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AIMS AND SCOPE

The aim of the Journal is to advance the research and practice in structural engineering through
the application of computational methods. The Journal will publish original papers and educational articles
of general value to the field that will bridge the gap between high-performance construction materials, large-
scale engineering systems and advanced methods of analysis.

The scope of the Journal includes papers on computer methods in the areas of structural
engineering, civil engineering materials and problems concerned with multiple physical processes interacting
at multiple spatial and temporal scales. The Journal is intended to be of interest and use to researches and
practitioners in academic, governmental and industrial communities.
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OBUWAA MHOOPMALIUA O XKXYPHAINE

International Journal for Computational Civil and Structural Engineering
(Me>xAyHaPOAHBIII J)KYPHAA IO PACYETY I'PA’KAAHCKHUX M CTPOUTEABHBIX KOHCTPYKIITH)

MesxayHapoanblii HayuHbIi kypHaa “International Journal for Computational Civil and
Structural Engineering (MexayHapoaHbIii ;KypHAJI M0 pacyeTy rpaxIaHCKUX U CTPOUTEIbHbIX
koHcTpykuuii)” (IJCCSE) sBnsercs BeayiuM HayuyHbIM NEPUOAMUECKUM H31aHUEM 10 HAIIPABJICHUIO
«VHXeHepHBIC U TEXHUUECKUE HAyKn», n3aaBaeMbIM, HaunHas ¢ 1999 rona (ISSN 2588-0195 (Online);
ISSN 2587-9618 (Print) Continues ISSN 1524-5845). B xypHayie Ha BEICOKOM Hay4YHO-TEXHHUYECKOM
YPOBHE paccMaTpUBAIOTCS POOIEMbI YHCIEHHOTO U KOMIIBIOTEPHOT'O MOICTTMPOBAHUS B CTPOUTEIILCTBE,
aKTyaJIbHbIE BOTIPOCHI pa3pabOTKH, UCCIICJOBAHMS, PA3BUTHS, BEpUDUKALINY, aripoOaIliy U MPUIIOKE-
HUI YHUCICHHBIX, YNCIEHHO-aHATMTUYECKUX METOA0B, MPOrPAMMHO-aITOPUTMUYECKOTO 00eCreUeHHs
Y BBITIOJIHEHNSI aBTOMATU3MPOBAHHOTO IPOEKTUPOBAHHSI, MOHUTOPHHIA U KOMIUIEKCHOTO HAYKOEMKOTO
PacUYeTHO-TEOPETHUECKOTO M SKCIIEPUMEHTATIHLHOTO 000CHOBAHUS HANPSHKEHHO-/1e(hOPMHUPOBAHHOTO (H
WHOTO0) COCTOSIHUS, TPOYHOCTH, YCTOMYMBOCTH, HAIEKHOCTH 1 0€30M1aCHOCTH OTBETCTBEHHBIX 00bEKTOB
IPa’KAAHCKOTO U MPOMBIIIJIEHHOTO CTPOUTENILCTBA, SHEPIeTUKH, MAILIMHOCTPOCHHUS, TPAHCIIOpTa, OHO-
TEXHOJIOTHIA M IPYTHX BHICOKOTEXHOJIOTUYHBIX OTPACIIEH.

B penakumoHHbIi COBET )KypHalia BXOIAT U3BECTHBIE POCCUICKUE U 3apYOEKHBIE S TENTN HAyKU
Y TEXHUKU (B TOM YHCIIE aKaJIEMUKH, YJICHBI-KOPPECTIOHICHThI, THOCTPAHHBIE YWICHBI, TOYETHbIE YJICHBI
1 cOBETHUKH Poccuiickoll akaieMuu apXUTEKTYpbl M CTPOUTEIbHBIX HayK). OCHOBHOM KpUTEpHil OT-
Oopa crateil 11 myOIrKaluy B )KypHaJie — UX BHICOKUI HayYHBIH YPOBEHb, COOTBETCTBHE KOTOPOMY
OTIpEIeIIIETCS B XO/I€ BBICOKOKBATU(DUIIMPOBAHHOTO PELECH3UPOBAHUS U OObEKTUBHON SKCIEPTHU3HI,
MOCTYTAIONINX B PEAAKIIMIO MAaTEPHAIIOB.

Kypuan exooum 6 llepeuenv BAK PD sedywux peyeH3upyemvix HayyHbIX U30aHUl, 8 KOMOPbIX
00JIHCHBL ObIMb ONYONUKOBAHBI OCHOBHbIE HAYUHbLE PE3YIbMAaNmbl OUCCEPMAYULL HA COUCKAHUE YYeHOU
cmenenu KaHouoama Hayk, Ha COUCKAHUe Y4eHou cmeneHu 0OKmopa HAayK 10 HAyYHBIM CHeIHallb-
HOCTSIM U COOTBETCTBYIOIIMM UM OTPACIIsM HayKU:

* 01.02.04 — Mexanuka aeOopMUpPyeMOro TBEpOro Teja (TeXHUYECKUE HayKH),

05.13.18 — MaremaTnueckoe MOAECITUPOBAHUE YHNCIEHHBIE METO/IbI U KOMITJIEKCHI ITPOrpaMM
(TeXHUUYECKHUE HAYKH),

05.23.01 — CtpoutenbHble KOHCTPYKLIUH, 3aHHUSI U COOPYKEHHUs (TEXHUYECKUE HAyKN),
05.23.02 — OcHoBanwust ¥ GyHAAMEHTHI, TOJI3EMHBIE COOPYKEHHUS (TEXHUYECKUE HAyKN),
05.23.05 — CtpouTtenbHbIe MaTepHUAIIbl U U3ACNIUS (TEXHUYECKUE HAYKH),

05.23.07 — I'mapOoTEeXHUUECKOE CTPOUTENLCTBO (TEXHUUECKUE HAYKH ),

* 05.23.17 — CrpoutenbHas MEXaHUKa (TEXHUYECKHE HAYKH).

B Poccuiickoit denepanuu xypHan uHAEKCUpyeTcss POCCMICKUM MHIEKCOM HAyYHOTO IUTH-
posanus (PUHLY).

JKypran éxooum 6 6azy oannwvix Russian Science Citation Index (RSCI), nonnocmoto unmezpu-
posanuyto ¢ niamgopmoti Web of Science. JKypHan uMeer MeXTyHAPOIHBINA CTAaTyC U BBICHIJIACTCS B
BeAyIIe OMOIMOTEKH U HayYHbIe OPTaHU3aI[MH MUDA.

Hznaresan xypHana — Mzoamenbcmeo Accoyuayuu cmpoumenshblx 8bICUIUX Y4eOHbIX 3a6e-
oenuti /ACB/ (Poccus, . MockBa) u 10 2017 rona Mz0amenvcruii oom Begell House Inc. (CILIA, r.
Hrto-Mopk). OpuImansHEIME TapTHEPAME H3aHUS ABIAETC Poccuiickas akademus apxumexkmypbl
u cmpoumenvuwix Hayk (PAACH), ocymecTBisitonas HayYHO€ KypupOBaHHe u3nanus, u Hayuno-uc-
cnedosamenvckuil yeump Cma/{uO (3A0 HULL CtallunO).

Hesn :KypHaJa — JeMOHCTPUPOBATH B MyOIUKAIMIX POCCHICKOMY M MEXITyHAPOAHOMY IPO-
(heccroHaIBHOMY COOOIIECTBY HOBEHUIIIHE TOCTIKEHHS HAYKH B 00JIaCTH BEIYHACITUTEIBHBIX METOIOB
peuieHus GyHIaMEHTAIBHBIX U MPUKIAJIHBIX TEXHUUYECKUX 3aja4, MPEKIE BCETro B 00JaCTH CTPOU-
TEJIbCTBA.
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3agaum KypHaa:

* IPE0CTaBICHUE POCCUICKIM U 3apyOeKHBIM YUEHBIM U CTIeIIMaTNCTaM BO3MOKHOCTH Ty OITH-
KOBATh PE3YJIbTaThl CBOUX MCCIIEA0BAHUM;

* IpUBJICUEHNE BHUMaHHUS K HauOojee aKTyalbHbIM, EPCIEKTUBHBIM, IIPOPHIBHBIM U HHTE-
PECHBIM HalPaBJICHUSAM PA3BUTHS U MPUIIOKEHUIN YUCIEHHBIX U YUCIEHHO-aHAJTUTUYECKUX METOJI0B
pemieHus pyHIaMEHTaIbHBIX U MPUKIIAIHBIX TEXHUYECKUX 3a7a4, COBEPILIEHCTBOBAHMS TEXHOJIOTHM
MaTeMaTU4YeCKOro, KOMIIbBIOTEPHOTO MOJIETTMPOBAHUS, Pa3pabOTKH M BEpUPUKALUU PEaIU3yIOLIETO
MIPOrPaMMHO-aJITOPUTMUYECKOTO 00ECIICUEHUS;

* obecrieueHre 0OMEHa MHEHUSIMHU MEX/Ty HCCIIEA0BATEIISIMU U3 PA3HBIX PETMOHOB U TOCYAaPCTB.

Temaruka sxypHaJa. K paccMoTpeHno 1 my0aMKaluy B )KypHaJie IPUHUMAIOTCS aHATUTHUECKIE
MaTepuaibl, HAydyHble CTaTbU, 0030PbI, PEIICH3UU U OT3BIBBI HA Hay4YHbIE MYONUKAIIUU 110 pyHIaMEeH-
TaJbHBIM U IPUKJIAJHBIM BOTIPOCAM TEXHUYECKHUX HAyK, IPEXK/Ie BCETO B 00IACTH CTPOUTENHCTBA. B
KypHaJIe TaKKe MMyOIUKYyI0TCsl UH(POPMAIIMOHHbIE MaTepHalibl, OCBEIIAOIIUE HAyYHbIE MEPOIIPUSITUS
Y TIepeIoBbIe JOCTHKEeHHs Poccuiickol akaeMiuu apXUTEKTypbl M CTPOUTENBHBIX HayK, HAy4YHO-00-
pa3oBaTeIbHBIX U IPOEKTHO-KOHCTPYKTOPCKUX OPraHU3aLHM.

Tematuka crateil, HpUHUMAEMBbIX K IyOJIMKAILMH B )KypHaJle, COOTBETCTBYET €ro Ha3BaHUIO U
OXBaThIBACT HANpPABJICHUS HAYYHBIX UCCIECIOBAHUN B 00JIACTH pa3pabOTKU, UCCIEIOBAHMS U TPUIIO-
YKCHUH YUCIICHHBIX U YUCICHHO-aHATUTHYECKUX METO0B, IPOTPAMMHOTO 00eCIICUeHHsI, TEXHOJIOTHi
KOMITbIOTEPHOTO MOIEJIMPOBAHNUS B PELICHUH TPUKIIAIHBIX 33/1a4 B 00JIaCTH CTPOUTENBCTBA, & TAKXKE
COOTBETCTBYIOIIME MPOQPUIbHBIE CHENUATBHOCTH, MPEACTABICHHBIE B JUCCEPTALMOHHBIX COBETaX
pOoMIBHBIX 00pa30BATEIBHBIX OPraHU3AIMAX BBICIIEI0 0Opa30BaHusl.

Pepakumnonnas nonuruka. [lonuruka pegakiimoHHON KOJUIETHH JKypHala Oa3upyeTcst Ha co-
BPEMEHHBIX IOPUINYECKUX TPeOOBAaHUSAX B OTHOIIEHMM aBTOPCKOTO MpaBa, 3aKOHHOCTH, IIaruara
U KJIEBETHI, U3JI0KEHHBIX B 3akoHoaaresibcTBe Poccuiickon denepaunu, U1 STUYECKUX MPUHLIUMIAX,
MOJJEPKUBAEMBIX COOOLIECTBOM BEAYLIUX M3AaTeIeii HAyYHOU MEPUOAUKH.

3a nybrukayuio cmameti niama ¢ asmopog He g3vimaemcs. Ilyonuxayus cmameti 6 ycypHane
becniamuas. Ha TnaTHOM OCHOBE B JKypHaJIe MOTYT OBITh OIyOJIMKOBAaHBI MaTe€pUabl PEKIAMHOTO
XapakTepa, UMEIOLIUe MPSMOe OTHOLIEHUE K TEMaTHKE JKypHaJa.

KypHan npegocTaBisieT HEOCPEACTBEHHBIN OTKPBITHIN TOCTYH K CBOEMY KOHTEHTY, UCXO/s U3
CJICAYIOIIETO MPUHITUIA: CBOOOIHBIN OTKPBITHIHM TOCTYH K pe3yNbTaTaM UCCIIe0BaHUNA CITIOCOOCTBYET
YBEJIMUEHUIO [T100aIbHOr0 OOMEeHa 3HAaHUSIMH.

HNupexcupoBanue. [lyOnukanuu B KypHaje BXOAST B CUCTEMbI PacCUy€TOB MHIEKCOB IIUTUPO-
BaHMsI aBTOPOB U KypHaJoB. «MHIEeKC IUTUPOBAaHUD) — YUCIOBOM I10KA3ATEIIb, XapAKTEPU3YOIIUI
3HAUUMOCTh JAHHOW CTaThU U BBIYMCIISIOIIMICS Ha OCHOBE MOCIEYIOIIUX TyOIUKaIUi, CChbUIAIOLIUXCS
Ha JIaHHYIO0 padoTy.

ABTopam. [Ipexne ueM HampaBUTh CTAaThIO B PENAKIMIO XKYypHajia, aBTOpaM CIEIYeT O3Ha-
KOMMTBCSI CO BCEMM MarepuajaMu, pa3MEUIeHHbIMHM B pazjenax cailta )KypHaia (MHTEpHET-CalT
Poccuiickoit akaieMun apXuTeKTyphl U cTpouTenbHbIX Hayk (http://raasn.ru); mogpasnen «3nanus
PAACH» unu unrepHet-caidT M3garensctBa ACB (http://iasv.ru); moapazaen «Kypuan IJICCSE»): ¢
OCHOBHOU MH(OpMaImen o XypHajie, ero mejsiMHu 1 3aJadaMi, COCTAaBOM PEIaKIIMOHHOW KOJIIIETUH
Y PEIaKIMOHHOTO COBETA, PEIaKIMOHHOW MOJIUTUKOM, TIOPSAIKOM PELIEH3UPOBAaHUS HAMIPABIISIEMBIX B
KYpHaJ cTarel, CBEACHUSIMHU O COONIOCHUH PEAaKIIMOHHONW 3TUKHU, O MOJUTHKE aBTOPCKOTO IMpaBa
U JIMLEH3UPOBAHUS, O MPEACTABICHUH KypHaia B UHOOPMALMOHHBIX CUCTEMaX (MHJIEKCUPOBAaHUM),
nH(popMaIueit o MOAMUCKe Ha )KypHaJ, KOHTAKTHBIMH JaHHBIMH U 11p. JKypHai paboTaeT 1o JTUleH-
3un Creative Commons Tuna cc by-nc-sa (Attribution Non-Commercial Share Alike) — Jluniensus «C
yKkazaHueM aBropcTBa — Hekommepueckas — Konmiedr».

PenensupoBanue. Bce HayuHble CTaThU, MOCTYNHUBLIME B PENAKIMIO )KypHaia, MPOXOAST
o0s13aTeNbHOE IBOMHOE CIIeToe PelieH3UpOBaHUE (PELIEH3EHT HE 3HACT aBTOPOB PYKOMHCH, aBTOPHI
PYKOIHCH HE 3HAIO PEIICH3EHTOB).
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3auMCTBOBaHHMS M MJaruar. PerakiimonHas KOJUIETHs KypHasla TP PaCCMOTPEHUH CTaTbu
MIPOBOAMUT MPOBEPKY MaTepuaa ¢ MOMOIIbIO CUCTEMbI «AHTHIUIaruar». B ciyyae oOHapykeHus
MHOT'OYHMCIIEHHBIX 3aMMCTBOBaHUM pelakiys JeHCTBYET B cooTBeTcTBUHU ¢ nipaBuiamu COPE.

Hoanucka. XXypnan 3apeructpupoBan B denepanbHOM areHTCTBE MO CPEACTBAM MacCOBOM
nH(pOpMaIK ¥ OXpaHbl KyasTypHOTO Hacienus: Poccuiickoii deneparun. MHaeke B 001iepoccuiickom
karanore POCITIEYUATD — 18076.

[To Bompocam MoOANUCKU Ha MEXIyHapOAHBIM HayuHbIN kypHan “International Journal for
Computational Civil and Structural Engineering (Mesx1yHapoaHbIi )KypHAI IO pacueTy rpaaaHCKUX
U CTPOUTEILHBIX KOHCTPYKIHIA)” oOpamaiitech B AreHTCTBO «Pocmedarsy (OduiuanbHbIi caiT B
cetu UHTepHert: http:// www.rosp.ru/) uin B u3areabcTBO AcCOLMAMN CTPOUTENBHBIX By30B (ACB)
B COOTBETCTBHUH CO CJICAYIOIIUMHU KOHTAKTHBIMH JaHHBIMU:

000 «H30amenvcmeo ACB»

Opunnueckuit anpec: 129337, Poccus, . Mocksa, SIpocnasckoe 1., 1. 26, oduc 705;

®daktuyeckuit aapec: 129337, Poccus, r. Mocksa, Spocnasckoe 1., 1. 19, kopm. 1, 5 aTax,

oduc 12 (TL Cone Momn);

Tenedonsr: +7 (925) 084-74-24, +7 (926) 010-91-33;

WNuTepHeT-caliT: www.iasv.ru. Azipec 3JeKTPOHHOM MOUTHI: 1asv(@iasv.ru.

KonrakTHasi undpopmanms. [To Bcem Bonpocam paboThl peIaKIiy, PEIICH3UPOBAHMUS, COTIIACO-
BaHUs IPABKU TEKCTOB U MMyOJUKALIMU CTaTel clieAyeT 00palarbes K INIaBHOMY PEJaKkTopy *KypHaiia
yneny-koppecnonaeHty PAACH Cuoopogy Braoumupy Huxonaesuuy (ampeca 3IEKTPOHHON MOYTHI:
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NUMERICAL SOLUTION OF THE PROBLEM
OF BEAM ANALYSIS WITH THE USE
OF B-SPLINE FINITE ELEMENT METHOD

Pavel A. Akimov "% Marina L. Mozgaleva ', Taymuraz B. Kaytukov '
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Abstract: Numerical solution of the problem of beam analysis (bending analysis of the Bernoulli beam) with the use of B-spline
finite element method is under consideration in the distinctive paper. The original continual and finite element formulations of the
problem are given, some actual aspects of construction of normalized basis functions of a B-spline are considered, the corresponding
local constructions for an arbitrary finite element are described, some information about the numerical implementation and an
example of analysis are presented.

Keywords: wavelet-based finite element method, B-spline finite element method, finite element method,
B-spline, numerical solution, beam analysis

YU CJIEHHOE PEHIEHHUE 3AJIAYU O IOINEPEYHOM U3I'TBE
BAJIKU HA OCHOBE BEUBJIET-PEAJIU3ALINN
METOJIA KOHEUYHBIX JIEMEHTOB
C UCIIOJB30BAHUEM B-CILTAHOB

I1.A. Akumos "***, M.JI. Mo3zanesa ', T.b. Kaitmykoe '

! HanoHanbHbIHA HCCIeA0BaTENbCKUA MOCKOBCKHI rOCYAaPCTBEHHBII CTPOUTENbHBIN YHUBEPCHUTET,
. Mocksa, POCCH 1
2 ToMCKHH TOCYAapCTBEHHBII apXUTEKTYPHO-CTPOUTENBHBII yHIBepcuTeT, I. Tomck, POCCHUSA
* Poccuiickuii yHHBepCHUTET JpYKObI HapoaoB, . Mocksa, POCCHU A
* Poccuiickast akaJeMusi apXUTEKTYPbl H CTPOUTEIBbHBIX Hayk, I. MockBa, POCCHUA

AHHOTalIl/IﬂI B HaCTOHIIIGﬁ CTAaTbC pacCMaTpruBaACTCAd YMCJICHHOC PCUICHUC 3a/la4u O MMOINIEPEIHOM n3rude Oanku BepHmeM Ha
OCHOBC BeﬁBHeT—peaJ’[H3aL{HH MCTOAAa KOHCUYHBIX 2JICMCHTOB C UCII0JIb30BAHUCM B-cmnaiinos. HpI/IBGZleHI)I HCXOAHBbIC KOHTUHYAJIb-
Has 1 KOHCYHOYJIEMCHTHA ITIOCTAHOBKHU 3a1a4U, paCCMOTPCHBI HCKOTOPBIC AKTYaJIbHBIC BOIIPOCHI IOCTPOCHW A HOPMAJIU30BAHHBIX
0a3HCHBIX (l)yHKIII/Iﬁ B—crmaﬁHa, OIMUCaHbl COOTBETCTBYIOLINE JIOKAJIbHBIC [IOCTPOCHUA JI IPOU3BOJILHOT'O KOHEYHOTI'O 2JICMCHTA,
IpeaACTaBJICHbI HCKOTOPBIC CBEACHUA O YHCIICHHOMN peam3anu U NpuMep pacyeTra.

KuroueBble c10Ba: BelBlIET-peann3anus METOAa KOHEUHBIX YIEMEHTOB, METO/l KOHEUHBIX AIEMEHTOB,
B-crnaiinbl, yncineHHoe penienue, u3rud oanku

INTRODUCTION Compared with commonly used Daubechies wavelets

[2-6] B-spline wavelet on interval (BSWI) has explicit
As is known, the B-spline in a given simple knot expressions, facilitating the calculation of coefficient
sequence can be constructed by employing piecewise integration and differentiation [1]. Besides, the
polynomials between the knots and joining them multiresolution and localization properties of BSWI
together at the knots [1]. can also supply some superiority for engineering
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structural analysis [1]. The early applications of spline
can be found, for instance, in papers of H. Antes [7],
J.G. Han [8, 9, 25], Y. Huang [8, 9], W.X. Ren [8, 9].
The spline wavelet finite element method was further
developed in papers of D.P. Chen [26], X.F. Chen[10,
11, 13-16, 21, 22, 24], H.B. Dong [21], J.G. Han [23],
Y.M. He [15], Z.H. He [16], Z.J. He [10, 11, 13-15,
21, 22, 24], Y. Huang [23, 25], Z.S. Jiang [20], B. Li
[11,13,15,21], M. Liang [17, 19],J.Q. Long [ 18], G.
Ma [18], T. Matsumoto [18, 20], S.T. Mau [28], H.H.
Miao [13], Q,M. Mo [16], T.H.H. Pian [26-28], K.Y.
Qi[21], W.X. Ren [23, 25], K. Sumihara [27], P. Tong
[28], Y.W. Wang [20], J.W. Xiang [10-12, 15-20], Z.B.
Yang [13, 14,22], X.W. Zhang [ 14, 22, 24], Y.H. Zhang
[10], Y.T. Zhong [12].

