimate wave reflection on mound breakwaters, Coastal Engineering. vol. 186. pp. 104404.
Mahmoudof S.M., Eyhavand-Koohzadi A., Bagheri M. (2021) Field study of wave reflection from permeable rubble mound breakwater of Chabahar Port, Applied Ocean Research. vol. 114. pp. 102786.