The distinctive paper is devoted to numerical solution
of the problem of beam analysis (bending analysis of
the Bernoulli beam) with the use of B-spline finite
element method.

1. FORMULATIONS OF THE PROBLEM

The unknown function of the beam deflections y(x),
caused by the load ¢(x), can be defined using the
condition for the minimum energy functional of
the beam ®(y) (i.e. unknown function provides a
minimum value for this functional)'

Dy lf EJ(y P+By*]dx— fq )ydx, (1.1)
where EJ(x) is the bending stiffness of the beam; f is
the coefficient of elasticity of the base (coefficient of
bedding); g(x) is the given load; / is the length of the
beam; x is coordinate along the length of the beam.
Let us divide the interval [o, /], occupied by the beam

V1

into N, parts (elements); 2, = I/N  is the length of the
element. Let us also divide each element into N, parts,
for example, N, = 5 (Figure 1). Let us introduce the
following notation system: i, is the element number;
x (i) is the coordinate of the starting point; x (i ) is the
coordinate of the end point of the element number i ,
respectively. We take y, and y’ as unknowns at boundary
points i = 1,6. We take y, i =2, 3, 4, 5 as unknowns at
the inner points. Thus, the number of unknowns per
element with such discretization is defined by formula
N=N-1+2-2=N +3=8.
The number of boundary points for all elements is
equal to
N,=N,+1.

The number of interior points for all elements is

equal to
N, =N,(N,—1).

The total (global) number of unknowns with such a
discretization turns out to be equal to

N =N +2N..
g P b

Thus, we have
N,
D(y) = Z D, (),

XS(le XS(ie)

@, :% Vepyldx— [ qudx; (1.2)

x4 (i, ) x4(i,)

2.SOMEASPECTS OFTHE CONSTRUCTION
OF NORMALIZED BASIS FUNCTIONS OF
THE B-SPLINE

The construction of B-spline basic functions is
determined by the recursive Cox-de Boer formulas:

Ve

be 2 »3 V4 Vs V6

@ L 4 & ® @ o

X1(ie) X2 X3 X4 X5(ie) X6(ie)
< >

h

e

Figure 1. Finite element discretication (sample).
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S (1) = 1, x <t<x, )1
= Pul= 0,t<x,vi>x,’ @D
[—x)p, .
¢i’k (t) _ ( . 1)¢1,kx1( )+
k>2: ekl (2.2)
4 (xi+k _t)¢i+1,k—1 (t)

Xivk —Xin1

We will consider such a construction for the case X,
= i are integers. Let us note that,

(pi,k (t) = (Po,k (t - l)

and therefore, recursive formulas (2.1)-(2.2) can be
represented in the form

1, 0<t<l
k=1 ¢0’1(t)_{0,t<0\/121’ (2.3)
1
o () = ——1t- £+
k>2: Poi (D) k—l[ P01 (1) 2.4)

+(k=D@o o (1]

The function ¢, (¢) can be represented by formula

Po, (1) = %[sign(t) —sign(z —1)] . (2.5)

Letus denote by A the operator of the first difference.
Then we have

Po1(2) = _%AI sign(7) . (2.6)

We can substitute formula (2.5) into (2.4) in order to
determine ¢, (7):

DPo.» (B)y=1-[z- (/70,1(t) +(2 - t)(/)o.,l(l -D]=
= %{t-[sign(t)—sign(f—l)]+ (2-1)[sign(t —1)—sign(t —2)]} =
= %[t sign(¢) —2(z—1)sign(z —1) +

(t—2)sign(t—-2)] :%[[t|—2|t—1 |+t=2].

Let us denote by A, the operator of the second
difference. Then we have

1 1
®o,(2) :5[|t|—2|t—1|+|t—2]=5A2 [t—1]. (2.7)

We can define function ¢, (7):

¢Mm=%v¢mm+@—n%xrny

Pavel A. Akimov, Marina L. Mozgaleva, Taymuraz B. Kaytukov

Omitting intermediate calculations, we get

1
Do (1) = Z[P | 2] =3¢ =D [r-1]+
+3(t=2)1=2|—(-3)|t-3]] =
11
S _E!EAIAz((t_l)“_lD.
Based on formulas (2.8) and (2.4), we can define the
function

2.8)

¢Mm=§v¢mm+m—n%xrny

Omitting intermediate calculations, we get

§00,4(t):

=L.1[12~|z|—4(z—1)2|t—1|+
2-3 2

+6(2—2) |t—2| 4¢3 |t-3|+

+(t-4)7|t-4]=

11 20 2y
=577 (=2) [1=2]) . (29)

It can be proved that for even k = 2m we have

1 1

mE(Az)"’((t—m) "2 |t=m]) (2.10)

Dok () =

and for odd (uneven) k =2m + 1 we have

1
(2m)! 2

Po () =— AA)" (¢ =m)* e=1]). (2.11)
Note that ¢, (?) is a polynomial of degree k£ — 1 with
bounded support and, as follows from the difference
operator, this support is equal to the interval [0, k].
In addition, we should note the following property
of B-spline basis functions:

Z @, (t—i)=1 for arbitrary ¢. (2.12)

3. LOCAL CONSTRUCTIONS
FOR ARBITRARY FINITE ELEMENT

Let us introduce local coordinates:
(D
h

e

t= Xy SXS Xgy. 0521

In this case, we have the following relations:
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xX=x,, =>t=0 Let us use the following notation system:

x=x, =>t=0.2
x=x, =>t=04
x=x, =>t=06 °
x=x; =>1=0.8

@,(0) = ot +3), 9,(1) = p(t + 2),
@)=t + 1), ¢ (1) = p(2),
o ()= —1),
_ _ P (0) = @t —2), p.(1) = p(t — 3),
X=Xy 1= o ()=p(t—4),0<t<1, (3.3)

-
dx dt dcx h, dt

We represent the unknown deflection function in
dc=h,-dt. (3.1) the form

d’ _L d’ ’
i (x) = (1) Z 0
yx)=wlt)=) a,¢ ,
Since the number of unknowns on the element is =y K
ltoN=28, B-spli fth thd
equal to we use a B-spline of the seventh degree Xy S x<x6(,) 0<r<l | (3.4)

in order to represent the unknown deflection function.

Let us use the following notation:
We can substitute (3.4) into (1.3), taking into account

Pt) = Qo (t+4); relations (3.1).
11
o(t) = %E(Az)“(ﬁ lt]) = | 7ot d'y x6(i,)
| ' qb,.e(y):a I EJ( zj + By? |dx— qudx:
=l a1+ SO e
i 1 1
-8(+3)°|1+3] + :lj W)+ fh,w? | di— [ h,quit =
+28(+2) |t+2|—- 2o\ h )
—56(t+1D)° | t+1|+70¢° | ¢ |- | L&
~56( -1 [1~1|+28¢ -2 [1-2|-  (32) T4 ;a’afx

—8(t=3)°|t=3|+(t—-H°|t-4]]. 1

J| (EJ 0" (00 0))+ Brlp. ()0, (r))] di -
This function is a B-spline, symmetric with respect 0 |
to ¢ =0 and its support is defined by an interval [4, 05, J’ hqo ()t =
4] (Figure 2). il

B-spline 7 =5(K§67,07)—(§;",67)=®a(5), (3.5)

06

where we have

// \\ K j)=
03 j ( gp"(t)(p”(l))-i' ph, ((p (Do, (f))J

0:1 / \ R (i) = | (h.q(e, (1))dt
Y !

05

fi(t)

Let's define the parameters through the nodal

-3 -2 -1 ] 1 2 3 4
. unknowns on the element:

Figure 2. B-spline of the seventh order p(t) = ¢, (t + 4).

Volume 16, Issue 3, 2020 15



Pavel A. Akimov, Marina L. Mozgaleva, Taymuraz B. Kaytukov

r N Therefor we have
» =w(0)= Zak¢k (0) .
d | =) L a=T"y" (3.7)
yl ! '
dx  h, LA, h, Z‘ak(pk( ) Substituting (3.7) into @ (o), we obtain
N —
¥, =w(0.2)=) a,0,(0.2) D, ()=
5 —(KAT T = (R TS =
y; =w(04)=> a,0,(0.4) 1 B
| 5 = (@KLY P~ () R =
Vi =w(0.6)= > a,0,(0.6) o |
i =S & YLV -RE Y =2, (1), (3.8)
ys =w(0.8) =Y ,9,(0.8)
M where | |
vs =wh) =2 a0, () K- =) K;T”
k=
ci);_s _ L WD) 1: L i o, 0L is the local stiffness matrix;
X he he k=1 . .
R=(T"'Rk
Therefor we have .
is the local load vector.
ye=Ta, (3.6)
where
_ dy dy
ye =y El Yo V3 Vs Vs Vs d—;]TQ
a=le a, a; a, as ag a; ag]T ;
D=diag(l 1/h,1 1 1 1 1 1/h,) ;
i ¢,(0) 9,(0) 9,(0) 9,(0) 95 (0) 95(0) ?,(0) 95 (0) |
0(0)  050)  95(0)  9,(0) 95000  @s(0)  97(0)  5(0)
0,(02) 9,002) 9,02) ¢,002) 9502) 9,02) ¢,(02) ¢,(02)
T-D ?,(0.4) 9,(04) ¢;(04) 9,04 0504) ¢;04) ¢,(04) @3(0.4)
?,(0.6) 9,(0.6) ¢;(0.6) ¢,(0.6) ¢5(0.6) 95(0.6) ¢,(0.6) ¢5(0.6)
9,(0.8) ¢,(0.8) 9;(0.8) ¢,(0.8) 95(0.8) ©4;(0.8) 9,(0.8) ¢3(0.8)
o) o, ) o) o, oD o) o, (D oD
LoD e o) o) s o) er (D) o)
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4. INFORMATION ABOUT NUMERICAL
IMPLEMENTATION

The presented algorithm can be implemented
using MATLAB tools. The MATLAB system has
convenient functions for working with polynomials.
Moreover, the main parameter of these functions is the
vector of coefficients of the polynomial. To determine
the coefficients of basic polynomials ¢, on an interval
[0 1], we can firstly determine their values at eight
points of the interval 1= [z, 7,, ..., £], t,€[0 1],
i=1,2,..,8;
F@)=¢(t),i=1,2,..8,
k=1,2,..,8.

Then, using the polyfit function, we define their
coefficient vector:

pk=polvfit (t,Fk, 7)

This function is used to determine the coefficients
of the optimal polynomial using the least squares
method. In the considering case, we are looking for a
polynomial of the 7th degree (i.e. we have to define 8
coefficients of polynomial, according to its 8 values),
therefore, we get a polynomial passing through the
given values.

In order to calculate the derivatives we can sequentially
use the polyder function:

dpk=polyder (pk)
is the vector of coefficients ¢';
d2pk=polyder (dpk)
is the vector of coefficients gok”.

In order to calculate the product of polynomials we
can use the conv function:

pij=conv (pi, pj)
is the vector of coefficients PP
d2pj)

", n

1s the vector of coefficients ¢"p".
i

d2pij=conv (d2pi,

In order to calculate the antiderivative of a polynomial
we can use the polyint function:

Volume 16, Issue 3, 2020

Pi=polyint (pi)
is the vector of coefficients I pdt,
Pij=polyint (pi7j)
is the vector of coefficients J.goigojdt;
d2Pij=polyint (d2pi7j)
is the vector of coefficients j qoi"gof "dt.

Then the calculation (formula (3.5))
K, j)=
1
EJ n "
=| (h_3 (r0er )+ (o, (00, (r))} dr.
0 e
can be summarized as follows:

; EJ o
Ky, j)= h—3( polyval (d2Pij, 1) -

polyval (d2Pij,0) )+
+PBh,( polyval (Pij,1)-
polyval (Pij,0)),

where the function polyval (p, t) allows
researcher to calculate the values of a polynomial
with a vector of coefficients p at a given point z.

As for the calculation (see (3.5)),

Ry (i) = [ (h.q(t)p, ()t

here, for example, the following options are possible:

— point load setting (using delta functions);

— setting the load averaged on the element,
‘Rg(ﬂzzl%qw(polyval (Pi, 1) -

- polyval (Pi, 0))

’

L

Figure 3. Example of analysis.

If g is represented by a polynomial, then, as in the case
of calculating the elements of a local matrix K ; ,
here researcher can use the function of multiplying
polynomials conv followed by determining the
antiderivative of the product using the polyint
functions and calculating the definite integral using
the polyval function.
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5. EXAMPLE OF ANALYSIS
N=L/h+1=8/04+1=2]
As a model example let us consider a beam on an

elastic foundation with the following parameters: is the total number of nodes.
I Several results of analysis are presented at Figures
q(x)zPﬁ(x—E), P=100kN 4,5,6and 7.

is load given at the midpoint (Figure 3);

L=8m;h,=13m; b, = 1m; 10 e
E=2560 - 10*kN/m* k=175 - 10°%kN / m>. . ! ! : /
FEM beta?
+  bwpdc

0.2

In this case we should consider the following \ /
boundary conditions: -
\ /
{ym) =y"(0)=0 = \ /

W(L)=y"(L)=0 ' \ /
0.8 -

— the beam is hingedly supported on both sides (the

first case); \ /
fro=r@=o N /
y(L)=y'(L)=0 12

— the beam is rigidly fixed on both sides (the second 14
case);

y(0)=y"(0)=0
y"(L)y=y"(L)=0 Figures 4. Comparison of results for the first case.

— the beam is hingedly supported on the left end, the
right end is free (the third case);

{y(O) =y'(0)=0 o
y'(L)y=y"(L)=0

x 16° PROGIB
T T

T
FEM beta?
+  bwdc

the beam is rigidly fixed to the left end, the right end \ /
is free (the fourth case).

Let us set N, = 4 (the number of elements).
Then we have \ / i

N,=N +2N,=4-(5-1)+2 - (4+1)=26;

18 the total number of unknowns; \ /
5

h=L/N=8/4=2

is the length of the element;
h,=h,/5=2/5=04 Figures 5. Comparison of results for the second case.

is the step between the coordinates of the nodes;
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ANALYTICAL CALCULATION OF DEFLECTION
OF A MULTI-LATTICE TRUSS WITH AN ARBITRARY NUMBER
OF PANELS

Mikhail N. Kirsanov
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Abstract: The scheme of a planar externally statically indeterminate truss with four supports is proposed. In analytical form, for
several types of loads, the problem of forces in the rods and deflection of the structure is solved, depending on the number of
panels, the size and intensity of the load. The solution uses the Maple computer mathematics system. The deflection at Midspan
is determined using Maxwell — Mohr's formula, the forces in the rods — the method of cutting out nodes from the system of
equilibrium equations for all nodes, which includes four reactions of the supports. By induction, a series of solutions for trusses
with a consistently increasing number of panels is generalized to an arbitrary number of panels. For the elements of the sequences
of coefficients are developed and are solved by homogeneous linear recurrence equations. The resulting formulas for the deflection
of the structure under various loads have the form of polynomials in the number of panels. A linear asymptotic solution for the
number of panels is found. The kinematic degeneration of the structure and the distribution of node speeds corresponding to
this case were found. The dependences of the reaction of supports and forces in the most compressed and stretched rods on the
number of panels are determined.

Keywords: truss, deflection, induction, Mohrs' integral, Maple, kinematic degeneration

AHAJIMTUYECKHNM PACYET ITIPOTUBA MHOTOPEIIETYATOM
®EPMBI C TPOU3BOJIbHBIM YHCJIOM ITAHEJIEN

M.H. Kupcanos

HarnmonaneHeli uccnenoBaTenbCKuil yHuBepcUTeT "MOCKOBCKUI SHEPreTHYeCKHi
uHctutyT",Mocksa, POCCHU

Annoranusi: [Ipearaercs cxema IiI0CKOH BHEITHE CTaTUYECKU HEOPEASINMOI (hepMBI C YeThIPbMsI oriopamu. B ananuTiye-
CKoii hopme 17151 HECKOJIBKUX BUIOB HArpy30K peraeTcs 3a/1a4a 00 yCHIIUSX B CTEPIKHSX M ITPOTrHOe KOHCTPYKIINH B 3aBUCUMOCTH
OT YHCJIa aHeNel, pa3MepoB M MHTEHCUBHOCTH Harpy3kH. [lJist perieHus UCIoNIb3yeTcs CUCTeMa KOMIIBIOTEPHON MaTeMaTuK!
Maple. [Iporu6 B cepeanne nponeta onpeneinsiercs o Gpopmyne Makcsesia — Mopa, yCHIIHS B CTEPKHSIX — METOAOM BBIPE3aHHMs
Y3JI0B U3 CUCTEMBbI YPaBHEHHUI PABHOBECHSI BCEX Y3JI0B, B KOTOPYIO BKIIIOUAIOTCS M YETHIPE peakiuy ornop. MeTosoM HHAYKIHN
cepusl pemeHni It pepM ¢ TOCIe0BaTeIbHO YBEIMUMBAIONIMMCS YUCIIOM T1aHesiell 00001aeTcs Ha MPOU3BOIBHOE YHCIO
nanesnei. J{iis aneMeHToB mocieioBarenbHOCTeH KO (GHUIMEHTOB COCTABISIOTCS U PEIIAIOTCST OJJHOPOHBIC JINHEWHBIE PEKYp-
peHTHBIC ypaBHeHHs. [lonydeHHbIe GOPMYITBI TS TPOrnda KOHCTPYKIMH TIPH Pa3IHIHBIX HATPYKECHUSIX UMEIOT BUJT TOJIMHOMOB
1o yucIty naHenei. Haliiena TmHeiiHass acCMMITOTHKA PEIICHUS 110 YnCiTy naHesnei. OOHapyKeHO KUHEMaTH4eCKOe BBIPOXK/ICHHE
KOHCTPYKIIMH U pacIpe/ielieHne CKOPOCTEH y3II0B, COOTBETCTBYIOIIEE 3TOMY Cirydaro. Onpe/iesieHbl 3aBUCUMOCTH PEAKIUi OTIop
W ycuJui B HanboJiee CKaThIX M PACTAHYTHIX CTEPIKHSIX OT YMCIia MaHeseH.

KiaroueBrble cjioBa: q)epMa, HpOFI/I6, WHAYKIOWA, THTETrpaJl Mopa, Maple, KMHEMATU4Y€CKOEC BBIPOXKJICHUC

INTRODUCTION

The calculation of rod structures is usually performed in
numerical packages based on the finite element method
[1-4]. The usual solution of the mechanics problem,
performed not in a numerical package, but in a system
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of symbolic mathematics, without changing the basic
equations and calculation scheme, gives an analytical
solution to the problem in the form of a formula. In
the years when computer mathematics systems first
appeared, this caused the optimism of calculators who
know the importance of analytical solutions. However,
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almost immediately, many on this path encountered two
obstacles. First, most of the resulting formulas were so
complex that it was not only impossible to use them, but
even difficult to view them, since their listing took up
several pages. The second disadvantage of the solutions
obtained in this way is that the range of applicability of
the obtained formulas (if they are obtained in a relatively
compact form) is usually not wide. Among the parameters
of formulas, you can easily enter the size of the calculated
object, elastic or rheological properties of the material,
and the intensity of a certain load. In order to use a formula
with a different number of structural elements, such as
rods or panels, if you are talking about trusses, you must
output a formula that is intended for this number. If
overcoming the first disadvantage of analytical solutions
associated with their bulkiness is possible with some
skill in working with simplification operators included in
computer mathematics systems, the second disadvantage
can be overcome using the induction method [5]. The
induction method is applicable for regular constructions
that have periodicity cells of the structure. Solutions are
known for a number of planar [6—13] and spatial [14]
statically definable trusses. The significance of regular
statically definable schemes was first evaluated by
Hutchinson R. G., Fleck N. A., Zok F. W., Latture R. M.,
Begley M. R. [15-17]. Monographs [18,19] are devoted
to such schemes and methods of their calculation. The
reference book [20] contains more than 70 schemes of
planar trusses and formulas for calculating deflection and
forces in rods critical to stability and strength. Tinkov D. V.
[21]and Osadchenko N.V. [22] provides an overviews of
some analytical solutions for planar trusses.

MATERIALS AND METHODS

The geometry of the truss. The case of variability
of the design

Mikhail N. Kirsanov

Let's consider a symmetrical lattice truss of beam type
with 2n panels, counting the elements of the upper
belt with length a (Fig. 1). In its middle part, the
lower belt is slightly raised. Due to the four supports,
the truss is externally statically indeterminate. The
reactions of the supports of such a truss can only be
calculated from the joint solution of the system of
equilibrium equations of all nodes simultaneously
with the forces in the rods. The truss contains m =
8n + 24 rods, including six rods that model movable
and fixed supports.

We will calculate the forces in the rods using the
program [6-13], compiled in the language of the Maple
system, which is close to the Pascal language. The
program includes the coordinates of the joints and the
structure of the connection of the rods. The matrix of
a system of equations consists of the guiding cosines
of forces. The vector of the right part of the system of
equilibrium equations includes loads on nodes. At the
same time, in the first test calculations, it was noticed
that for trusses with an even number of panels 7 in half
the span, the matrix determinant degenerates, which
indicates the instantaneous variability of the system
[20, 23]. Note that calculations in numerical form
hid the fact that the determinant turned to zero for the
error of the calculation, and only analytical (or integer)
calculation clearly gave out this dangerous feature of
the construction under consideration. A picture of the
distribution of possible velocities of nodes is obtained
(Fig. 2), confirming the kinematic variability of the
truss.

The following velocity ratios are obtained from
considering the positions of the instantaneous
velocity centers of individual rods: u'/h = v/a, 2u/c =
v/a where ¢ = Va*+h* . Most of the truss joints and
supports remain stationary.

. @ @ a a @ a

a a4 _a _a _a a

Figure 1. The load on the bottom belt, n = 5
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RESULTS
The Forces In The Rods

The distribution of forces in the truss rods at a = 4
m, 7 =3 m from the action of the load applied to the
nodes of the lower belt, obtained from the numerical
calculation data (Fig. 3), shows that the upper belt is
partially compressed, the lower one is stretched in its
central part . Compressed elements are highlighted
in blue, stretched elements in red, and unloaded ones
in black. The thickness of the lines is proportional
to the modulus of force. The efforts are related to
the value of force P. With an increase in the number
of panels, the stretched zone in the lower zone
naturally expands. It should be noted that the most
compressed rods are not in the middle of the span.
Using the induction method, one can obtain analytical
expressions of the reactions of supports and forces in
some rods of the truss (marked in Fig. 1). We have the
following expressions for the reactions of supports:

Y,=2P(k-1),Y,=P/2,
X, = P(4k—3)a/ (2h).

Forces in the middle of the upper belt:
O, =—P@4k - 2k(-1)* — 4k + (=1)* = 1)a / (4h),
O, =—P(4k* + 2k(-1)" — 4k + (=1)* + 1)a / (4h).
Forces in the lower belt:
U, = P4k + 2k(=1) — 12k — (=1)* + 1)a / (4h),
U, = P(4k> = 2k(—1)" — 12k — (=1)*+ 3)a / (4h)

Deflection

Truss deflection (vertical displacement of the middle
node C from the lower belt) it is determined by the

m-6
Maxwell-Mohr's formula A =Y S’SV1 / (EF)
il

where the sum is calculated only for deformable truss
rods. It is indicated: Sl.(l) — forces from the unit force

applied to the lower belt, SZ.(P) — forces in the rods
from a given load, /, — the length of the rods, EF —
their stiffness.

SRS

-1.3 -2.7 -1.3 2.7
.5

[52X

-Bl. -3.3

4. .20

2.7 -1.3 -2.7 -1.3

Figure 3. The distribution of forces in the truss, n =5
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Figure 4. The load on the upper belt, n = 3

Let's consider the case of a uniform load on the nodes
of the upper belt (Fig. 1). Regardless of the number
of panels, the deflection has the form:

A=P(C,@+C,c*+ Ci*) | (REF). (1)

Coefficients for size degrees depend only on the
number of panels. We consider odd numbers for which
the determinant of the system of linear equations
of equilibrium of nodes does not turn to zero. To
determine these dependencies, you need to calculate
a number of trusses with a consistently increasing
number of panels and find common members of the
sequences. To determine the coefficient C , it was
necessary to calculate 18 trusses with the number
k =1,..., 18 and get the sequence 1/2, 19/2, 53/2,
383/2,...,292115/2.
First the rgf findrecur operator returns a linear
homogeneous recurrent equation for elements in the
sequence:

Cl,k - Cl,k—l + 4C1,k—2 N

+ 6C1,k—5 + 4C1,k—6 —4C 1k9
Then the General term of this sequence, as a solution
of the recurrent equation, gives the rsolve operator:
C, = (20k* + 16k (—1)* — 80Kk* — 48k*(—1) +
+ 130k + 50k(—1)— 58k — 9(—1)F+3) / 12.

4C 6C,  ,+

1,k-4

c . .tC

L7 S 1Lk-8

Lk3

Other coefficients are obtained in the same way:

C,= (kK + k(1) (-1 /2
C, = (k—1)(1 + (1))

Expression (1) with the found dependencies C, =
C(k), i = 1,2,3 is the solution to the problem.

The used algorithm for output of calculation formulas
can be easily adjusted to other loads. Consider the
load on the upper belt of the truss (Fig. 4).

The coefficients in (1) in this case have the form:
C, = (20k* + 16/°(—1)" — 80k* — 48k*(—1)* +
+ 130k* + 50k(—1)* — 70k — 15(-1)F+9) / 12,
C,=k(k+(-1)H/2,
C,= k(1 +(=1)".
In the case of loading the truss with a single force
applied to the hinge C in the middle of the lower

belt, the problem is solved somewhat easier. The
coefficients in expression (1) have a lower degree:

C, = (4k + 6k°(=1) — 121 — 12k(-1)" +
+20k +9(-1)-6) /6,
C,=k+(-1)/2,

C,=1+(-1F.
"
7 1
-
5
4
al 2
- 3

3 4 5 6 7 8 9 10 11 12 13 14 15
Figure 5. Dependence of the deflection on the number
of panels

I—h=2m2—h=3m3—h=3m
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The proposed truss scheme has a number of features
that are most conveniently traced by example.
Consider a truss of a given length L =2(n + 1)a loaded
in the lower zone. We also fix the total load on the
truss: P =(2n—1)P. We introduce the dimensionless
relative deflection: A'= AEF /(P - L). Figure 5 at
L = 80m shows the dependence of the deflection
on the number of panels at various values of the
height of the truss. Dependencies have a pronounced
spasmodic character. The jumps are especially large
at low altitudes and small numbers . As & increases,
the curves smooth out, tending to some oblique
asymptote. Using Maple, the slope can be calculated:
limAYk=h/(8L).

The angle of inclination is positive, therefore,
with an increase in the number of panels with a
simultaneous decrease in their length, due to the
accepted assumption that the total length of the
truss is constant, the relative deflection increases on
average (including jumps).

CONCLUSIONS

Two main conclusions can be drawn. First, the
analytical solution for the proposed truss scheme has
a simple form. it is valid for an arbitrary number of
panels, including a very large number, i.e. precisely
in cases when numerical methods can accumulate
rounding errors and require significant counting
time. Second, the discovery of an unexpected case of
kinematic variability should serve as a warning for
designers of new schemes, where the degeneracy of
the determinant of the system of equations of equality
may be hidden behind rounding of intermediate data.
Noticeable jumps in the deflection dependence
on the number of panels are the basis for optimal
selection of the number of panels. Reducing or
increasing the number of panels by one can change
the stiffness from 10 % to 100% depending on
the number of panels. The linear combination of
solutions obtained for three types of loads allows
us to solve a wide range of problems for truss of
the considered type in analytical form.

Volume 16, Issue 3, 2020
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THE PROBLEMS OF COMPUTATION OF COMBINED
PLATES WITH PIECEWISE VARIABLE THICKNESS.
SOLUTIONS IN ORTHOGONAL POLYNOMIALS

Elena B. Koreneva', Valery R. Grosman’®
' Moscow Higher Combined-Arms Command Academy, Moscow, RUSSIA
2 Moscow State Academy for River Transport, Moscow, RUSSIA

Abstract: The work is devoted to the analytical simulation of the combined plates calculation. The mentioned plates have the
circular form and they consist of separate parts with different laws of thickness variation. These sections may be made from the
same or from different materials. The material can be homogeneous or nonhomogeneous, isotropic or anisotropic. In the places of
the separate sections conjugation the construction’s thickness can be continuous or discontinuous. The construction under study
is subjected to an action of bending loads. Below the analytical method for the similar constructions’ computation is suggested.
This method is based on the use of the theory of the special functions, in particular, Lagerr’s orthogonal polynomials.

Keywords: combined constructions, piecewise variable thickness, Lagerr’s orthogonal polynomials.

HHPOBJIEMbI PACHETA KOMBUHUPOBAHHBIX
MJIACTUH KYCOYHO-IEPEMEHHOM TOJIIIUHBI.
PEHIEHUSA B KIACCHYECKHUX OPTOI'OHAJIBHBIX

MHOI'OYJIEHAX

E.b. Kopenesa', B.P. I pocman’
' MocKkoBCKO€ BbICIIee 00IIEBONCKOBOE KOMaHHOE opieHOB JXKykoBa, Jlennna u OkTs6psckoii PeBomormn
Kpacnoznamennoe yunnuiue, I. Mocksa, POCCUSA
2 MoCKOBCKasi TOCY/JIapCTBEHHAS aKaIeMHsI BOJAHOTO TpaHcmopTa, T. Mocksa, POCCU S

AHHOTa].[l/IﬂZ Pabora MOCBAICHA aHAJIMTUYCCKOMY MOJACIIMPOBAHUIO HpO6H6M pacuera KOM6I/IHI/IPOBaHHBIX IIACTHH, UMCIOIIINUX
B IIJIAHC KPYTOBYIO q)OpMy " COCTOAUX M3 OTACIIBHBIX YYAaCTKOB, B KOTOPBIX TOJIIMHA U3MCHACTCA 110 Pa3IMYHbIM 3dKOHAM.
OTHU OTHEIbHEIS Y4aCTKH MOTYT OBITH CACIAaHbl KaK U3 OAHOI'O U TOT'O K€, TAK U U3 PA3JIMNYIHBIX MATCPUATIOB, KOTOPBIC MOTYT
O6J'Ia,£[aTL CBOIICTBaMU OAHOPOAHOCTHU NI HCOAHOPOAHOCTH; OBITH HU30TPOIMMHBIMUA WJIN aHU30TPOIIHBIMU. B mecrax cThIKOB OT-
ACJIBHBIX YYACTKOB TOJIIHWHA KOHCTPYKOHUHU MOXKCT OBITH WJIH HerepBIBHOP‘I, WK UMETh pa3pblB HEIPECPBIBHOCTH. I/I3y‘IaeMBI€
KOHCTPYKIIUHU pa6OTaIOT Ha n3ru6. Hmxe npeajgaracTcsa aHaJIUTUYICCKAad MCTOAUKA pacueTa HO,I[O6HBIX KOHCprKHHﬁ, CBs3aHHasA
C UCIIOJIBb30BAHUCM KJIACCUYCCKUX OPTOTOHAJIBbHBIX MHOIOYJICHOB, B YaCTHOCTH, MHOT'O1JICHOB Hareppa.

KiroueBrble ciioBa: KOM6I/IHI/IpOBaHHBI€ KOHCTPYKIIUH, KyCOYHO-IICPEMCHHAs TOJIIIMHA, MHOTOYJICHBI J'Iareppa.

1. INTRODUCTION

The plates having a circular form and consisting of
two or a few parts with various laws of thickness
variation are under consideration. Such plates occur
as constructive elements in modern buildings and
structures. Their separate parts may be made from
the same or different materials. These materials can
be homogeneous or inhomogeneous, isotropic or
anisotropic. In the places of the sections conjugation
the plate’s thickness can be continuous or it has a

discontinuity. The analytical methods of the such
construction computation, specifically connected
with the theory of the special functions, are not
yet developed. The work [1] is to be mentioned. In
this work the foundation slab, resting on an elastic
subgrade, was under consideration. The plate’s inner
part has variable thickness, the outer part has the
constant thickness. The solutions were received in
terms of Bessel functions. The present work considers
the bending of the combined plate with the piecewise
variable thickness. The solutions are obtained in
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the closed form in terms of the Lagerr’s orthogonal
polynomials and the confluent functions.

2. THE STATEMENT OF THE PROBLEM

The works, in which to the circular plates of variable
and constant thickness analysis the theory of the
special functions is used, are known in literature, for
example [2], [3], [4].

Let us go to the consideration of the combined plates
which were described above (Fig.1).

The differential equation, describing the symmetric
bending of the circular orthotropic plate with the
varying thickness, has the form [3], [4]:

, 020 r dD\dd [ordD
ri——+r|l+——|——+|—=—-—n"|U+
or? D dr |dr \D dr
r
r dr—C|=0 (1)
n2 (J qu r ) ’

here U= —(Z—W , 0 1s the Poisson’s ratio, the parameters
r

n*=n,n, are determined by the following expressions:

Er_ , E;=En, ,0,=2% ,0,=0 . Q)
n_ n°
For isotropic plate n, = n, = 1.
Let us write:
~[qrdr+Cc=0r. (3)

The stresses in the orthotropic circular plate of
variable thickness are determined from the following
expressions:

4
Introducing the independent argument:

_[r\"®
where o, 7

» I, — are the constants.
Substituting (5) into (1) we get, assuming ¢, = 0:

do (1,1dD\dd,
dx? \x D dx dx
el
1 ,0dD n’ Crox °
r— (L= jg-———=0. (6)
ayx D dx agx Dn,a,

We consider the cases of symmetric bending of
orthotropic circular plates of variable thickness which
allow receiving the solution in terms of Lagerr’s
orthogonal polynomials. Let us write the differential
equation for Lagerr’s polynomials [5]:

woa+l—x

m
yr— y+;y=0- (7)

As the result we receive that the sought solution occur
for the following law of flexural rigidity variation:
D=Dx"e™, (8)

where
oa=-mn*/c*, a,=—c/m. )

Figure 1. The combined plates with the piecewise variable thickness
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The general solution of the homogeneous equation,
corresponding to (6), is

J=ALS (x)+Bx “ | F,(—-m—a;1—a;x). (10)

In the similar way we can get the solutions in terms
of different polynomials, for example in Chebyshev
or Hermite polynomials. However these laws have
more restricted domain of definition than (8).

The following law of thickness variation,
corresponding to the flexural rigidity (8), is

h:hoer_A.

The set of curves, corresponding to the profiles (11),
can be built. In this case it must be taken into account
that the Poisson’s ratio o is limited (9).

(11

3. THE COMBINED PLATE

The combined plate with piecewise thickness
variation is under consideration. The proposed
method will be shown on the example of the
combined plate consisting of two parts. However
the suggested method can be applied for combined
plates, consisting of several parts, analysis. Let us
assume that in our example the plate’s thickness is
continuous in the place of joint (Fig.2).

0.5 1.0 20

Figure 2. The combined plate consisting of two parts

The special auxiliary functions are introduced for
the realization of the separate parts joint and for
consideration of the action of discontinuous loads,
distributed along the circles non-coinciding with the
plate’s contour.

First we shall write the wronskian for the solutions (10):

W(X)Z(m+a)ax_“_1e_x.

m (12)

Next the Cauchy functions for the solutions (10)
Y (x; x), Y,(x,; x) are to be obtained. The indicated
functions are defined by the expressions:

Elena B. Koreneva, Valery R. Grosman

-1
m+a
. -1 _—x; _a+l
Yl(xl,x)=( . j a e 'xTT X

X {[ax;ail Fi(=m—al—a;x) +x;% x

m+a

e 1B (=m—a+12—a;x,)| L (x) -
m+a

l-a
m
—| — L (x)———L; 1(x))|x
e
xx_“lFl(—m—a';l—a;x)}

-1
m+a
. _ -1 _—x; o+l
Yz(xl,x)—( . ) a e lx] X

x4 L2 (x)x % Fy(—m— ] — ;) +

+ X% By (—m— a5l — e x ) L2 (x) }

Further the auxiliary functions 4, (x; x) (i = 1,2,3),
which properties are described in [4], introduced into
consideration are sought in the form:

'ji(Xl;x):AilYl(Xl;x)+Ai2Y2(X1;X)+

+Ai3dc(x)’ (9

here § . is the particular solution of the inhomogeneous
equation (6). In our case

dC(X):DO(l—ia)e_X(l_i)' (15)

As a result we receive:

9 (xy:x) = [1 = B (x) 1 (33 0) +
+ [é + le9c'(xl)}Y2 (x,; %) + B8 (%),

& (x1: %) = =By8c(x) 1 (%3 %) —
1

¥ —-1
_ [Bzgcv(xl) - %D—o(xl)xlao }Yz (xps )+

+ By 3¢ (),
G5(x15%) = By {= o (x )Y (x5 %) —
=G (x) X, (xy3 %) + G (x)}:

(16)
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where
B, = i [ A )+ Y"( )+
1= 3. (x1) X5 X15%
(o)
+——|o+—||,
ayx; o
r; -
D= 0 %
SEPNTE) CRIES M
1 dD(x
|:Y”(x17x1)+ ”(x1> 1) D( 1) ;xl)}
BB NSl
aé" . D(x,)8"(x1)

It should be noted that in consideration of the
combined plates with the piecewise variable rigidity
the Cauchy functions and the auxiliary functions 9§,
are different for separate sections. It is valid since the
each part has its law of thickness variation /(x) and
its own parameters’ values. Therefore we introduce
the appropriate notation Y(1 b, YZ“), Yiz), Y(ZZ) and 95_”, 19[@.
Let that the combined plate, shown on the Fig.2, is
made from the isotropic material that is n*> = 1. We
assume that the Poisson’s ratio is ¢ = 1/3. The plate’s
thickness in the first section when 0,5 <x < 1,0 is
approximated by the formula (11) when m = 2. On
the second section 1,0 <x <2,0 the plate’s thickness
is approximated by the same formula (11) when the
parameter m = 1. The plate’s thickness in the place of
the sections’ joint x = x, = 1,0 is continuous.

We denote as 9, M, O, correspondingly the angle
of rotation, the moment and the force on the inner
contour of the plate. The expression for the angles of
rotation for the first section x, <x <x, is

9=0,=0, d“>(x0; )+M0r00<1>(x0;x)+
+Q,r; (XO,X)

For the second section when x, <x <x, the angles of
rotation are determined by the formula

d=uy=0 (X1)L9 )(X11X)+
M, (x,)ry 02 (2,20 +Q, (x,)r202 (x, ),

where 9 (x)), M (x,), O,(x,) are received by the use
of the formulae (17) and (4).

The expressions for the deflections can be also
received. The proposed method can be successfully

(17)

(18)
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applied for the combined plates with the piecewise
thickness variation consisting of several parts.

4. THE CONCLUSION

The work develops the analytical method of the
combined plates with the piecewise variable thickness
computation. The constructions under study have
the circular shape and consist of several parts with
different laws of thickness variation. These parts
may be made from the same or from the different
materials which can be isotropic or orthotropic. In
the places of the separate sections joint the thickness
can be continuous or discontinuous. For the receiving
of the solutions the theory of the special functions is
used. The solutions are obtained in closed form and
expressed in terms of Lagerr’s polynomials and the
confluent hypergeometric functions.

REFERENCES

1. Koreneva E.B. Usovershenstvovannyi Raschet
Kombinirovannoj Fundamentnoj Plity Specialnogo
Sooruzhenija. (Refined Analysis of the Combined
Foundation Plate of the Special Building) // Sb.
Trudov Natsionalnoj Nauchno-Tehnicheskoj
Konferentsii s Inostrannym Uchastiem «Mehanika
Gruntov v Geotehnike i Fundamentostrojenii», g.
Novocherkassk, Rostovskaja Obl., 29-31 Maja,
2018, s. 193—197 (in Russian).

2. Korenev B.G. Nekotorye Zadachi Teorii Uprugosti
i Teploprovodnosti, Reshajemye v Besselevyh
Funktzijah. (The Certain Problems of the Theory
of Elasticity and Heat Conductivity Solving in
Terms of Bessel Functions). — M., Fizmatgiz,
1960, 458 s. (in Russian).

3. Kovalenko A.D. Izbrannye Trudy. (The Selected
Works). — Kiev, Naukova Dumka, 1976, 762 s. (in
Russian).

4. Koreneva E.B. Analiticheskije Metody Rascheta
Plastin Peremennoj Tolshiny 1 ih Prakticheskije
Prilozhenija. (Analylical Methods of Plates of
Variable Thickness Analysis and Their Practical
Application). — M., ASV, 2009, 238 s. (in Russian).

5. Abramovits M., Stigan I. Spravochnik po
Specialnym Funktsijam. (Handbook for Special
Functions). - M., Nauka, 1979, 820 s. (in Russian).

33



CIIMCOK JIMTEPATYPbI

1. KopeneBa E.b. YcoBepiiieHCTBOBaHHBIN pacueT

KOMOMHHUPOBAHHOW (PyHJIaMEHTHOM IIJTUTHI CIIe-
UAITLHOTO coopykeHwus / COOPHUK TPYIOB Ha-
IMOHATBPHON HAYYHO-TEXHUYECKOW KOH(DEePEHITUN
C UHOCTPAHHBIM ydacTueM «MexaHuKa rpyHTOB
B reOTEXHUKE U (pyHIaMeHTOCTpoeHUn», I. HoBo-
yepkacck, PoctoBckas 061., 29-31 mas 2018 r,,
c.193-197.

Elena B. Koreneva, Valery R. Grosman

. Kopenes Bb.I'. HexoTopsle 3a1aun Teopuu ynpyro-

CTH U TETJIONPOBOIHOCTH, pelIaeMbie B Oeccere-
BbIX QyHKIMX. — M.: ®usmarrusz, 1960. — 458 c.

. KoBanenko A.Jl. 30panubie Tpyasl. — Kues:

HaykoBa nymka, 1976. — 762 c.

. Kopenena E.b. Ananutudeckne METO/bI pacyeTa

TUTACTUH MTEPEMEHHOHN TONIIMHBI U UX TIPaKTH4e-
ckue npunoxenus. — M.: ACB, 2009. — 240 c.

. AdopamoBun M., Cturan U. CripaBouHuK 110 crie-

nuaibHbIM yHKUIMAM. — M.: Hayka, 1979.—820 c.

Elena B. Koreneva, Dr.Sc., professor, Moscow Higher Combined-Arms Command Academy, ul. Golovacheva, 2, 109380, Moscow,
Russia, tel.: +7(499)175-82-45.

Kopenesa Enena bopucosna, TOKTOp TEXHHYECKUX HayK, Tpodeccop, MOCKOBCKOE BEICIIIEE OOIIEBOHCKOBOE KOMaHTHOE OP/ICHOB
Kyxosa, Jlennna n Oxta6pbckoii Peomorn Kpacnosnamennoe yummmie, 109380, Poccns, . Mocksa, yi. ['onoBadesa, 1.2,

Ten.: +7(499)175-82-45, e-mail: elena.koreneva2010@yandex.ru.

Valery R. Grosman, Moscow State Academy for River Transport, associate professor, Novodanilovskaya nab., 2, k.1, 117105,
Moscow, Russia, tel.: +7(499)618-52-56.

I'pocman Banepuii Pomanosuu, MITABT — pumman ®I'BOY BO «I'YMP® umenn anmupana C.O. MakapoBay, CTapIinii pero-
nmasatenb, 117105, Pocens, . MockBa, HoBomanmmosckas Hal., 1.2, Kopit. 1, ter.: +7(499)618-52-56, e-mail: elena.koreneva2010@
yandex.ru.

34

International Journal for Computational Civil and Structural Engineering



International Journal for Computational Civil and Structural Engineering, 16(3) 35—46 (2020)

DOI:10.22337/2587-9618-2020-16-3-35-46

TRANSVERSE OSCILLATIONS OF THE BEAM
ON AN ELASTIC BASE
IF THE BOUNDARY CONDITIONS CHANGE

Yevgeny V. Leontiev

Federal autonomous institution “Main Department of State Exertise”, Moscow, RUSSIA

Annotation: The article deals with the proper transverse oscillations of a beam with free edges while the conditions of support on
an elastic base change, taking into account its own weight and the influence of the attached mass m1. The problem of determining
the forces in the beam is being solved taking into account the dynamic load F(t) applied at an arbitrary point d while the conditions
for the support of a part of the beam on an elastic base change.

The conditions that must be taken into account while analyzing the dynamic action of the structure under the influence of variable
loads in the case of changes in the conditions of support on an elastic base are formulated.

Keywords: ground base, beam on an elastic foundation, the initial parameters method,
natural oscillation frequencies, forced oscillations, dynamic analysis.

IHOIEPEYHBIE KOJIEBAHUS BAJIKHA

HA YIIPYT'OM OCHOBAHUMU
MPU U3MEHEHHUHU YCJIOBH ONUPAHUS

E.B./Ieonmves
DAY «I'maBrocakcneptusa Poccuny, T. Mocksa, POCCHUA

AnHoTanusi: B pabote m3y4arorcss COOCTBEHHBIE MOTIEpEUHBIE KOIeOaHus Oalku CO CBOOOIHBIMH KpasMHU TpPU W3MEHEHHUU
YCIIOBH ONMMpPaHUSA HA YIPYroe OCHOBaHHE C YIeTOM COOCTBEHHOTO Beca W BIUSHHS NMPUCOCIMHEHHON Macchl ml. Pemaercs
3a/a4a 1o OIpEeeTICHUIO YCIINI B OajKe ¢ y9eToM TWHAMHYEeCKoi Harpy3ku F(t) mpuiokeHHOH B IPOM3BOIBHOM Touke d mpn
N3MEHEHNH YCIIOBUH OMMPAHUs YaCcTH OaJKM Ha yIIPyroe OCHOBAHUE.

CdopmynupoBaHb! yCIOBHS, KOTOPbIE HEOOXOMMO YIUTBIBATh IIPU aHAM3E TNHAMHUYECKOTO MTOBEACHHS KOHCTPYKINH O JeH-
CTBHMEM NEPEMEHHBIX HArPY30K B CIIyyac U3MEHEHHUS YCIOBUII OMMpPAHUS Ha yIIPyroe OCHOBAHUE.

KuaroueBble ciioBa: pyHTOBOE OCHOBaHUE, Oalka Ha YIPYrOM OCHOBAaHHWHU, METO/] HAYa bHBIX [TApPaMETPOB,
cBOOOIHBIEC KOJIeOaH s, BEIHYKICHHBIC KONeOaH!sI, TMHAMHYCCKUI aHAIIN3.

1. INTRODUCTION

In order to fulfill the requirements of mechanical
safety of buildings and structures, which are
regulated by law [1] and have been developed in
modern normative and technical documents [2, 3],
it is urgent to study structural systems that change
the design scheme for various reasons during local
destruction [4, 5, 6]. Taking into account the affecting
of sudden local destruction on the stress-strain state
and dynamics of structures is an urgent need for
predicting their work and assessing the bearing
capacity and / or stability. Such structural systems
include structures lying on the ground, which can

Volume 16, Issue 3, 2020

be considered in their design as beams on an elastic
foundation. To date, there are a number of works
[7, 8, 9] devoted to the study of dynamic processes
caused by the sudden formation of defects in beams
with partial support on an elastic foundation.

2. MODELS AND METHODS

We consider a "beam-base" system, in which the beam
was initially completely on an elastic foundation, but
when a defect suddenly formed under a part of the
beam, the base was excluded from power work of
this structure (Figure 1). Figure 1 shows that the
left side of the beam with length aL is located on an
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elastic foundation with a constant coefficient 7, the
right side of the beam with length SL is cantilever.
It is of interest to solve the problem of determining
the natural frequencies and forms of transverse
vibrations of a beam with free edges, in the case of
an added mass m, and a dynamic load () applied at
an arbitrary point d when a part of the base under the
right part of the beam suddenly has been excluded.
The differential equation of forced transverse
vibrations of a beam on an elastic foundation of
constant cross-section, taking into account the
resistance forces for any law of change of the
disturbing force ¢(x, ), has the form [9-11]:

64}’|x,tlL ézylx,ti

E] ———+ —
dx 6x
7 vl x.t) (1)
+2G%+roby{x,t]:q X1l
ax ot

where E is elasticity modulus of a beam material;
1 is inertia moment of a beam cross section, y(x,?) is
transverse deflection of the beam axis in the section
x; q(x,t) — disturbing load that changes its value in
time #; 4 = q/g: q —evenly distributed load (dead load)
attached along the beam; g — acceleration of gravity;
a — coefficient characterizing internal friction of
material; 7 by(x,7) — the intensity of the reaction of the
elastic Winkler foundation that varies its values along
the length of the beam [10, 11, 12]; 7, — modulus of
subgrade reaction; b — width of the beam.

We solved the problem in three stages using the
method of initial parameters.

At the first stage, we determined the natural transverse
vibrations of the beam taking into account its own
weight, and at the second stage — taking into account
its own weight and the added mass m,. At the third
stage, we solved the problem taking into account
the disturbing force, which varies in time according
to the harmonic law F(¢) = F sin yt and is applied at
an arbitrary point d. Here: F is the amplitude value
of the disturbing force; v is the angular frequency of
change in the disturbing force.

The first stage.

Let us determine the circular frequencies and forms
of natural transverse vibrations of a beam with free
edges of length L and flexural rigidity E7 (Figure 1).
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)

al. To BL

7

L

Figure 1. Beam with free edges, the left part of
which alL is located on an elastic foundation.

It is known [ 13] that the dissipation of vibration energy
on the frequencies and modes of natural vibrations of
building structures affects only slightly, attenuation in
their calculations is usually neglected.

A simple periodic solution to the equation of natural
vibrations of the beam (1) is the main vibration, which
changes according to the harmonic law:

y(x,1) = p(x) sin(wt + a), (2)
where ¢(x) — function that establishes the distribution
law of the maximum deviations of the points of the
beam axis from the equilibrium position; o — initial
phase of oscillation; @ = w_— the circular frequency
of natural transverse vibrations of the beam at the base,
and w = w, — circular frequency of natural transverse
vibrations of a beam without a base, (rad / s).

Using the method of separation of variables, problem
(2) can be reduced to the equation of natural vibrations
for the left side of the beam a.L on the basis of:

" (x) +2'p(x) =0, 3)
where we accepted designation:
2
s P, T
~ EI )

For the right side of the beam fL without a base, the
equation of natural vibrations is:

9" (xX) + k*p(x) =0, )
where we accepted designation:
2
K= H Wy (6)
El

The solution of equations (3) and (5) is conveniently
represented in the form of Krylov functions:

Sx) = %(chﬂx + coslx),
T(x) = %(shﬂx + sindx),
U(x) = g(cmx — cosAx),|’
V(ix) = i (shAdx — sindx).

(7
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where 4 = x corresponds to the beam laying on an
elastic foundation and 1 = k corresponds to the beam
without foundation.
Let us write down the values of the boundary
conditions for a beam with free edges on an elastic
foundation:
x=0:M(0)=Q(0)=0 )
x=L:M|(L)=Q(L)=

Y2i(¥2) = Ya0i SUita) + =2 T(ixy) = 22 U ki) = 7V (kicy)
02i (x2) = ¥20i kiV(kixz) + 6205 (kixz) —
My;(x;) = —EJyy0; kP U(kix2) — EJ O30ik;V (;x3) + Mag; S(kixy) + QRL?{ T (k;x3)

~EJ Y201 kT Ueixy) —EJ 020k U (ix2) + Mao; iV (kixa) + Qz0:S(kixz)

Q2:(x;) =

3
M Mr M

V2i(x2) = Y104 [S(”i al)S(k;x;) + V(x;al) k—IT(kixz) + U(”i“L)U(kixz)k_lz + T(”i“L)V(kixz)k—; +
i i

i

1
+610 =

0,:(x2) = yi0i [k S(e; al) V(kixy) + 31,V (e;al) S(kix,) +

kl.
+010; p

My;(x2) = —EJyi0: [k S(Gt; al)U(kixy) + ik V (e;al)V (eixy) + 22U (e;al) S (feyxz) + m

2

k
—EJ0;0; o

i

Q2i(x2) = —EJy10:i[kESGial)T (keixcs) + w;k2V Gezal) U(kacy) + w2 kU Geyal) V(kixg) + 13T (e;al)S(kix,) | —

3

k
—EJ010i -

i
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1 H; »?
- T(x; al)S(k;x,) + S(xiaL)FT(kixz) + V(xiaL)U(kixz)k—; +U(xicrL)V(kix2)k—13
. . Hr
_T(xi al)V(k;x;) + SGal) S(kixg) + ﬁV(xiaL)T(kixz) + U(x;al) k—'“z U(k;xy)
L

- K
=T (3; al)U(kixz) + kiSGe;al)V (kixs) + #; V(L) S (kix,) + k—l U(x;al) T(k;xz)
L

d TGeal)T (kix) + kF S(eal) U(kixy) + #ideiV (e al)V(kix,) + 17U (L) S(kixs)

For an arbitrary section of the beam in the first
section 0 < x, < al, which is located on an elastic
foundation, displacements and forces are determined
by the equations:

Y1i(x1) = ¥10i SOt x;) + Blm T(x x1)

01;(x1) = Y10i 2V (3x71) + 91015(7f[x1) 9)
My;(x1) = —EJy10i %izU(’f:‘xﬂ — EJ 0102V (3¢;%1)
Q1:(x1) = —EJy10i J‘fiST(Jffxﬂ —Efe1oi%i2U(}fix1)

Here i=1, 2, 3, etc.

In the second section of the beam without a base
0 <x, <L displacements and forces for an arbitrary
section are determined:

K?E] k3E]
e T (kixy) = e U ki) i

Using the conditions of conjugation of the sections
aL and L, we express the displacements and forces
of the second section through the initial parameters
of the first section:

2

? ' »?
U(J{ al) T(k;x5) + 2

i

T(;{ al)U(k; xz)]

2

»(11)
3

~T(s;al) T (k; xz)]
2
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Using the boundary conditions on the right edge (8)
at x,= BL, we obtain the system of equations:

2

L

3

For a nontrivial solution of equations (12), it is
necessary that the determinant, composed of the
coefficients at arbitrary constants EJ y,, and EJ 0, ,
be equal to zero:

—E]Bloi [I;—L T(}fi C[L)U(k!ﬁl;) + le(HlaL)V(k“BL) +}fi V(}fiflL) S(klﬁL) + x—iU(h‘i(IL) T(klﬁL)] =0

Yevgeny V. Leontiev

"}

k

Mzi(BL) = —E]y10; [kES(xi aL)U(kiBL) + x;k; V (eiaL)V (kiBL) + 52U Gtal)S (kL) + =T Geal) T(kiBL) | =

i
2

K (12)

i

Q2i(BL) = —E[y10:|k2SGeial)T (k; BL) + 3;k2V Gezal) U (ki BL) + 32 kiU Gezal) V (ki BL) + 22T Ge;al)S (ki BL) ] —

—EJ0,; [i—‘ T(e;al)T (k;BL) + k2 SGeyal) U(k;BL) + sk, V (s;aL)V(k;BL) + 32U (#;aL) S(kiﬁL)] =0

3
D= [kfs(xi al)U(k;BL) + nik; V Ge;al)V (ki L) + #2U Ge;al)S(k; SL) + z—i_T(xiaL) T(kiBL)] *

* [i—?T(xiaL)T(kiﬁL) + k2 SGt;al) U(k; BL) + w;ik;V (e;al)V(k; BL) + #2U (;al.) S(kiﬁL)] _

L

(13)

_ [i_ T(¢; aL)U(k;BL) +k;SCGe;al)V (ki BL) + 3; V (3;aLl) S(k; BL) + ’;— U(x;al) T(ki[)’L)] X
x |[k3SGe;al)T (ki BL) + 3k 2V (ezal) U (ki BL) + 12 k;UGezal) V(k;BL) + w2 T (e;aL)S(k; BL)| = 0

The roots of equation (13) are the countless row of
values k. and x. In order to solve the equation, we
introduce the relation k. = ¢, . Here ¢ is constant
value. For each root value k, and » a certain
angular frequency of natural transverse vibrations
corresponds.

Using expression (4), we obtain a formula for
determining @, circular frequencies of natural
transverse vibrations of a part of a beam al on an
elastic foundation:

| EIA, | r
Wiy = 4 + - ’
plal)*  p

where A= »xo0l, and i = 1, 2, 3 efc. — frequency
sequence number.
For a part of the beam fL without a base, using (6),

we get:
) | EIX;,
“ Vu(prL)®
where 4, =k fL.
Let us determine the natural angular frequencies of
transverse vibrations of the beam parts oL on the base

and BL without the base, which form the spectra o,
<w, <.<o ando, <ov,<.<o,.

(14)

(15)

To determine the modes of natural vibrations, we
substitute the values of the roots value &, and x, into

the solution of the first equation (11), which will
determine the values of the relative ordinates i-th of
that form of natural vibrations.

The second stage.

Let us determine the natural angular frequencies and
forms of transverse vibrations, taking into account
the own weight and the added mass m at point d
(Figure 2).

A P

oL BL

Figure 2. Beam with added mass m,.

For an arbitrary section of the beam in the first section
0 <x, <al displacements and forces are determined
by equations (9) only up to the point of application
of the mass. For x, > d free vibrations of the beam
occur with the inertial force /. At point d we add the
inertial force / and compose the system of equations:
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N

Y1:i(%1) = Y10 (%) + mT(’f 1X1) t 5 V(J’f (x, —d))

01i(x1) = y10i #;V (tix1) + 010:S 0t xl) + =5 U(K (%, —d)) \ (16)

My;(x,) = —EJy10; #7 U Gt;x1) — EJ Glﬂixiv(%ixl) - K—iT(in(xl - d))
Q1:(x1) = —EJy10; xigT(xixl) —Efeloii"fizU(%ix1) —1S(ti(xy —d)) )

where [ = myw? [yo SGed) + %T(xid)]. (17)

Further, we have composed formulas for determining
the deflections, angles of rotation, moments and shear
forces of the second section of the beam without
a bas.e. 0 <x, < BL using (9) and the conjugation
conditions:

;m@g:mmk@nmw@wﬂ+vwmmﬂ¢@w9+U@mmu&mg€+T@aDWknﬁﬂ

050 L T al)S(kixy) + SGaL) =T Ckixy) + V Grsal)U (kixy) 234U Gesal)V (i) - ]
V(k xz)

L

[V(x (aL — d)) 222 4 (o, (al — d)) oz m“ %) 1 T(oqy(al — d)) 2] "2) + 8Gty(al — dy) L2
6i(x2) = Y10i [kiS(Hi al) V(k;x;) + #;V (n;al) S(kixz) + k—‘ U(x;al) T(kixz) + k—‘_zT(HiaL)U(kixz)] +

+640 [%T(x- al) V(k;xy) + SGeal) S(kix,) + EV(}{L-(IL)T(I{-JCZ) + U(3;al) :—;U(k-xz)] +

ki V(k x3) S(k xz) T(kzxz) U(k xz)

+L [V(;fl (aL — d)) Y952 | o ar — @) 2852 | 7l — d)) 2922 4§00 (al — d)) L)
M,;(x3) = —EJyi0i [k-zS(}f- a:L)U(k‘xZ) + #;k; V(x‘aL)V(k-xz) + 3] U(}f-aL)S(k-xz) +—_T(x,-a:L) T(kixz)] —
—EJ0.4i [ TG al)U(kix,) + kiSGeal )V (kixz) +#; V0gaL) SUepn) + 2 U(x aL) T (k)| -

——[kZV(xl(crL AU (ki) + kiU eyl — AV (ki) + 12T Gty(al — d)SCkixy) + 2 5(;{ (aL — d))T (k; xz)]
Q2 (x3) = —EJy10i[k3SGt;al)T (kyxz) + 3:k2V (e;al) U (kyxy) + 22 kU (3e;l) V (kix) + x3T(x1crL)S(ka2)]
—EJ0,4; [";3 T(Ge;al)T(k;xy) + kZ SGeyal) Ukixy) + sk V (Geal)V(kix,) + 22U (yal) s(kixz)] —
- ;_3 (k3T (ke;x2)V (ei(al — d)) + 3¢; kU (e )U G (al — d)) + e le;V (k)T Gt (@l — d)) + 13 S(kixz) S (i (el — d))]

We denote:
ay = [kZS e al)UGeBL) + xiks VOial)V (L) + xPU Geial)S (L) + 2 TGeal) T(k L))
az = [i_iT(x,; al)U(k;BL) + kiSCGuyal)V (kiBL) + 3; V (ial) S (ki BL) + %U(Hi“m kL)
as = [k2V(xi(aL — d)UUGBL) + xik:U (ei(al — W (L) + 32T Ges(al — d)S(kBL) +
+22 S0ty (al, = YT (kifL) |

ay = [k3SGeal )T (kiBL) + 3k 2V Geyal) Uk L) + w2 kiU Geyal) V(ki L) + 3T (Ge;al)S(k; BL) )

as = [i—f T(e;al)T (ki BL) + kZ S(ezal) U(k: BL) + ik V (e;al )V (ki BL) + 12U (3t;al) S(ki[)’L)];
ag = [k3T(k;BLIV (i (al — d)) + w; K2U(k; BLYU (i (el — d)) + 12k V(k; BL)T Gy (al — d)) +
+x2S(k; BL)S (i (al — d))).
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Using the boundary conditions on the right edge (8)
atx, = BL, taking into account the inertial force 7 (17),
we obtain the system of equations:

Vioi [a1 =

S(x d)ag] + 040; [az e maf T(x d)a3] =10

Yevgeny V. Leontiev

(19)
Yioi [a4 + H; L S(x; d)as] + 610 [as + i L T("f d)as] =0
The determinant of this system:
D= [al 4 DA (1 +— )S(J{ d)ag] [a5 4 Tk (1 +— )T(;fid)aﬁ] -
u E; EJ (20)
— [az + 0% +- )T(x d)ag] [ + 0% +- )s(x d)aﬁ]

Defining a set of values k, and » we perform
introducing constant ¢. Using expressions (14) and
(15), we determine the values w_ circular frequencies
of natural transverse vibrations of a part of the beam
aL on an elastic foundation and the values w,, for part
of the SL beam without base.

In order to determine the modes of natural vibrations,
the values of the roots £ and s substitute in the
solution of the first equation (18), which determines
the values of the relative ordinates of i-th form of
natural vibrations.

The third stage.

Let us determine the efforts under the action of a
dynamic load F(¢) = F sin yt, applied at an arbitrary
point d (Figure 3) for the same beam.

P ¥*{x)
0

ET

al. SL

E |

ik
Figure 3. Beam with dynamic force F(t)

Let's return to the differential equation of forced
vibrations of the beam (1). We assume that the
disturbing force acts according to the law g(x,7) = g(x)
sin y¢. Assuming that forced vibrations also change
according to a harmonic law:

Y(x,2) = p(x)sin (1), o2y

we obtain an inhomogeneous differential equation of
forced vibrations of a beam on an elastic foundation:

¢" (x) + 2 p(x) = q(x), (22)
(23)

For a beam without a base, the inhomogeneous
differential equation of forced vibrations takes the
form:

0" (x) + K p(x) = q(x) ,
where: k“:“—YZ,

EI

We have obtain the general solutions of the
inhomogeneous equations (22) and (24) as the sum
of the general solutions of the homogeneous equation
and the particular solution, which depends on the
type of load. Further, using the method of initial
parameters, we have obtain universal formulas for
determining deflections, angles of rotation, moments
and shear forces for an arbitrary section of the beam
in the general case of the action of a disturbing load
q(x,1).
We use the values of the boundary conditions on the
left and right edges of the beam (8).
For an arbitrary section of the beam in the first section
0 <x, <al, that located on an elastic foundation and
under the action of a dynamic load F(¢), that applied
at an arbitrary point d, displacements and forces are
determined by the equations:

(24)
(25)
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e
V1i(%1) = ¥10i SOt %,) + t9101 T(J’f x1) + S[:E};t Vs (x, —d)] A

601 (x1) = Y10i #:V (Ot3%1) + 91015(” X)) +——— Fsmw U[ % (x; —d)] | (26)

My;(x1) = —EJy10i #FUGtix1) — EJ 910iHiV(%ix1) — FsmytT[ (x; —d)]
Q1:(x1) = —EJy10:i %?T(%ixﬂ —E]910i7’fizU(7‘fix1) — Fsinyt S[x; (x; — ad)]/

In the second section of the beam without a base
0 < x, < BL the displacements and forces for an
arbitrary section are determined by (10). Using
the conditions of conjugation of the sections and,
expressing the displacements and forces of the second
section through the initial parameters of the first
section, we get:

y2i(e2) = Yo [SGal) SChi) + ELV Geiad) Tkis) + 22U Gal)U ki) + ﬁm-anwk-x»]
+010; [i TGaal) S (ki) + - SGral) Tlhin) + 5V Gal)U ki) + 5 U(x L)V (k; xz)]

+Fs;;,yt[ [xl(ai. d)]S(k x )+ l(ch d)] T(kx )+ xl(a: )] e )+S[x[ (al—d)] vk, xz)]

0,,(x2) = Y10 [kiS(}fiCtL) V(k;xy) + 3,V ;) S (e yxcp) + -+ U(}If'ﬂfL)T(k'Xz) + —T(x-a'L)U(k-xg)] +
+6,0; [;T(;»:lcrl.) V(kixs) + S(Geal)S(ky) + 2 V(J{lcrL)T(k x;5) + U(xlaL)U(k xz)]
+ Lt PPl ) + LA ) 4 Ll T(kixz) + BBy )| @7)
Myi(x) = ~Elysoq [kESGral)UCkiy) + iV Geial)V (k) + 33U Geal)S () + 2L T Grial )T ey —
~EJy0; [ TG al)U(kixy) + kS Grial)V (kixs) + 5,7 Geaal) S Geexey) + 2 U Graal )T (ks -

_ F.:: vt [kizU(kixg)V[Hi(aL — )] + #; k) V (kix) Ui (al — d)] + 22T [ (al — d)]1S(k;x,) + +%S[x{- (aL — d)]T(kixz)]

Qi (x2) = —EJy10ik} T (kix)S (eial) + 3k 2U (kixy )V (ezal) + #7kV (ki) U Geial) + 378 (ki )T ()] —

~EJ8r01 [T al)T (ki) + PV Ghixs)SGria) + ki Gal)V ki) + 12U Geia)Seixs) | =

— B 3T (e )V i (el — )] + ke PU L (al. — d)] U (ki) + #2kV )Ty (al, — d)] + +#3S (e )S bl — )]

We denote:
a, = [k-z.S‘(x-aL)U(k-ﬁ’L) + 3k V G al)V (ki BL) + #2U Geal)S (ki BL) + x—?T(x-aL)T(k-ﬁL)]'
= [ LT Gy al)U(kiBL) + kiSGeial)V (kiBL) + x;V il )S (ki L) + 2 U(x al)T(k, ﬁL)]
[ U LYV [ (aL — d)] + w; le;V (I BLYU [ (L — d)] + »; T[xl(al. d)]S(k;BL) +
+

gs[x (aL — DT (kL))
= [K3T (e BL)S Geyal) + w;kFU (e, BLYV (i) + w2k V(k;i BLYU Geyael) + w2 S(k; BL)T (i) );
L{ET(}{I al)T (ki BL) + k2U (ki fL)S (i) + sik;V Geyal)V (ki BL) + 2U Gegal)S(k; ﬁL)]
ag = [k3T(k BL)V[x;(aL — d)] + xik2Ux;(al — d) U (ki L) + 2 k;V(k; SL)T [3; (L — d)] +
+33S(kiBLYST; (L — )] |-
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Using the boundary conditions on the right edge
(8) for x,= BL, we obtain a system of equations for
determining y . and 0, :

— Fsinyt
a, y10f+a2910f:W03
_—Fsinyt (28)
a4y10f+a5910f_W06

Using (26) and (28), at a given frequency of forced
oscillations y, we determine » and £:

Jpy’—r
w=y L,

29
EJ 2
2
_4py
k_JEJ G0)

Applying equations (26) and (27) taking into account
certain values of the roots » and &, that corresponds
to given frequency y of forced vibrations, and values
of F(#), we have determine forces in the beam under
forced vibrations.

3. RESULTS AND ANALYSIS

Initial for calculations: beam width h=1.25 m, height
h=1.5 m, length L=12.0 m, elasticity modulus of
material £=2,1x10° t/m?, modulus of subgrade
reaction 7,=5000 t/m’, force F=10.0 t, mass m, =
Flg=1.0194 t.

At the first and second stages, according to the results
of calculations of the beam with al = fL, the values
of the roots », and k, of the equations (13) and (20)
are adopted such that ¢ from k, = ¢, equal 0.5; 1.0
and 2.0. Also, the value ¢, is taken from the condition
of equality of natural frequencies of transverse
vibrations @, = w, of two parts of beam. Root values
», and k, indicated in column 7 of tables 1 and 2 for a
beam on a full base are defined in [15], in column 8
for a beam without a base — in [14]. The calculation
results are presented in table 1.

At the first stage, the first three modes of beam
vibrations were constructed with al. = pL without
added mass m, (Figures 4, 5 and 6) corresponding
to natural frequencies for ¢.

Further, at the second stage, according to the results
of calculations of a beam with an added mass m,
located in a quarter of the beam d = L / 4 at al =

Yevgeny V. Leontiev

Epath, 3
e
RIS S, rriy
______ B e = —

0 1:2 2,4 3,6 4,8 6 72 8,4 9,6 10,8
Figure 4.1st mode of vibration with aL = L
without mass m,

===-05 =-=10 == >1,0 —2 e

0 1:2 2,4 3,6 4,8 6 72 8,4 9,6 10,8
Figure 5.The 2nd mode of vibration at oL = BL
without mass m,

I
O = N W b

0 1;2 2,4 3,6 4,8 6 72 8,4 96 10,8

Figure 6.The 3rd mode of vibration at al. = L
without mass m,

Table 1. Roots and natural angular frequencies (rad
/ sec) of transverse vibrations for al=f.

E;j =

s §%|E 3

05 | 10 | " |20 EB| g8
K] S <
3 M &

1 2 3 4 5 6 7 8
xy [0.5264] o [0.3762(0.2632[03942] -
3| ki [02632] " ""7[0.4108[0.5264] - |0.3942
E | 25471617 | o | 1562 1617 | -
~ (| 594 1333 | ““°7 3758 - [1333

o | %, | 0.8739 0.6507]0.4369] 0.6544] -
B [k, | 0.4369] “* 0.6582[08738] - |0.6544
E wr| 6614 | 3785 sgr 2574 (3785 -
w1637 | 3673 | °°"° [10355] - 3673
» [a|12566] o 109149]0.6283[0.9163] -
g | ks |0.6283) °° °°[0.9177/1.2566] - |0.9163
E [ w(13575] 7260 142 3497 [ 7260 | -
w| 338.6 | 7202 “[21a16] - [7202
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BL, we obtain the values of the roots » and k. The
calculation results are presented in Table 2.

The first three modes of vibrations of the beam
are constructed for al. = L with the added mass
ml located at the point d = L / 4. Vibration modes
corresponding to natural frequencies for ¢ are
presented in Figures 7, 8 and 9.

0 12 2,4 3,6 4,8 6 7,2 8,4 9,6 108

Figure 7. 1st mode of vibration at oL = L with
mass m, at pointd =L /4

----05 ---10 - - >1,0 —2 s

0 12 2,4 3,6 4,8 6 72 84 9,6 108

Figure 8. 2nd mode of vibration at aL = BL with
mass m, at pointd =L /4

Table 2. Roots and natural angular frequencies (rad
/'s) of transverse vibrations at al = f with mass m_
atpointd=L/4

= £ | 8
S AR
05 | 1.0 Il 20 g28| g8
3 53 =
3 - A
L[ 2] 3 4 51 6 7] 8
xy [04927] . 0.3034]0.2042[0.3925 [ -
[k, [02463] ~°7[03607]04085] - [0.3942
£ o 35210 1978 | 1370 1607 -
~ | 823 1538 "7 2263] - | 1333
o | (08466] o [0.6477(04168]0.6358] -
g | ky 0,4233] 777 [0.6553[0.8336] - [0.6544
E w9800 590.1 sgp5| 2666 3586 -
w | 2430] 5767 %77 9424 - [ 3673
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Figure 9. The 3rd mode of vibration at o = L
with mass m, at pointd = L/ 4

At the third stage, an example with the same beam
under the action of a disturbing force F=10.0 t,
applied in the points d=L/2 and d=L/4 is considered.
Forced vibration frequencies are y =220 rad/s and
7,=400 rad/s. The displacements and forces in the
beams are determined at various values aL. The
figures 10—13 show the bending moment plots.
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Figure 10. Diagrams of bending moments under
the action of the force F (t) at the pointd = L/ 2 at
y, =220 rad/s

HWsruGarommii MoMeHT (Te*M) Gankn L=12 M

Figure 11. Diagrams of bending moments under
the action of the force F (1) at the pointd =L/ 2 at
Y, =400rad /s
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Figure 12. Diagrams of bending moments under
the action of the force F (t) at the pointd = L/ 4 at
Y, =220rad/s

Analysis of the calculation results of the third stage
allows us to draw the following conclusions.

The action of a disturbing force in the middle of
the beam (d = L / 2) with a frequency of forced
vibrations y = 220 rad / s, close to the frequency of
natural vibrations (for o, = w,) for the first mode
of vibration, leads to an increase in displacements
and efforts in sections of the beam more than three
times when excluding part of the base from the work.
Under similar conditions, the action of a disturbing
force with a forced vibration frequency y = 400 rad
/'s, close to the natural vibration frequency for the
second form, does not lead to a significant change in
the forces in the beam sections when part of the base
is excluded from operation.

The action of a disturbing force in a quarter of the
beam (d = L/4) with a frequency of forced vibrations
y = 220 rad/s and y = 400 rad/s, when part of the
base is excluded from the work, does not lead to a
significant change in the forces in the beam sections.

4. CONCLUSIONS

1) under different conditions of support of the
"beam-base" system, different frequencies of natural
vibrations based on the results of calculating the roots
of the secular equation can correspond to different
parts of one beam. The values of the roots that
determine the main modes of vibration of the beam
as a whole are the values of the roots for a part of the
beam on the base, while the natural frequency of the
transverse vibrations of the part of the beam on the
base is greater than or equal to the natural frequency
of vibration of the part of the beam without the base;

Yevgeny V. Leontiev
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Figure 13. Diagrams of bending moments under
the action of the force F (t) at the pointd = L /4 at
Y, =400 rad /s

2) under different conditions of support of the "beam-
base" system, the values of the natural frequencies of
transverse vibrations can be equal for different modes
of vibration of two different parts of the beam. In this
case, the action of a disturbing force with a frequency
of forced vibrations equal to the frequency of natural
vibrations leads to the formation of resonance for
each of the two different modes of vibration of each
part of the beam;

3) with the application of an additional mass m1 at
the beam point, the vibration frequencies change its
values. If the mass of the system increases, then the
vibration frequencies of the system decrease and vice
versa that corresponds to a similar conclusion for a
beam on a full base [15];

4) when performing a dynamic calculation, it is
necessary to consider all possible options for the
application of masses, taking into account the points
of their location in combinations with options for
changing the conditions for supporting the beam on
an elastic foundation. The number of determined
frequencies and modes of natural vibrations for
beams on an elastic foundation should not be less
than two;

These conditions must be taken into account when
analyzing the dynamic behavior of a structure under
the action of variable loads in the event of a change
in the conditions of bearing on an elastic foundation.
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OF ST. PETERSBURG
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Abstract: Failures of the important and unique buildings and facilities occur comparatively rarely, but in case of their occurrence,
result in significant social and material damage, especially if they are associated with casualties.

The experience of the science technical monitoring of the construction of underground parking in a new hotel in the central
part of St. Petersburg is given in the article. The parameters of the main underground structures and problems occurred during
their construction are presented. The second part of the paper is devoted to the technologies used during the construction of the
second stage of the hotel on the area of the dissembled buildings suffered from serious deformation during the construction of the
underground parking for the first stage of the hotel.

Keywords: failures of buildings, underground parking, settlements of foundation, excavation pit.

OIIBIT IMMOA3ZEMHOI'O CTPOUTEJBCTBA I KOMIIVIEKCA
3JAHUM HA CJABBIX 'PYHTAX B IEHTPE CAHKT-IETEPBYPTA

P.A. Manzywes, A.U. Ocokun

Cankr-IleTepOyprekuii rocynapCTBEHHBIN apXUTEKTypHO-CTpouTenbHbd yHUBepcuTeT (CIIOIACY),
. Cankr-IlerepOypr, Poccus

AHHOTanmsi: Pa3pymienns OTBeTCTBEHHBIX M YHUKAIBHBIX 3laHUH U COOPYKEHHUH CITy4aloTCsl CPAaBHUTEIBHO PEIKO, HO B CITydae
TAKOTO MPOWCIIECTBHS, PE3YJITAT MMEET CYIIECTBEHHBIC COLUAIbHBIC M MaTepHAIbHBIC TOCIECTBUS, OCOOCHHO €CIIH COMpsi-
YKEHBI C JIIOZICKUMH TIOTEPSIMU.

B crarbe MpUBOAMTCS OMBIT HAyYHOTO COIPOBOMKACHHS CTPOUTEIHCTBA IOJ3EMHOTO ITAPKHHTA B KOMILJIEKCE HOBOTO OTEJNs B
nentpaiabHoi yactu Cankr-IlerepOypra. [IpuBeneHsl mapaMeTpsl OCHOBHBIX MOA3EMHBIX YacTel W MPOOIEMBI, ¢ KOTOPBHIMA
MIPUIIIOCH CTOJNIKHYTBCS IPH CTPOUTENLCTBE. BTOpas gacTh craThy MOCBSIIEHAa TEXHOJIOTHAM, KOTOPBIE OBUIM MCIIONb30BAHBI
IIPY CTPOUTEIHCTBE BTOPOH CTaMH OTEIS HA TEPPUTOPUH Pa300paHHBIX 37aHUH, IPETEPIEBIINX Cephe3HbIe Je(GopMaluy Mpu
CTPOUTENHCTBE MOA3EMHOTO MTAPKUHTA JUIS TIEPBOM CTaMN OTEIS.

KitioueBble ci10Ba: pa3pylieHus 31aHUH, TOA3EMHBIN MTAPKKHT, ocaaka (hyHIaMeHTa, KOTIOBaH

1. INTRODUCTION

Fortunately, major failures of buildings and facilities
occur comparatively rarely, but in case of their
occurrence, result in significant social and material
damage, especially if they are associated with
casualties.

As arule, the building failures related to ground beds
and foundations are the most destructive, and they
are caused by errors in designing, construction and
operation of facilities. In many cases, such failures

Volume 16, Issue 3, 2020

result from the integrated interaction of components
of such causes.

From the technical point of view, the building failures
are due either to soil forced out from underneath the
foundation bed (loss of ground bed stability), or to
large and unacceptable settlements for given type of
a building and their non-uniformity (unacceptable
deformation of ground bed). Generally, the destruction
of the foundation material is observed not very often.
As a rule, the engineering information on building
failures is extremely rare, therefore, all the more
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useful to study and analyze the available data in
order to accumulate experience and to prevent
disasters from occurring, failure conditions or major
destructions of buildings in the future.

During the last decades in Saint Petersburg, the
cause pattern essentially changed regarding the
destruction of adjacent buildings when new buildings
are being constructed. Thus, if in 1960-1990 the
building deformations were be prevalent during
operation (70%) in relation to technological causes
of deformations (30%), then since 1990 up to date,
this ratio is 35% to 65%.

Departure from the construction practices in
new construction and sometimes even simply
gross mistakes in construction of the foundation
beds and foundations are the causes for major
deformations (including hazardous ones) of the load-
bearing structures of the buildings and facilities of
surrounding development.

2. HAZARDOUS DEFORMATIONS

OF ADJACENT BUILDINGS IN
CONSTRUCTION OF NEVSKY PALACE
HOTEL SUBSTRUCTURE ON NEVSKY
PROSPEKT, ST.PETERSBURG

In 1992, it was started the reconstruction of the
Baltiyskaya Hotel and its remodeling as modern
Nevsky Palace Hotel. The high status of the hotel
required that an underground car parking was
constructed under the main part of the building
(Figure 1).

The designing and reconstruction were carried out by
foreign companies. It was not planned to underpin
the foundations of the hotel facade part facing
Nevsky Prospekt and the foundation on the side of
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Figure 1. Diagram of underground car parking
construction under Nevsky Palace Hotel
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the additional entrance from Stremaynnaya Street.
These parts of the building are supported by the old
rubble stone foundations.

On the side of Nevsky Prospekt, the foundations
under the facade wall are rubble-stone ones formed
by bedding limestone on sand-and-lime mortar and
have the bed depth of 2,95 m. Timber sleepers were
found under their bed.

After the central part of the hotel, a 8-m deep pit
was excavated and around it, a diaphragm wall was
constructed that was made of secant (having an
intersection) augured cast-in-situ piles 20 m long
with a cross section of D=0,8 m. The piles were
made using the technology of drilling with casing
pipe and delivering concrete through a tremie pipe
from bottom upwards.

Initially, cracks started appearing in the surrounding
buildings during the penetration of the first ten pipes.
Apparently, it was occurring the consolidation of
the bearing layers of the ground bed — fine-grained
and silty sand under the foundation beds of these
buildings — and the destructuration of the underlying
stratified thixotropic sandy loams and loams. In
the process of the construction operations, cracks
continued opening and new cracks appeared. It might
be associated with the destructurated water-saturated
soils flowing in through the open end of the pipe and
then being taken off by an auger.

The most considerable damages occurred in the
nearby buildings in the process of constructing
"even" piles when drilling in the concrete of
the previously constructed piles. Obviously, the
vibration action that takes place in drilling of the
"primary" piles with special-purpose drilling tools
provided with three-cone bits around the perimeter
resulted in the thixotropic destructuration of soil
and the deterioration of its strength and deformation
properties. The soil transformed into the running state
and, in the absence of so-called "soil plug", easily
got through to the bottom of the borehole, which
led to an additional scope of the soil excavation in
drilling the boreholes and to the development of wider
subsidence trough. These deformations has major
effect on the further damage to the masonry strength
of the nearby buildings. The settlements of 17 and 13
cm occurred at the nearest points of the foundations
of the buildings in Nevsky Prospekt that were located
nearby the excavation pit.
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Figure 2. General view of hazardousdamages of
buildings in the vicinity of hotel in Nevsky Prospekt
(a and b) and Stremyannaya Street (c)
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The resulting deformations in the envelopes of the
surrounding buildings lead to the relocation of the
inhabitants of five buildings in Nevsky Prospekt and
neighbor Stremyannaya Street (Fig. 2).

3. ATTACHING OF TWO NEW BUILDINGS
ON DRILLED CAST-IN-SITU PILES TO
EXISTING BUILDING OF OPERATING
NEVSKY PALACE HOTEL

At the end of 2005, in the place of the demolished
buildings at 55 and 59, Nevsky Prospekt, the works
started to construct the foundations of new buildings
for the Corinthia Nevsky Palace Hotel.

It was planned to construct Buildings No. 59 (without
basement) and No. 55 with a basement 4,5 m deep
on drilled cast-in-situ piles 32 m long and 880 and
620 mm in diameter using a casing pipe.

The demolished buildings were seriously damaged in
1992 when a diaphragm wall was constructed by the
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Figure 3. Layout of seismic pickups, settlement
benchmarks and tell-tales,
Legend: wm — seismic receiver installation points;
————— — Outline of excavation pit;
= — Tell-tale and its number;

A — Settlement benchmarks; Monitoring well o
control underground water level (measurement of
piezometric level);

e — Test piles and its number;

o — Anchor piles
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tangent pile method for the underground car parking.
Prior to starting the works, the buildings in Nevsky
Prospekt and Stremyannaya Street surrounding the
two construction sites were surveyed and fitted with
tell-tales installed on the existing cracks and with
deformation benchmarks for geodetic monitoring. As
an example, Figure 3 shows the as-built diagram of
the layout of seismic pickups, settlement benchmarks
and tell-tales of the monitoring wells to monitor the
underground water levels, etc.

In total, observations were carried out twice a week for
95 benchmarks and more than 50 tell-tales. Four wells
were used to monitor the underground water levels [ 1 ].
When carrying out the works related to underpinning
of the foundations and ground beds of the buildings
surrounding the construction site by the method
of injecting cement grout into the contact area, as
well as when constructing the foundations of the
drilled cast-in-situ piles, their vibration impact on
the enclosing structures of the neighboring buildings
was controlled.

Figure 4. Underpinning of foundations and ground
bed of building in Stremyannaya Street (a and b)

Mangushev R., Osokin A.

The foundation of the neighboring building, which
was erected in the beginning the XIX century, were
the stone masonry, but the down part of it put granite
steening. This was required use injection of the
compound cement mortar to provide the continuity
of foundation before piling work (Fig. 4a). Figure
4b shows a process of underpinning the building
foundations using the Hilty equipment.

Figure 5a shows a picture of the process of measuring
vibrations of the walls of the surrounding buildings.
The taken measurements of the vibration acceleration
in the load-bearing structures of the buildings
allowed establishing, in particular, that the process of
underpinning the foundations and ground beds is safe,
according to the technology applied, for the walls of
the building, and that it was not acceptable to use more
than one drilling rig at a time on the construction site.
At the simultaneous operation of two and more
self-propelled drilling rigs of the BG 25 type, the
measured vibration acceleration in the building walls

Figure 5. The complex science investigations
on the construction site: taking vibration
measurements during the construction of drilled
cast-in-situ piles (a); the stamp test of the soil on
the bottom pile's level (b).
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exceeded the maximum permissible values b) and
might cause the structures to be destroyed.

Prior to starting the mass construction of the drilled
cast-in-situ piles, the static tests were carried out on
test piles, and the tests showed that their load-carrying
capacity was at least 2000 kN, which is considerably
higher than their design load (Figure 6).

Further in the mass construction of the above piles,
random sampling was performed regarding the
quality and integrity of the body of the drilled cast-
in-situ piles by non-destructive testing integrity of
the body of the drilled cast-in-situ piles by non-
destructive testing methods using seismic-acoustic
instrument IDS-1 [ 2 ]

The monitoring of the settlement benchmarks
on the neighboring buildings showed that, when
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Figure 6. Static tests of piles using hydraulic jacks
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Figure 7. The cross section of the basement and
piles with the difference depth according of the
level bearing capacity soils.
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constructing the piles for the new Hotel building at 59
Nevsky Prospekt, the additional deformations of their
foundations were less than 20 mm and no damages
occurred in their superstructures.

As sheet piling for an excavation pit 4,5 to 6,2 m deep
for an underground floor of a new Hotel Building at
55 Nevsky Prospekt, it was used the Larsen IV pile
sheeting driven by a Muller non-resonant vibration
generator in the area along Stremyannaya Street and
the ALCELOR jacked pile sheeting driven by a press
system of cassette type installed on a base of a Banut
655 pile-driving machine (Figure 8 a and b).

Back at the time when the non-standard additional
settlement started developing, a decision was made to
underpin their ground beds and, for one of the wings,
to strengthen the superstructures with metal bands.
The pile sheeting was jacked along Building No. 53,
Nevsky Prospekt. At different depths along the line
of the pile sheeting jacking, various inclusions were
encountered in the form of timber sleepers, old rubble
stone foundations and large boulders. To withdraw the
inclusions, a trench was excavated down to a depth
of 2,7 m. This resulted in additional settlement of
approximately 25 mm for the buildings at a distance
of less than 2 m from the excavation pit. In the
following pit excavation, these settlements increased
and reached up to 60 mm for individual benchmarks.
The geodetic monitoring of the facade verticality for the
existing Hotel building showed its deviation up to 50
mm from the vertical line towards Nevsky Prospekt. In
view of that, a prompt decision was made to underpin the
foundation of that wall with drilled injected piles 14 m
long and 150 mm in diameter. The action taken made it
possible to complete the construction of the substructure
and to start constructing the superstructures [3].
Further geodetic monitoring of the settlements for
the new buildings and the neighboring buildings
identified no hazardous tendencies. By the end of
the construction, the settlements of the new buildings
did not exceed 30 mm, and the settlements of the
neighboring buildings stabilized.

At the end of May 2009, the new Hotel buildings
were successfully commissioned (Figure 9).

4.CONCLUSION

The experience of this construction showed how
important is to comply with the requirements of
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a)

|
Figure 9. New buildings of Corinthia Nevsky Palace Hotel: a — Building No. 59; b — Building No. 55

the construction operations method and to take into
consideration the specific engineering and geological
conditions of a given construction site. Our experience
shows that even the use of the most state-of-the-art
foreign technologies without adapting them to the
application in soft water-saturated silty-clayed soils of
Saint Petersburg may result in dramatic consequences.
Thus, the use of secant augered cast-in-place piles for the
pit sheeting without a special-purpose cutting working
head that allows minimizing the dynamic action on
soft soils becomes unacceptable and hazardous when
constructing in the compact building systems. Later
on, domestic geotechnical companies began using, in
construction of pit sheeting of augered cast-in-place
piles, a system of adjoining piles injecting cement
mortar between them.
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in the ground base. For the considered standards, wave propagation models and accepted approaches to seismic analysis were
investigated; limitations on the use of the standard methods were identified.

Keywords: Seismic waves, wave model of seismic ground motion, seismic analysis, rotational seismic ground motion,

linear dynamic analysis, rotational response spectra.

AHAJIN3 HOPM CIIA 1 EBPOCOIO3A B YACTH PACUETOB
3IAHUM U COOPYKEHUHN HA BOJTHOBBIE CEUCMUYECKHE
BO3JEMCTBUS

FO.11. Hazapoé', E.B. Ilo3nak’?

'AO «HUI] «CrpourensctBo», Mocksa, Poccust
2OI'BOY BO HY «MDW», Mocksa, Poccust

AnHoTanus: B craThe npuBeneH aHanu3 MoIokeHw psiaa ceiicmudeckux HopM CIHIA u EBpocoroza (ASCE-7-10, ASCE-4-98,
FEMA P-1051/2016, EN 1998-6:2005) 10 IpoeKTHPOBaHHIO CEHCMOCTONKUX 3TaHUI U COOPYKEHHUI C YIETOM BOJHOBBIX Ceiic-
MHUYECKHX 3()(EKTOB B TPYHTOBOM OCHOBAHMH. VIccIe10BaHbI 3a10)KEHHBIE B HOPMBI MOJIEIN PACTIPOCTPAHEHHS BOJIH U TPUHSTHIC
TIOAXO/BI K TPOEKTHOMY PacdeTy, BBISIBIICHBI OTPAaHUYEHHS 10 IIPIMEHEHHIO HOPMaTUBHBIX METOUK.

KaroueBnle ciioBa: CelicMuuecKue BOJIHBI, BOJIHOBasi MOJICJIb CEHCMHIECKOTO JABWKCHUS I'PYHTA, pacyCT Ha CeﬁCMOCTOﬁKOCTL,
POTAMOHHOC celicMHIYecKoe JABUWKCHUC I'PYHTA, JIMHCHHBIN ,I[I/IHaMI/I‘IeCKI/Iﬁ aHaJIn3, pOTAllMOHHBIC CIICKTPhI OTBCTA.

The wave seismic effects on buildings and structures
occur when seismic waves pass through the ground
base. Since seismic waves velocities are finite,
there is a time-delay between kinematic parameters
(displacements, velocities, accelerations) at various
points of the ground. For correct analysis of spatial
buildings and structures, it is necessary to consider
a space-time field of displacements, velocities
and accelerations at points of their ground base.
As presented in [1-3], the effect of seismic wave
propagation is introduced into the analysis by seismic
impact vector consisting of three translational and
three rotational (angular) components at each point

of the ground base. In particular, in [1] is discussed
the conditions under which the field of ground wave
motions at the base is reduced to a single seismic
impact vector applied to the geometric center of
the base. Ideas about the rotational components of
seismic motion, which must be considered in structural
analyses together with translational ones, appear in
many scientific publications, see, for example, [4-7].
The need to take into account the rotational seismic
motion at the base for some types of buildings and
structures is present in foreign standards. This problem
has been most fully resolved in the EU building codes,
and to a much lesser extent — in the United States.
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In the ASCE-7-10 [8], the rotational motion is
simulated by random eccentricities for overlaps of
structure (the corresponding explanations are given
in [9]). A similar approach to accounting for wave
phenomena in the engineering design is observed in
the American atomic standards ASCE 4-98 ([10],
C.3.3.1.2). ASCE 4-98 accepts the hypothesis about
vertical propagation of body seismic waves.

The seismic analysis is performed on vertical
displacements of the base from P-waves and
horizontal displacements from shear waves. Apparent
velocity of vertical shear waves on the surface tends
to infinity and there are no rotations. The simplified
model of seismic motions as vertically propagating
body waves should be used with the simultaneous
setting of overlap’s random eccentricities, for
guarantee that the building or structure will not be
affected by any unaccounted wave effects. Further in
C.3.3.1.2, it is noted the complexity of the real wave
motions in the base and the corresponding features of
the dynamic behavior of structures, such as associated
horizontal, vertical, torsional and rocking motions,
depending on the soil parameters, the foundation, the
frequency range, etc.

Consider in detail the approach implemented in the
European seismic standards EN 1998-6: 2005 [11]. In
EN 1998-6:2005, spatial translational and rotational
ground motions should be taken into account for
tall structures (towers, masts, chimneys, etc.). In 3.1
"Definition of the seismic input" EN 1998-6:2005 it is
written: "In addition to the translational components
of the earthquake motion, defined in EN 1998-
1:2004, 3.2.2 and 3.2.3, the rotational component of
the ground motion should be taken into account for
tall structures in regions of high seismicity." A Note
1 to p.3.1 states that conditions under which the
rotational component of the ground motion should
be taken into account in a country, will be found
in National Annex. The recommended conditions
are structures taller than 80 m in regions where the
product agS exceeds 0.25g, where a, is the design
ground acceleration for type 4 ground; § is the soil
factor; a S — design acceleration of soil for a given
soil. Informative Annex gives a possible method
to define the rotational components of the ground
motion and provides guidance for taking them into
account in the analysis. It should be noted that the
National Annexes of the EU countries (for example,
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Cyprus, Greece) use Appendix A in its original form
without changes [13-14]. An analysis according to
the informative Annex A of EN 1998-6: 2005 "Linear
dynamic analysis accounting for the rotational
components of the ground motion" should be carried
out if there are no results of a special study or well-
documented field measurements. In these cases, the
rotational response spectra may be determined as:

R(T)=17nS,(T)VT, (1)
R)(T)=17nS,(T)mT, )
RY(T)=2,0mS,(T) T, &)

where R'(7), Ry‘](T), RX(T) are the rotation response
spectra around x, y and z axes, rad/s*; S(7) is the
elastic response spectra for the horizontal components
on the site, m/s*; T is the period, s; v is the average
S-wave velocity of the top 30 m of the ground profile,
m/s.

The velocity v_ is directly evaluated by field
measurements, or through the laboratory measurement
of the shear modulus G and the soil density pasv, = \Glp,
or v 1is accepted for standard ground type A, B, C and
D equal to 800, 580, 270 and 150 m/s, respectively.
Rotational response spectra have the same physical
meaning as response spectra for translational motion,
but in terms of angular accelerations: this is the
maximum angular acceleration of an oscillator with
natural period 7"and a damping coefficient £ in response
to ground rotations with peak angular acceleration 6.
The analysis is performed simultaneously for three
translational and three rotational components of the
seismic ground motions.

Appendix A shows the equations of motion for a
flat cantilever model (Fig.1), which is described
by horizontal translational displacements u, of
the concentrated masses m, relative to the base.
The seismic action is determined as translational
horizontal X and rotational 6 ground motions with
the corresponding spectra S (7) and R%(7). In EN
1998-6:2005, the equations of motion are written as:

[M] it} + [Cluy + [K]{u} =—({m}X + (mh}0), (4)

where [M] = diag[m ] is diagonal inertia matrix, [K]
is the stiffness matrix, [C] is the damping — matrix,
{m} is vector comprising masses m, {mh} is vector
comprising products (Fig.1).
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Figure 1. The flat cantilever mode

The forces on the right part of (4) are represented
as two independent loads. The participation factors
are determined for each load. For modal analysis,
the participation coefficients of mode k are equal,
respectively for the first and second loads in the right
part (4):

Yuri P. Nazarov, Elena V. Poznyak

L @my (@R} {m)
@M@ T {@T MO}

where {®} is the k-th modal vector; {®h} is the
vector of the products of the modal amplitude @ at
the i-th degree of freedom and its elevation 4.

For linear systems in the time domain, full dynamic
response to both loads is calculated as superposition
of responses for each load. For linear response
spectrum method, the resulting dynamic response
are found by the rule SRSS (Square Root of the Sum
of Squares).

We try to determine the generalized wave model
[1-3, 15] corresponding the spectra (1)—(3). In
the generalized wave model, it is assumed that
translational motion X’ along the i-th axis is caused
by shear displacements from SH- and SV-waves and
longitudinal displacements from P-waves (Fig. 2):

X1=”1+V1+W1’ X2=u2+v2+w2,
X3=u3+v3+w3.

Without longitudinal displacements from P-waves
which do not cause rotations:

X=vi+tw, X, =u,tw, X, =u, +v,. (%)

Further, we assume that all components of the wave
motion in (5) are harmonic waves from the Fourier
spectrum with the same frequency, wave number, and
their own phase delay:

X, —p P-waves X,
—> SH- waves
— SV-waves U,
f 3
‘W3 y
w, 3
! > w
3
v, v w, v, u,
2 w > — —>
3 1
us 4 Vi X, / X,
U 2

Figure 2. The generalized wave model
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X =v+w =
= 4, cos(kx, + ot + @, )+ 4, cos (kx; + ot + @),
X,=u,+w, =
= 4,, cos(kx, + @t + @, )+ 4,, cos (kx; + ot +9,, ).
X, =u,+v, =

=4, cos(kxl + ol + @, ) + 4, cos(i@c2 + ol + @, )
Accelerations of the translational motion are equal:

X, = -0’4, cos(kx, + ot + ¢, ) -

" 4,,cos (kx3 + @t + qau),

X, =04, cos (kx, + 0t + 9, ) —

—0" 4, cos (kx, + ot +9,,),

X, =04, cos(kx, + ot + ;) -

-0’4, cos(ﬁ'«:x2 + ot +¢32)

with maximum absolute values:

max ‘)'fl ‘ =o' (4,+4,),
max‘/{’2 ‘ = o (4 +4y).
max‘)f’s‘ =0 (4, +4;,).

Rotational accelerations are calculated using well-
known formulas (see, for example, in [1, 2]):

A A
to2lox, ox

3

= ];(Agz sin (kx, + ot + @, ) —

— Ay, sin(kx, + ot +@,,)),
g 10X, ax,)_
o2\ ox;  Ox

=0’ g(Ausin(kxa +ot+e,)-,

—Amsin(kx1+a)t+¢3l)),

. 1(oX, oX,

83:— = | =
2\ ox, Ox,

— o g(Azlsin(kxl +a)r+t;921) ,

—A,, sin (k.)c2 +of + tpu)).
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The maximum absolute values of rotational
accelerations are equal to

max‘él‘: a)zi(A32+An),

max |6,

Lk
:w—E(Aiz+A31)=
maxgs—wzg(AﬂﬂLAu).

Rotational spectra (1)—(3) are expressed only in terms
Q'f acceleration of horizontal translational motion, so
X,=0and 4, =4,,= 0, therefore

max ‘/‘?1‘: o’ (A4, +4y,)
max‘)f’z‘: @’ (4, +4y),

. .k . . k
max‘gl‘:w‘EAzz’max 92:0)‘5‘4129 (7)

maxés‘:wzg(Am+Au).

Assuming that the amplitudes in the above formulas

are of the same order, we estimate translational and

rotational accelerations
max

6

(®)

The estimation (8) shows the ratio of the maximum
amplitudes of the rotational and translational
components of the seismic impact. For the linear
system, the estimation (8) is also true for the
translational and rotational response spectra. The
wave number £ is related to the wavelength 1 =v T,
and, accordingly, to its period 7'and phase velocity v :
2r 2w
k=—="" 9
A vT ©)
The spectra (1)-(3) with accounting (8) and (9):
2r
R(T)=0,85"—8 (T),
(1)=0.85275,(1)

5

27
R (T)=0,85=——S (T
N(1)=08578,(1). (10)
2
R (T)="28(T).
(1) =5 8(T)

Consider in (10) the Type 1 elastic response spectra
for horizontal translational motion S (7) determined
in Table 1 [11, 12].
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Table 1. Type 1 Elastic response spectra

Period Response spectra
0<T<T, SQ(T):agS{lnLTL(LSU—l)}
B

T,<T<T, S,(T)=a,Sn-2,5

T
T.<T<T, SQ(T):agStyQ,S[?C}

T T
T,<T<4c SQ(T)—agSf}Q,S[%]

Fig. 3 and 4 show graphs of the rotational response
spectra (10) and translational response spectra given
in Table.1. The translational spectra are shown as a
solid line, the rotational spectra as a dotted line. Fig.
3 is drawn for soil A with V = 800 m/s, Fig. 4 — for
soil D with V =150 m/s.

The graphs of the rotational spectra in Fig. 3 and 4
show that the rotational motion corresponding to
(1)-(3) is a high-frequency component of the seismic
action, the contribution of which to the structural
response increases for soft, loose soils. The reduction
coefficients in (1)-(3) equal to 0.85 for rotational
spectra with respect to two horizontal axes. It seems
to have been introduced artificially (for example, to
account for the non-synphase of seismic waves or
the weakening of the dynamic response due to the
scattering of seismic waves).

25

Figure 3. Translational and rotational response
spectra. Ground A, Type I
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CONCLUSIONS

1. The US standards ASCE-7-10 and ASCE-
4-98 accepted a model of vertical body wave
propagation. In this case, the horizontal and vertical
displacements of the base are caused by shear waves
and compression waves respectively; there are no
rotational components since the apparent velocity of
vertical shear waves tends to infinity. The accidental
eccentricity is used to indirectly account for various
effects, including: plan distributions of mass that
differ from those assumed in design, variations in the
mechanical properties of structural components, non-
uniform yielding of the lateral system, and torsional
and rotational ground motions [9]. However, the
accidental eccentricity approach cannot be called
successful for simulating torsional and rotational
ground motions, since the motion of a dynamical
system with eccentricities and with ground rotations
has different causes and is described by different
equations. Simple illustrative examples of the
equations of motion can be found in [16].

2. In the European Union standard EN 1998-6:2005
it is proposed a method of analysis of tall structures
(towers, masts, chimneys, etc.) for simple flat
cantilever (Fig.1) with the equation of motion (4).
Rotational response spectra (1)-(3) are expressed
through the response spectra of horizontal translational
motion. The method is based on a simplified wave
model as a composition of SH-waves propagating
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in two orthogonal horizontal directions with a finite
phase velocity. For this wave model, the rotational
response spectra are obtained, and the rules for
calculating the resulting forces under the combined
action of translational and rotational components of
seismic motion are described. The spatial extended
and large-span buildings and structures are not
considered in the Eurocode. The reason is probably
in a lack of scientific and methodological basis.
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CLASSIFICATION OF INTERNAL RESONANCES IN NONLINEAR
FRACTIONALY DAMPED UFLYAND-MINDLIN PLATES
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Abstract: In the present paper, the nonlinear free vibrations of fractionally damped plates are studied, equations of motion of
which take the rotary inertia and shear deformations into account and involve five coupled nonlinear differential equations in
terms of three mutually orthogonal displacements and two angles of rotation. The procedure resulting in decoupling linear parts
of equations has been proposed with further utilization of the generalized method of multiple time scales for solving nonlinear
governing equations of motion, in so doing the amplitude functions have been expanded into power series in terms of the small
parameter and depend on different time scales. The occurrence of the internal or combinational resonances in Uflyand-Mindlin
plates has been revealed and classified.

Keywords: Nonlinear elastic Uflyand-Mindlin plate, fractional damping, fractional derivative Kelvin-Voigt model,
generalized method of multiple time scales

KIIACCUDPUKALIUA BHYTPEHHUX PESOHAHCOB
B HEJIMHEMHBIX IVIACTUHKAX Y®JISHJIA-MUHJIJIMHA
C IPOBHBIM JEMII®UPOBAHUEM

M.B. IIlumuxkoea'?, E.H. Ocunosa’

'"Boponexckuii rocy1apcTBeHHBIN TeXHHUECKHI YHIUBEpCUTeT, Boponex, Poccus

’Hay4HO-HCCIeI0BaTENbCKHI HHCTUTYT cTpouTenbHoi (pusuku PAACH, Mocksa, Poccunst

AunHoTanmsi: B naHHOl paboTe M3yyaroTcsi HEMMHEHHbIE KoJeOaHus TNIACTHHOK Ha OCHOBE MOJIEIMPOBAHUS CHJI BHEIIHETO
JeMI(UPOBaHMUS C TIOMOIIb IPOU3BOHBIX IPOOHOTO Topsiaka. [Ipy 5TOM UCIOIB3yeTCs CUCTEMA MIATH HEJTMHEHHBIX ypaBHEHHUN
JIBIDKCHUSI, YYUTBIBAIONIast Ae(opMaliy CIBUTa U CHJIbI MHEPIIMH, OTHOCHEIBHO TPEX MEepPEeMENIeHNH B TPeX B3aUMHO OpTO-
TOHAJIBHBIX HAINIPABICHUAX U JIBYyX YIJIOB IMOBOPOTa. B KauecTBe MeToa peIIeHus UCTIoNb3yeTcss 0000IIeHHBI METOl MHOTHX
BPEMEHHBIX MaclITa00B. BhISBIEHB BO3MOKHBIE TUIIBI BHYTPEHHUX ¥ KOMOWHAIIMOHHBIX PE30HAHCOB, KOTOPBIE MOTYT BO3HUKATh

B IIaTHKax Y QuisHaa-MuHuIMHA, U 1aHa UX KiacCu(UKaLusL.

KoaroueBble ciioBa: HeMHEHHO yrpyras miacTuHka Y ¢isiHaa-MuHaarHa, AeMIpHUpoBaHUE ¢ IIOMOIIBIO APOOHOI TIPOU3BO-
JHO#, Monens KenbBuna-doiirra ¢ 1poOHO# pon3BOAHOM, 0000IIEHHBIH METOI MHOTUX BPEMEHHBIX MacITaboB

1. INTRODUCTION

Recently the interest to nonlinear dynamic response
of viscoelastic plates or elastic plates vibrating in a
viscoelastic surrounding medium has been greatly
renewed due to the appearance of advanced materials
exhibiting nonlinear behavior, and a comprehensive
review in the field, including experimental results,
could be found in [1-7]. In so doing the damping
forces are usually taken into account according to the

Rayleigh's hypothesis [2,8], resulting in the modal
damping [9], i.e. it is assumed that each natural mode
of vibrations possesses its own damping coefficient
dependent on its natural frequency. For describing the
viscoelastic features of plates, the Kelvin-Voigt model
[5] or standard linear solid model [6] are of frequent
use in engineering practice considering either linear
or nonlinear springs in viscoelastic elements [10].

The analysis of free undamped [11] and damped [5]
vibrations of nonlinear systems is of great importance
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for defining the dynamic system's characteristics
dependent on the amplitude-phase relationships and
modes of vibration. Moreover, nonlinear vibrations
could be accompanied by such a phenomenon as
the internal resonance, resulting in strong coupling
between the modes of vibrations involved [11-16]
and hence in the energy exchange between the
interacting modes.

The internal resonance could be observed in the case
of some combination of natural frequencies of one
and the same type of vibrations. Thus, nonlinear
vibrations of rectangular plates, dynamic behavior of
which is described by von Karman equations in terms
of the plate's deflection and stress function, have
been considered in [13] by reducing the governing
equations to a set of two modal equations applying
the Galerkin procedure.The case of the one-to-
one internal resonance (when frequencies of two
modes of flexural vibration are equal to each other)
accompanied by the external resonance (when the
frequency of the harmonic force is close to one of
the natural frequency) has been studied.

The one-to-one internal resonance has been
investigated also in [14] and [15] for nonlinear
vertical vibrations of rectangular plates under
the action of harmonic forces acting in the plate's
plane [14] and out of the plate's plane [14,15], in
so doing a set of three equations in terms of two in-
plane displacements and deflection and a set of five
equations considering the shear deformations have
been used in [14] and [15], respectively. However,
considering the inertia forces only for vertical
vibrations and utilizing the Galerkin procedure,
in both papers a set of two nonlinear equations
has been obtained in terms of two flexural modes,
which are assumed to be coupled via the one-to-one
internal resonance. For the first two natural modes
of flexural vibrations, the cases of the 1:2 and 1:3
internal resonances have been also studied in [15].
Another type of the internal resonance has been
investigated by Rossikhin and Shitikova [16-20],
when one frequency of in-plane vibrations is equal
(the 1:1 internal resonance [18,20]) or two times
larger (the 1:2 internal resonance [16,19]) than a
certain frequency of out-of-plane vibrations. As
this takes place, a set of three nonlinear differential
equations in terms of three mutually orthogonal
displacements has been used considering inertia
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of all types of vibrations, what allows the authors
to study the combinational resonances of the
additive and difference types as well [17, 20-22].
Combinational types of the internal resonance
result in the energy exchange between three
or more subsystems. It should be noted that
investigations in this direction were initiated
by Witt and Gorelik [23], who pioneered in the
theoretical and experimental analysis of the energy
transfer from one subsystem to another using
the simplest two-degree-of-freedom mechanical
system, as an example.

Moreover, in order to study nonlinear free damped
vibrations of a thin plate, the viscoelastic Kelvin-
Voigt model involving fractional derivative [24]
has been utilized, since this model possesses the
advantage over the conventional Kelvin-Voigt model
[11-15], because it provides the results matching the
experimental data. Thus, for example, experimental
data on ambient vibrations study for the Vincent-
Thomas [25] and Golden Gate [26] suspension
bridges have shown that different modes of vibrations
possess different magnitudes of damping coefficients.
Besides, the increase in the natural frequency results
in the decrease in the damping ratio. In order to lead
the theoretical investigation in the agreement with the
experiment, in 1998 it was suggested in [27] to utilize
the fractional derivatives to describe the processes of
internal friction occurring in suspension combined
systems, what allowed the authors in a natural way to
obtain the damping ratios, which depend on natural
frequencies.

Nowadays fractional calculus is widely used for
solving linear and nonlinear dynamic problems of
structural mechanics, what is evident from numerous
studies in the field, the overview of which could be
found in the state-of-the-art articles by Rossikhin
and Shitikova [28,29], wherein the examples of
adopting the fractional derivative Kelvin-Voigt,
Maxwell and standard linear solid models are
provided for single-mass oscillators, rods, beams,
plates, and shells.

In particular, linear vibrations of Kirchhoff-Love
plates with Kelvin-Voigt fractional damping were
considered for rectangular and circular plates,
respectively, in [30] and [31] using one equation
for vertical vibrations, while utilizing three
equations of in-plane and transverse vibrations in
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[8,32], and later multiplate systems were analyzed
in [28,33]. It has been proved [29,34] that if
viscoelastic properties of plates are described by
the Kelvin-Voigt model assuming the Poisson’s
ratio as the time-independent value (though for real
viscoelastic materials the Poisson's ratio is always
a time-dependent function [35]), then this case
coincides with the case of the dynamic behavior
of elastic bodies in a viscoelastic medium. Thus,
the authors of [30,31], and not only them, replaced
one problem with another, namely: a problem of the
dynamic response of viscoelastic Kirchhoff-Love
plates in a conventional medium with a problem
of dynamic response of elastic Kirchhoff-Love
plates in a viscoelastic medium, damping features
of which are governed by the fractional derivative
Kelvin-Voigt model. The vibration suppression
of fractionally damped thin rectangular simply
supported plates subjected to a concentrated
harmonic loading has been studied recently in
[36] in order to minimize the plate deflection at
the natural frequencies of the plate, in so doing
the vibration suppression is accomplished by
attaching multiple absorbers modelled as Kelvin-
Voigt fractional oscillators, i.e. generalizing the
approach suggested in [28,33].

As for the analysis of nonlinear vibrations of plates,
then except the above mentioned papers [16,18-21],
the fractional derivative Kelvin-Voigt model was used
in [37-42] and fractional derivative standard linear
solid model in [7,43,44] but without considering the
phenomena of the internal resonance.

Thus, free and forced vertical vibrations of
an orthotropic plate have been studied in [37]
considering first four modes of flexural vibrations,
and during the analysis of force driven vibrations
the frequency of a harmonic force was assumed
to be equal to one of natural frequencies. The von
Karman plate equation with fractional derivative
damping was utilized in [38] for analyzing the
cases of primary, subharmonic and superharmonic
resonance conditions, when the harmonic force
frequency, respectively, is approximately equal,
three times less or larger than the first or second
natural frequency of vertical vibrations. Nonlinear
random vibrations of the same plate was studied
in [41]. Dynamic nonlinear response to random
excitation of a simply supported rectangular plate

Marina V. Shitikova, Elena I. Osipova

based on a foundation, damping features of which are
described by the fractional derivative Kelvin-Voigt
model, has been considered in [40]. The analysis
of chaotic vibrations of simply supported nonlinear
viscoelastic plate with fractional derivative Kelvin-
Voigt model has been carried out in [42] for the case
when the plate is subjected to an in-plane harmonic
force in one direction and a transverse harmonic
force. The Galerkin decomposition has been used to
obtain the modal equation of the system, in so doing
the authors restricted themselves only by the first
mode. The fractional derivative standard linear solid
model has been utilized in [44] for a viscoelastic
layer for active damping of geometrically nonlinear
vibrations of smart composite plates using the higher
order plate theory and finite element method with
discretizing the plate by eight-node isoparametric
quadrilateral elements.

Recently the approaches suggested in [19,20] for
solving the problem on free nonlinear vibrations
of elastic plates in a viscoelastic medium, damping
features of which are governed by the Riemann-
Liouville derivatives of the fractional order, and
in [45] for studying the dynamic response of the
fractional Duffing oscillator subjected to harmonic
loading have been generalized for the case of
forced vibrations of a simply-supported nonlinear
thin elastic plate under the conditions of different
internal resonances, when two or three natural modes
corresponding to mutually orthogonal displacements
are coupled [46-49].

In the present paper, the procedure proposed in [20]
for solving the problem of free nonlinear vibrations
of elastic plates in a fractional derivative viscoelastic
medium, when the damped motion is described by a
set of three nonlinear equations, has been extended
for the case of free vibrations of a simply-supported
fractionally damped nonlinear thin elastic plate,
the motion of which is described by five equations
involving shear deformations and rotary inertia.

2. PROBLEM FORMULATION

In order to consider free damped vibrations of a
nonlinear simply-supported rectangular plate, first we
recall the equations of motion of a nonlinear elastic
rectangular plate, which take into account shear
deformations and rotary inertia [50]
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as well as the boundary conditions (a) along the
y-axis direction
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where u = u(x, y, ), v=v(x, y, t) and w = w(x,
v, t) are the displacements of points located
in the plate's middle surface in the x-, y-, and
z-directions, respectively, y (x, y, 1) and z//y(x, ,
t) are the angles of rotation of the normal to the
middle surface and in the plane tangent to the lines
z and x, k 1s the shear coefficient, u is the Poisson's
ratio, a and b are the plate's dimensions along the
x- and y-axes, respectively, 4 is its thickness, and
t 1s the time.

Let us rewrite equations (1)-(8) in the dimensionless
form introducing the following dimensionless values:

u*=£, v*=£, W*:E=
a a a

==, =2, ©
a b

r*:i L_
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Substituting then (9) in (1)-(8), omitting asterisks for
ease of presentation, and introducing the forces of
resistance of the surrounding medium, resulting in
damped vibrations, as it was suggested in [16,18], yield
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where 8, = a/b and 8, = h/a are the parameters defining
the dimensions of the plate, X (i= 1,2, ..., 5) are damping
coeflicients, overdots denote time-derivatives, lower
indices after a comma label the derivatives with
respect to the corresponding coordinates, and D”
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is the Riemann-Liouville fractional derivative [51]
defined as

0 fF( )dz

pr=2[_ )%
ot T(1-y)t”

(15)

3. METHOD OG SOLUTION

Let us seek the solution of equations (10)—(14) in
the form of expansions in terms of eigen modes of
vibration
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where x_ (¢) (i = 1, 2, ..., 5) are the generalized
displacements corresponding to the plate's in-plane
displacements, its deflection and angels of rotation,
while the eigen forms satisfying the boundary
conditions (7)-(8) have the form

7 - (x,y) = N (x, y) = COS TMXSIN TNy,

(7. (x,y) = SIN 7mx COSTNY,

(17)

My (X, 3) =15,,,, (X, ) = sin zmexsin zny.

Substituting (16) and (17) in equations (10)-(14),
multiplying then (10)-(14) by n, (x,y), respectively,
integrating over x and y, and applying the condition of
orthogonality of the eigen modes within the domains
0<xy <1, we are led to a set of coupled nonlinear
second-order differential equations inx, (7)
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Nonlinear parts of equations (18)-(20) have the form
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The analysis of the structure of equations (18)-(22)
shows that equations (18) and (19) are coupled with
each other via linear terms and with equation (20) in
terms of nonlinear terms F, (j = 1,2,3) . Equations
(21) and (22) are coupled with each other and with
Eq. (20) only via linear terms. Thus, the linearized
equations (18)-(22) are decoupled in two linear
subsystems.

3.1. Solution of the eigen value problem and
decoupling the equations of motion

To determine the natural frequencies of linear
vibrations @, (i = 1,2,3,4,5), it is a need to solve
the linear eigen value problem. The characteristic
equation of the linearized equations (18) and (19)
has the form

By — O (ST +S7 )+ SISy —Sp'Si =0, (25)
the solution of which gives the natural frequencies
of in-plane vibrations

o = (}112 +pint )

zm = 1_—2;'{:1'2 (m?' + ﬁfnz ),

(26)
which coincide with those obtained in [16,19].

The linearized set of equations (20)-(22) provides the
following frequency equation:
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6 mn 4 mn 2 mn
@, +€2 a,, + € @, +e = 0! (2?)
where
i mn _ nE o MR IR R R IR _ 1M R
€ = 53354555y TS544 535 553 T 555 534 543 —

R MR MR mR iR A MR R R

933 S4q 855 T S5y 853 S5y T3 35 Sy

T mn_ MR i mE iR mn e

€ T S35y t 33555 TSy S5 — Sy Sy —

e s

mn
=535 §53 — 545 554

I - mn hiili] Friny
3 T 833 TSy —Sss-

The solution of equation (27) results in three sets
of natural frequencies, w, , ®, and w, ,and the

least of them, @, , corresponds to the frequency of
flexural vibrations. It is defined as

1
a’?}m = @{12‘&2(1 _J”)+

+Br (2482 Q- ) (m* + B’ )-

_[[12k2(1— W+ Birt(2+E(1- ,u))(m2 + g ]]2 -
86,k (1- )r* (m?' + B’ ]2]”} (28)

The other two roots of equation (27) correspond to
the high frequency vibrations and have the form

1-uf12
.jm__z {ﬁ_jkz +;z2(mz + B )} (29)
o = 2K (1— )+
mn 4ﬁ;

+8 7 (2+k2(1 —;t))(m2 +,Eﬁ2n2)+
+H12k2(1—p)+,8;?r2 (2+ (1= w)(m + g7 )]2

—Sﬁ;kz(l—ﬂ)?ﬁ(mz+,@2ﬂ2)2]x } (30)

The natural frequencies correspond to mutually
orthogonal eigen vectors

Lim {Llinm} 4 L]in {L:Efm} (I =1 » 2)= (3 l)

L]f:fl;? {Lg}m } & LEM {Lﬁn } & L?m {L::nn

} (=3.4.5. (32)
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Following [20], let us expand the matrices S;’.’"
(i, j = 1,2), Sy (i,j = 3,4,5) and generalized

displacements x, ~entering in equations (18)-(22) in
terms of the eigen vectors (31) and (32)

mn _— I 1 U qIf
Sr'_,r' - [éﬂﬁ‘[‘thjmﬂ +a Ly L;

mErimne i 7 ( 3 3)
— 1 in .
xr'mfr - ‘X,lanirm + XErﬂanrm (I - 1-" 2)1
o __ LT flr IV IV Vo
Sr:,f' = mrrLr'an Jjmin + a’i}ml’f}ml‘ i + &?ﬁzrer'an i 2
(34)
— iy iy v .
'rfrrm - EPmI‘FJm + Xhm?Lfmn + Ximnlﬁnn ("“ - 3! 4-" 5)
(35)

Now substituting expansions (33)-(35) in Egs. (18)-
(22) and then multiplying (18)-(19) successively by
L' LM “and (20)-(22) successively by LM LV "and

imn’ “imn’ imn® ~imn’

finally by LY with due account for the conditions of

mn

orthogonality of the eigen vectors

LY = 0 aa K#N
Em Em (3 6)
Lianinm = 1 (K e N:I JI :III JV :V) )

we are led to the following set of equations of motion:

lmn Lmw mmnimn ?

. 2
X, + DX, +o,, X, =>F, L . 37

X, + 6.0 X,,, +0;,,X,,, = —iﬁmLim, (38)
Xinm u ZED?XEnm U (“')fnmenm - _FE}?mLﬁm? (39)
X+ 2D X g+ @, X 4 = 0, (40)
X + 2D Xy, + 0, X, =0, (@1)

in terms of new generalized displacements X |

Xlnm = xlnmLfnm + xanLIan 4 (42)
X2 min = xlanll-T;wm + x2 nmL]2Inm 2 (42)
XEnm - xSnmL];Em + x4an]2]fnn + ximnl’gm 2] (43)
X4nm - xEnmLIE:m + x4nmLI2\;m + xSanIS:m > (44)
Xinm - x’:‘nmL;;m + x4mnl";;?m + ximnl";?m N (45)
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It should be emphasized that the left-hand side parts
of (37)-(41) are linear and independent of each other,
while equations (37)-(39) are coupled only by non-
linear terms in their right-hand sides.

Moreover, the set of equations (37)-(41) is decoupled
into three subsystems, namely: the first subset compiles
three nonlinear fractional derivative equations (37)-
(39), the second and the third subsystems involve
one linear fractional derivative equation each, i.e.
equations (40) and (41), respectively. Thus, in order to
find a solution, it is need to examine each subsystem.

3.2. Analysis of the reduced equations of motion

Equations (40) and (41) describe free damped
vibrations of a linear oscillator with a viscoelastic
resistance force modelled in terms of the fractional
derivative Kelvin-Voigt model [24]. For the case of
weak damping, i.e. when y, = e, or y, = &’& with
0 < & =1, approximate analytical solutions of
equations similar to (40) and (41) have been found in
[28,52] utilyzing the fractional derivative expansion
method [27], which is the extension of the multiple
time scales procedure [53]. The case of ¢ -order
damping and the half-derivative, i.e. when the order
of the fractional derivative is y = 1/2, was treated in
[54] using the averaging perturbation technique.
Free damped vibrations of a linear fractional derivative
Kelvin-Voigt oscillator in a medium with finite
viscosity, i.e. without any restrictions on the magnitude
of the damping coefficient y, have been studied
analytically in [24,52] utilizing the construction of the
Green function, which was proposed for the first time
for such fractional derivative equations by Professor
Yury Rossikhin in his PhD thesis [55] in 1970 and then
published in 1971 in the pioneer paper [56]. Further
this procedure was generalized for dynamics of linear
oscillators, beams, plates and shells using different
fractional operator models, and their overview could
be found in [24,28,29].

As for the first subsystem (37)-(39) involving three
nonlinear equations with fractional derivative terms,
then it has the similar structure as the set of three
governing equations considered previously but
ignoring the influence of the rotary inertia and shear
deformations [19].

Following [19,20] it could be shown that the solution
of'equations (37)-(39) could be constructed using the
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generalized method of multiple time scales suggested
in [27]. We will not repeat this procedure, since it is
described in detail in [20,57], and it could be easily
adopted to equations (37)-(39) within an accuracy
of coefficients.
Thus, it has been revealed that nonlinear vibrations of
the plate could be accompanied by different types of
the internal resonance when two or more modes could
be coupled, resulting in the energy exchange between
the coupled modes. Moreover, its type depends on
the order of smallness of the viscosity involved into
consideration. Thus, it has been found that at the ¢ —
order, damped vibrations could be accompanied by
the following types of the internal resonance:
the two-to-one internal resonance (2:1), when one
natural frequency is twice the other natural frequency,
0, =20, (0 0,20, #0,), (47)
0, =20, (0, 0,20, #0), (48)
the one-to-one-to-two internal resonance (1:1:2),
that is,

(49)

0 =0,=20,;

at the &’ -order, damped vibrations could be
accompanied by the following types of the internal
resonance:

the one-to-one internal resonance (1:1)

(50)

(1)

o, =o,(0, 70,0, 0,),

0, =0, (0,70, 0,#0,),

0,= 0, (0 # 0,0 F0,),
the one-to-one-to-one internal resonance (1:1:1)
(52)

the combinational resonance of the additive-
difference type

o, =0, +20,, (53)
o, =20,-0,,
w =0,-20,, (54)

where w, and o, are the frequencies of certain
modes of in-plane vibrations in the x- and y- axes,
respectively, and w, is the frequency of a certain mode
of out-of-plane vibrations.
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For each type of the resonance, the nonlinear sets
of resolving equations in terms of amplitudes and
phase differences could be obtained using the same
procedure as in [20]. The influence of viscosity on
the energy exchange mechanism is revealed by the
fact that each mode is characterized by its damping
coefficient connected with the natural frequency by
the exponential relationship with a negative fractional
exponent. Thus, during free vibrations of the plate
with internal resonances three regimes could be
observed: stationary (absence of damping at y = 0),
quasistationary (damping is defined by an ordinary
derivative at y = 1), and transient (damping is defined
by a fractional derivative at 0 <y <1).

4. ANALYSIS OF SPECTRA OF NATURAL
FREQUENCIES

In order to show that the phenomenon of internal
resonance could be very critical, since in the thin
plate under consideration the internal resonance is
always present, it is a need to analyze the spectra of
natural frequencies.
Thus, natural frequencies of vibrations @ _ (i =
1,2,...,5) calculated according to (26) and (28)-(30),
as well as frequency of vertical flexural vibrations
without shear deformations and rotary inertia
calculated via the formula [20]
2

@ = %ﬁ4 (mz + B’ )2 (55)
are given in Tables 1-3 for a square plate, i.e. at 8,
=a/b=1,at B, =h/a=0.1 and 0.025, respectively.
Reference to Tables 1-3 shows the influence of
the shear deformations and rotary inertia on the
frequencies of flexural vibrations, in so doing the
thicker the plate, the more difference between the
frequencies o, and w,. Thus, for example, for the
square plate the frequency of the fundamental mode
at m =1, n = 1 calculated by the classical theory at
B,=0.1, 0.05 and 0.025 is reduced, respectively, by
3.51, 1.05 and 0.7% as compared with that calculated
by the refined theory. This difference increases for
more high frequencies, what is evident from Table 4.
Natural frequencies for a rectangular plate at #, = 0.5
and 8, = 0.05 are presented in Table 5. The influence
of the ratio of the plate's dimensions on natural
frequencies is seen from Table 6, whence it follows
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that the difference between the frequencies according
to classical and refined theories increases with the
increase in plate's length.
From Tables 1-3 and 5 it is seen that the internal
resonances of all types (47)-(54) could take place,

Table 1. Natural frequencies of vibrations @,

mrn

and the occurrence of this or that case depends on
the dimensions of the plate, i.e. on magnitudes of the
coefficients 8, and f,.

As soon as the case of the internal resonance is
revealed, then the further treatment of nonlinear

(i=1,2,..,5) at f,=1 and S, =0.1.

m n a,,, @, @, o, @, @,
1 1 4.443 2.628 0.550/0.570 | 18.892 19.370
1 2 7.023 4.156 1.313/1.425 | 19.164 20.298
2 1 7.023 4.156 1.313/1.425 | 19.164 20.298
2 2 8.886 5.257 2.017/2.279 | 19.433 21.164
1 3 9.935 5.877 2.458/2.849 | 19.610 21.715
3 1 9.935 5.877 2.458/2.849 | 19.610 21.715
2 3 11.327 6.701 3.080/3.704 | 19.873 22.500
3 3 13.329 7.885 4.043/5.128 | 20.302 23.731
1 4 12.953 7.663 3.857/4.843 | 20.217 23.491
2 4 14.050 8.312 4.405/5.698 | 20.472 24.198
3 4 15.708 9.293 5.263/7.123 | 20.889 25.318
4 4 17.772 10.514 6.368/9.117 | 21.460 26.784
1 5 16.019 9.471 5.427/7.408 | 20.972 25.534
2 5 16.918 10.009 5.907/8.262 | 21.217 26.169
3 5 18.319 10.831 6.667/9.687 | 21.621 27.184
4 5 20.116 11.901 7.660/11.681 | 22.173 28.531
5 5 22214 13.142 8.838/14.246 | 23.510 30.155

Table 2. Natural frequencies of vibrations o,

mmn

(i=1,2,...,5) at =1 and f3,=0.05.

m n a,, @, @, o, @, a,,,
1 1 4.443 2.628 0.282/0.285 | 37.509 37.755
1 2 7.023 4.156 0.697/0.712 | 37.647 38.253
2 2 8.886 5.257 1.101/1.140 | 37.784 38.740
1 3 9.935 5.877 1.365/1.423 | 37915 39.060
2 3 11.327 6.701 1.753/1.852 | 38.012 39.530
3 3 13.329 7.885 2.381/2.564 | 38.238 40.296
1 4 12.953 7.663 2.257/2.422 | 38.193 40.145
2 4 14.050 8.312 2.627/2.849 | 38.329 40.596
3 4 15.708 9.293 3.224/3.561 | 38.553 41.332
4 4 17.772 10.514 4.030/4.559 | 38.866 42.329
1 5 16.019 9.471 3.341/3.704 | 38.598 41.476
2 5 16.918 10.009 3.689/4.131 | 38.732 41.906
3 5 18.319 10.831 4.253/4.843 | 38.954 42.607
4 5 20.116 11.901 5.017/5.841 | 39.264 43.560
5 5 22214 13.142 5.956/7.123 | 39.658 44.743
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Table 3. Natural frequencies of vibrations o,

mrn
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(i=1,2,..,5) at B =1 and S, =0.025.

m n A, @, a,. @, - @,,,
1 1 4.443 2.628 0.142/0.143 | 74.879 75.006
1 2 7.023 4.156 0.354/0.356 | 74.948 75.257
2 2 8.886 5.257 0.565/0.570 | 75.018 75.509
1 3 9.935 5.877 0.685/0.712 | 75.064 75.677
2 3 11.327 6.701 0.913/0.926 | 75.133 75.927
3 3 13.329 7.885 1.257/1.282 | 75.247 76.341
1 4 12.953 7.663 1.188/1.210 | 75.225 76.258
2 4 14.050 8.312 1.394/1.425 | 75.293 76.505
3 4 15.708 9.293 1.732/1.781 | 75.408 76.914
4 4 17.772 10.514 2.201/2.279 | 75.568 77.480
1 5 16.019 9.471 1.800/1.852 | 75.431 76.995
2 5 16.918 10.009 2.001/2.066 | 75.500 77.238
3 5 18.319 10.831 2.334/2.422 | 75.614 77.640
4 5 20.116 11.901 2.795/2.920 | 75.774 78.198
5 5 22214 13.142 3.378/3.561 | 75.979 78.905

Table 4. Difference in vertical frequencies of flexural vibrations 6 = [((93 -a,)/ @, ]100% at

B, =1 for plates of different thickness.

m=1, n=1 m=5, n=3
Jo 0.1 0.05 0.025 0.1 0.05 0.025
o, % 3.51 1.05 0.70 61.19 16.38 5.14

equations (37)-(39) could be carried out by the
procedure developed in [27] within an accuracy of
the coefficients.

CONCLUSION

In the present paper, the nonlinear free vibrations
of fractionally damped plates are studied, equations
of motion of which take the rotary inertia and shear
deformations into account and involve five coupled
nonlinear differential equations in terms of three
mutually orthogonal displacements and two angles
of rotation. The procedure resulting in decoupling
linear parts of equations has been adopted with further
utilization of the generalized method of multiple time
scales for solving nonlinear governing equations of
motion, in so doing the amplitude functions have
been expanded into power series in terms of the
small parameter and depend on different time scales.
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Numerical analysis of the natural frequency spectra
reveals the possibility of the occurrence of different
internal and combinational resonances.

FUNDING

This research was supported by the Project # 7.4.4
within the 2020 Plan of Fundamental Research of
the Russian Academy of Architecture and Civil
Engineering and Ministry of Civil Engineering and
Public Utilities of the Russian Federation.

REFERENCES

1. Sathyamoorty M. Nonlinear vibration analysis
of plates: A review and survey of current
developments // Applied Mechanics Reviews,
1987, Vol. 40(11), pp. 1553—-1561.

International Journal for Computational Civil and Structural Engineering



Table 5. Natural frequencies of vibrations @,

i

Classification of Internal Resonances in Nonlinear Fractionaly Damped Uflyand-Mindlin Plates

(i=1,2...5) at £=05 and B, =005.

m n B o, 5| By ®,,., o,

1 1 3.685 2.531 0.177/0.178 | 37.474 37.629
1 2 5.211 3.580 0.282/0.285 | 37.509 37.755
2 1 6.550 4.129 0.594/0.605 | 37.612 38.129
2 2 7.370 5.062 0.697/0.712 | 37.647 38.253
1 3 7.171 4.675 1.266/1.318 | 37.841 38.940
3 1 9.602 5.860 0.456/0.463 | 37.566 37.963
2 3 8.714 6.109 0.866/0.830 | 37.704 38.457
3 2 10.142 6.611 1.365/1.425 | 37.875 39.059
3 3 11.055 7.593 1.528/1.603 | 37.932 39.257
1 4 9.264 5.839 0.697/0.712 | 37.647 38.253
4 1 12.699 7.653 2.164/2.315 | 38.159 40.031
2 4 10.423 7.159 1.101/1.140 | 37.784 38.740
4 2 13.101 8.258 2.257/2.422 | 38.193 40.145
3 4 12.324 8.639 1.753/1.852 | 38.012 39.530
4 3 13.780 9.125 2.417/2.600 | 38.250 40.334
4 4 14.740 10.125 2.626/2.849 | 38.329 40.596
1 5 11.409 7.051 1.001/1.033 | 37.750 38.619
5 1 15.814 9.470 3.253/3.597 | 38.564 41.368
2 5 12.330 8.236 1.397/1.460 | 37.887 39.099
5 2 16.134 §.971 3.341/3.704 | 38.598 41.476
3 5 13.880 9.686 2.038/2.172 | 38.114 39.878
5 3 16.674 10.726 3.487/3.882 | 38.654 41.656
4 5 15.969 11.169 2.898/3.170 | 38.430 40.930
5 4 17.437 11.647 3.688/4.131 38.732 41.906
5 5 18.425 12.656 3.945/4.452 | 38.832 42,223

Table 6. Difference in vertical frequencies of flexural vibrafions & = [(m3 —-@;)/ @, ] 100% at

B, =0.05 for plates of different length.

m=1, n=1 m=5, n=5
B 0.5 1 2 0.5 | 2
5,% 0.56 1.05 2.11 11.39 16.38 29.75

Amabili M. Nonlinear vibrations of rectangular
plates with different boundary conditions: theory
and experiments // Computers and Structures,
2004, Vol. 82, pp. 2587-2605.

Amabili M. Nonlinear vibrations and stability of
shells and plates. London: Cambridge University
Press, 2008.

4. Breslavsky 1.D., Amabili M., Legrand M.

Physically and geometrically non-linear

Volume 16, Issue 3, 2020

vibrations of thin rectangular plates //
International Journal of Non-Linear Mechanics,
2014, Vol. 58, pp. 30-40.

Amabili M. Nonlinear vibrations of viscoelastic
rectangular plates // Journal of Sound and
Vibration, 2016, Vol. 362, pp. 142-156.
Amabili M. Nonlinear damping in nonlinear
vibrations of rectangular plates: Derivation from
viscoelasticity and experimental validation //

71



Journal of Mechanics and Physics of Solids,
2018, Vol. 118, pp. 275-295.

7. Amabili M. Nonlinear damping in large-amplitude

10.

I1.

12.

13.

14.

15.

16.

17.

72

vibrations: modelling and experiments //
Nonlinear Dynamics, 2018, Vol. 93, pp. 5-18.
Rossikhin Yu.A., Shitikova M.V. Thin bodies
embedded in fractional derivative viscoelastic
medium, Dynamic response. In: Encyclopedia
of Continuum Mechanics (Altenbach H.,
chsner A.,eds.), Vol. 3, pp. 2512-2518. Berlin-
Heidelberg: Springer, 2019.

Clough R.W,, Penzien J. Dynamics of structures.
New York: McGraw-Hill, 1975.

(Stevanovic) Hedrih K.R., Simonovic J.D.
Structural analogies on systems of deformable
bodies coupled with non-linear layers //
International Journal of Non-Linear Mechanics,
2015, Vol. 73, pp. 18-24.

Ribeiro P., Petyt M. Nonlinear free vibration
of isotropic plates with internal resonance //
International Journal of Non-Linear Mechanics,
2000, Vol. 35, 263-278.

Nayfeh A.H. Nonlinear interaction: Analytical,
computational, and experimental methods. New
York: Wiley, 2000.

Chang S.1., Bajaj A.K., Krousgrill C.M. Non-
linear vibrations and chaos in harmonically
excited rectangular plates with one-to-one
internal resonance // Nonlinear Dynamics, 1993,
Vol. 4, pp. 433-460.

Anlas G., Elbeyli O. Nonlinear vibrations of
a simply supported rectangular metallic plate
subjected to transverse harmonic excitation in
the presence of a one-to-one internal resonance
// Nonlinear Dynamics, 2002, Vol. 30, 1-28.
Hao Y.X., Zhang W., Ji X.L. Nonlinear dynamic
response of functionally graded rectangular
plates under different internal resonances //
Mathematical Problems in Engineering, 2010,
Vol. 2010, Article ID 738648.

Rossikhin Yu.A., Shitikova M.V. Free damped
non-linear vibrations of a viscoelastic plate
under the two-to-one internal resonance //
Materials Science Forum, 2003, Vol. 440441,
29-36.

Rossikhin Yu.A., Shitikova M.V., Ovsjannikova
E.lI. Free damped vibrations of a nonlinear
rectangular thin plate under the conditions of

18.

19.

20.

21.

22.

23.

24.

25.

Marina V. Shitikova, Elena I. Osipova

internal combinational resonance. In: Nonlinear
Acoustics at the Beginning of the 21st Century,
Proceedings of the 16th International Symposium
on Nonlinear Acoustics (O.V. Rudenko and
O.A. Sapozhnikov, eds.), August 19-23, 2002,
Moscow, Russia, Vol.2, pp. 693—696.
Rossikhin Yu.A., Shitikova M.V. Analysis
of free non-linear vibrations of a viscoelastic
plate under the conditions of different internal
resonances // International Journal of Non-
Linear Mechanics, 2006, Vol. 2, 313-325.
Rossikhin Yu.A., Shitikova M.V. A new
approach for studying nonlinear dynamic
response of a thin fractionally damped plate with
2:1 and 2:1:1 internal resonances. In: Shell and
Membrane Theories in Mechanics and Biology:
From Macro- to Nanoscale Structures (H.
Altenbach and G.I. Mikhasev, Eds.). Advanced
Structured Materials, Vol. 45, Chapter 15, pp.
267-288. Berlin-Hiedelberg: Springer, 2015.
Rossikhin Yu.A., Shitikova M.V., Ngenzi J.Cl.
Anew approach for studying nonlinear dynamic
response of a thin plate with internal resonance
in a fractional viscoelastic medium // Shock and
Vibration, 2015, Vol. 2015, Article ID 795606.
Rossikhin Yu.A., Shitikova M.V., Ngenzi
J.CL Phenomenological analysis of the additive
combinational internal resonance in nonlinear
vibrations of fractionally damped thin plates //
WSEAS Transactions of Applied and Theoretical
Mechanics, 2015, Vol. 10, pp. 260-276.
Rossikhin Yu.A., Shitikova M.V., Ngenzi J.Cl.
Fractional calculus application in problems
of non-linear vibrations of thin plates with
combinational internal resonances. // Procedia
Engineering, 2016, Vol. 144, pp. 849-858.
Witt A.A., Gorelik G.S. Oscillations of an elastic
pendulum as an example of the oscillations of
two parametrically coupled linear systems //
Journal of Technical Physics, 1933, Ne 3, pp.
294-307.
Rossikhin Yu.A., Shitikova M.V. Applications
of fractional calculus to dynamic problems of
linear and nonlinear hereditary mechanics of
solids // Applied Mechanics Reviews, 1997, Vol.
50, pp. 15-67.
Abdel-Ghaffar A.M., Housner G.W. Ambient
vibration tests of suspension bridge // ASCE

International Journal for Computational Civil and Structural Engineering



Classification of Internal Resonances in Nonlinear Fractionaly Damped Uflyand-Mindlin Plates

26.

27.

28.

29.

30.

31.

32.

33.

34.

35

Journal of Engineering Mechanics, 1978, Vol.
104, pp. 983-999.

Abdel-Ghaffar A.M., Scanlan R.H. Ambient
vibration studies of Golden Gate bridge: I.
Suspended structure // ASCE Journal of Engineering
Mechanics, 1985, Vol. 111, pp. 463-482.
Rossikhin Yu.A., Shitikova M. V. Application
of fractional calculus for analysis of nonlinear
damped vibrations of suspension bridges //
ASCE Journal of Engineering Mechanics, 1998,
Vol. 124, pp. 1029-1036.

Rossikhin Yu.A., Shitikova M.V. Application
of fractional calculus for dynamic problems of
solid mechanics: novel trends and recent results
/I Applied Mechanics Reviews, 2010, Vol. 63,
Article ID 01081.

Rossikhin Yu.A., Shitikova M.V. Fractional
calculus in structural mechanics. In: Baleanu,
D., Lopes, A.M. (eds.) Handbook of Fractional
Calculus with Applications. Vol 7, Applications
in Engineering, Life and Social Sciences, Part
A., pp. 159-192. Berlin: De Gruyter, 2019.
(Stevanovic) Hedrih K. Partial fractional
differential equations of creeping and vibrations
of plate and their solutions (First part) // Journal
of Mechanical Behavior of Materials, 2005, Vol.
16, pp. 305-314.

Ingman D., Suzdalnitsky J. Response of
viscoelastic plate to impact // ASME Journal of
Vibration and Acoustics, 2008, Vol. 130, Article
ID 011010.

Rossikhin Yu.A., Shitikova M.V. Analysis
of damped vibrations of linear viscoelastic
plates with damping modeled with fractional
derivatives // Signal Processing, 2006, Vol. 86,
pp- 2703-2711.

(Stevanovic) Hedrih K. Dynamics of coupled
systems // Nonlinear Analysis: Hybrid Systems,
2008, Vol. 2, pp. 310-334.

Rossikhin Yu.A., Shitikova M.V., Trung P.T.
Application of the fractional derivative Kelvin—
Voigt model for the analysis of impact response
of'a Kirchhoff-Love plate // WSEAS Transaction
on Mathematics, 2016, Vol. 15, pp. 498-501.

. Hilton H.H. Implications and constraints of time-

independent Poisson ratios in linear isotropic
and anisotropic viscoelasticity // Journal of
Elasticity, 2001, Vol 63, pp. 221-251.

Volume 16, Issue 3, 2020

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Ari M., Faal R.T., Zayernouri M. Vibrations
suppression of fractionally damped plates
using multiple optimal dynamic vibration
// International Journal of Computational
Mathematics, 2020. DOI:10.1080/00207160.2
019.1594792

Mashrouteh S. Nonlinear vibration analysis
of viscoelastic plates with fractional damping.
Master Thesis, University of Ontario, Institute
of Technology, 2017.
Permoon M.R., Haddadpour H., Javadi M.
Nonlinear vibration of fractional viscoelastic
plate: primary, subharmonic, and superharmonic
response // International Journal of Non-Linear
Mechanics, 2018, Vol 99, pp. 154—-164.
Babouskos N.G., Katsikadelis J.T. Nonlinear
vibrations of viscoelastic plates of fractional
derivative type: An AEM solution // The Open
Mechanics Journal, 2010, Vol. 4, pp. 8-20.
Hosseinkhani A., Younesian D., Farhangdoust
S. Dynamic analysis of a plate on the generalized
foundation with fractional damping subjected
to random excitation / Mathematical Problems
in Engineering, 2018, Vol. 2018, Paper 1D
3908371.

Malara G., Spanos P.D. Nonlinear random
vibrations of plates endowed with fractional
derivative elements // Probabalistic Engineering
Mechanics, 2018, Vol. 54, pp. 2-8.

Nwagoum Tuwa P.R., Miwadinou C.H.,
Monwanou A.V., Chabi Orou J.B., Woafo P.
Chaotic vibrations of nonlinear viscoelastic plate
with fractional derivative model and subjected to
parametric and external excitations / Mechanics
Reserch Communications, 2019, Vol. 97, pp.
8-15.

Litewka P., Lewandowski R. Steady-state
non-linear vibrations of plates using Zener
material model with fractional derivative //
Computational Mechanics, 2017, Vol. 60, pp.
333-354.

Datta P., Ray M.C. Fractional order derivative
model of viscoelastic layer for active damping
of geometrically nonlinear vibrations of smart
composite plates // CMC, 2015, Vol. 49-50(1),
pp. 47-80.

Rossikhin Yu.A., Shitikova M. V., Shcheglova
T.A. Forced vibrations of a nonlinear oscillator

73



46.

47.

48.

49.

50.

51.

with weak fractional damping // Journal of
Mechanics of Materials and Structures, 2009,
Vol. 4(9), pp. 1619-1636.

Shitikova M.V., Rossikhin Yu.A., Kandu V.
Interaction of internal and external resonances
during force driven vibrations of a nonlinear
thin plate embedded into a fractional derivative
medium // Procedia Engineering, 2017, Vol. 199,
pp. 832-837.

Shitikova M.V., Kandu V.V. Force driven
nonlinear vibrations of a thin plate in one-to-one
internal resonance in a fractional viscoelastic
medium (in Russian) // News of Higher
Educational Institutions. Construction. 2018,
Issue 12, pp. 9-22.

Shitikova M.V., Kandu V.V. Force driven
nonlinear vibrations of a thin plate with 1:1:1
internal resonance in a fractional viscoelastic
medium // Journal of Physics: Conference
Series, 2019, Vol. 1203, Article ID 012003.
Shitikova M.V., Kandu V.V. Force driven
nonlinear vibrations of a thin plate with 1:1
internal resonance in a fractional viscoelastic
medium // IOP Conference Series: Material
Science Engineering, 2019, Vol. 489 Article ID
012043.

Volmir A.S. Nonlinear dynamics of plates and
shells. Moscow: Nauka, 1972.

Samko S.G., Kilbas A.A., Marichev O.I.
Fractional integrals and derivatives. Theory and
applications. Amsterdam: Gordon and Breach
Science Publishers, 1993.

52. Rossikhin Yu.A., Shitikova M.V. New approach

53.

54.

55.

56.

74

for the analysis of damped vibrations of
fractional oscillators // Shock and Vibration,
2009, Vol. 16(4), pp. 365-387.

Nayfeh A.H. Perturbation Methods. New York:
Wiley, 1973.

Wahi P., Chatterjee A. Averaging oscillators
with small fractional damping and delayed terms
// Nonlinear Dynamics, 2004, Vol. 38, pp. 3-22.
Rossikhin Yu.A. Dynamic problems of linear
viscoelasticity connected with investigation of
the relaxation-retardation spectra. PhD thesis,
Voronezh Polytechnical Institute, 1970.
Meshkov S.I., Pachevskaja G.N., Postnikov
V.S., Rossikhin Yu.A. Integral representation of
-functions and their application to problems in

57.

Marina V. Shitikova, Elena I. Osipova

linear viscoelasticity // International Journal of
Engineering Science, 1971, Vol. 9, pp. 387-398.
Shitikova M.V. The fractional derivative
expansion method in nonlinear dynamic analysis
of structures // Nonlinear Dynamics, 2020, Vol.
99(1), pp. 109-122.

CIIMCOK JIMTEPATYPbBI

1.

10.

Sathyamoorty M. Nonlinear vibration analysis
of plates: A review and survey of current
developments // Applied Mechanics Reviews,
1987, Vol. 40(11), pp. 1553—-1561.

Amabili M. Nonlinear vibrations of rectangular
plates with different boundary conditions: theory
and experiments / Computers and Structures,
2004, Vol. 82, pp. 2587-2605.

Amabili M. Nonlinear vibrations and stability of
shells and plates. London: Cambridge University
Press, 2008.

Breslavsky 1.D., Amabili M., Legrand M.
Physically and geometrically non-linear vibrations
of thin rectangular plates // International Journal of
Non-Linear Mechanics, 2014, Vol. 58, pp. 30—40.
Amabili M. Nonlinear vibrations of viscoelastic
rectangular plates // Journal of Sound and
Vibration, 2016, Vol. 362, pp. 142—156.
Amabili M. Nonlinear damping in nonlinear
vibrations of rectangular plates: Derivation from
viscoelasticity and experimental validation //
Journal of Mechanics and Physics of Solids,
2018, Vol. 118, pp. 275-295.

Amabili M. Nonlinear damping in large-
amplitude vibrations: modelling and experiments
// Nonlinear Dynamics, 2018, Vol. 93, pp. 5-18.

Rossikhin Yu.A., Shitikova M.V. Thin bodies
embedded in fractional derivative viscoelastic
medium, Dynamic response. In: Encyclopedia
of Continuum Mechanics (Altenbach H.,
chsner A.,eds.), Vol. 3, pp. 2512-2518. Berlin-
Heidelberg: Springer, 2019.

Kaadg P., Ilenzuen . lunamuka coopyKeHUH.
M.: Crpoituznat, 1979.

(Stevanovic) Hedrih K.R., Simonovic J.D.
Structural analogies on systems of deformable
bodies coupled with non-linear layers //
International Journal of Non-Linear Mechanics,
2015, Vol. 73, pp. 18-24.

International Journal for Computational Civil and Structural Engineering



Classification of Internal Resonances in Nonlinear Fractionaly Damped Uflyand-Mindlin Plates

11.

12.

13.

14.

15.

16.

17.

18.

19.

Ribeiro P., Petyt M. Nonlinear free vibration
of isotropic plates with internal resonance //
International Journal of Non-Linear Mechanics,
2000, Vol. 35, 263-278.

Nayfeh A.H. Nonlinear interaction: Analytical,
computational, and experimental methods. New
York: Wiley, 2000.

Chang S.1., Bajaj A.K., Krousgrill C.M. Non-
linear vibrations and chaos in harmonically
excited rectangular plates with one-to-one
internal resonance // Nonlinear Dynamics, 1993,
Vol. 4, pp. 433-460.

Anlas G., Elbeyli O. Nonlinear vibrations of
a simply supported rectangular metallic plate
subjected to transverse harmonic excitation in
the presence of a one-to-one internal resonance
// Nonlinear Dynamics, 2002, Vol. 30, 1-28.
Hao Y.X., Zhang W., Ji X.L. Nonlinear dynamic
response of functionally graded rectangular
plates under different internal resonances //
Mathematical Problems in Engineering, 2010,
Vol. 2010, Article ID 738648.

Rossikhin Yu.A., Shitikova M.V. Free damped
non-linear vibrations of a viscoelastic plate
under the two-to-one internal resonance //
Materials Science Forum, 2003, Vol. 440441,
29-36.

Rossikhin Yu.A., Shitikova M.V., Ovsjannikova
E.lI. Free damped vibrations of a nonlinear
rectangular thin plate under the conditions of
internal combinational resonance. In: Nonlinear
Acoustics at the Beginning of the 21st Century,
Proceedings of the 16th International Symposium
on Nonlinear Acoustics (O.V. Rudenko and
O.A. Sapozhnikov, eds.), August 19-23, 2002,
Moscow, Russia, Vol.2, pp. 693—696.
Rossikhin Yu.A., Shitikova M.V. Analysis
of free non-linear vibrations of a viscoelastic
plate under the conditions of different internal
resonances // International Journal of Non-
Linear Mechanics, 2006, Vol. 2, 313-325.
Rossikhin Yu.A., Shitikova M.V. A new
approach for studying nonlinear dynamic
response of a thin fractionally damped plate with
2:1 and 2:1:1 internal resonances. In: Shell and
Membrane Theories in Mechanics and Biology:
From Macro- to Nanoscale Structures (H.
Altenbach and G.I. Mikhasev, Eds.). Advanced

Volume 16, Issue 3, 2020

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Structured Materials, Vol. 45, Chapter 15, pp.
267-288. Berlin-Hiedelberg: Springer, 2015.
Rossikhin Yu.A., Shitikova M.V., Ngenzi J.Cl.
A new approach for studying nonlinear dynamic
response of a thin plate with internal resonance
in a fractional viscoelastic medium // Shock and
Vibration, 2015, Vol. 2015, Article ID 795606.
Rossikhin Yu.A., Shitikova M.V., Ngenzi
J.CL. Phenomenological analysis of the additive
combinational internal resonance in nonlinear
vibrations of fractionally damped thin plates //
WSEAS Transactions of Applied and Theoretical
Mechanics, 2015, Vol. 10, pp. 260-276.
Rossikhin Yu.A., Shitikova M. V., Ngenzi J.Cl.
Fractional calculus application in problems
of non-linear vibrations of thin plates with
combinational internal resonances. // Procedia
Engineering, 2016, Vol. 144, pp. 849-858.
Butrt A.A., T'opesnk I'.C. Konebanus ympyroro
MasTHUKA KakK MMPUMEP JBYX IMapaMeTpHUICCKH
CBSI3aHHBIX JJMHENUHBIX cucteM // KypHai TexHu-
yeckoit pusukm, 1933, T.3, No 2-3. C. 294-307.
Rossikhin Yu.A., Shitikova M. V. Applications
of fractional calculus to dynamic problems of
linear and nonlinear hereditary mechanics of
solids // Applied Mechanics Reviews, 1997, Vol.
50, pp. 15-67.
Abdel-Ghaffar A.M., Housner G.W. Ambient
vibration tests of suspension bridge // ASCE
Journal of Engineering Mechanics, 1978, Vol.
104, pp. 983-999.

Abdel-Ghaffar A.M., Scanlan R.H. Ambient
vibration studies of Golden Gate bridge:
I. Suspended structure // ASCE Journal of
Engineering Mechanics, 1985, Vol. 111, pp.
463-482.

Rossikhin Yu.A., Shitikova M. V. Application
of fractional calculus for analysis of nonlinear
damped vibrations of suspension bridges //
ASCE Journal of Engineering Mechanics, 1998,
Vol. 124, pp. 1029-1036.

Rossikhin Yu.A., Shitikova M.V. Application
of fractional calculus for dynamic problems of
solid mechanics: novel trends and recent results
/I Applied Mechanics Reviews, 2010, Vol. 63,
Article ID 01081.

Rossikhin Yu.A., Shitikova M.V. Fractional
calculus in structural mechanics. In: Baleanu,

75



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

76

D., Lopes, A.M. (eds.) Handbook of Fractional
Calculus with Applications. Vol 7, Applications
in Engineering, Life and Social Sciences, Part
A., pp. 159-192. Berlin: De Gruyter, 2019.
(Stevanovic) Hedrih K. Partial fractional
differential equations of creeping and vibrations
of plate and their solutions (First part) // Journal
of Mechanical Behavior of Materials, 2005, Vol.
16, pp. 305-314.

Ingman D., Suzdalnitsky J. Response of
viscoelastic plate to impact // ASME Journal of
Vibration and Acoustics, 2008, Vol. 130, Article
ID 011010.

Rossikhin Yu.A., Shitikova M.V. Analysis
of damped vibrations of linear viscoelastic
plates with damping modeled with fractional
derivatives // Signal Processing, 2006, Vol. 86,
pp.- 2703-2711.

(Stevanovic) Hedrih K. Dynamics of coupled
systems // Nonlinear Analysis: Hybrid Systems,
2008, Vol. 2, pp. 310-334.

Rossikhin Yu.A., Shitikova M.V., Trung P.T.
Application of the fractional derivative Kelvin—
Voigt model for the analysis of impact response
of'a Kirchhoff-Love plate // WSEAS Transaction
on Mathematics, 2016, Vol. 15, pp. 498-501.

Hilton H.H. Implications and constraints of time-
independent Poisson ratios in linear isotropic
and anisotropic viscoelasticity // Journal of
Elasticity, 2001, Vol 63, pp. 221-251.

Ari M., Faal R.T., Zayernouri M. Vibrations
suppression of fractionally damped plates using
multiple optimal dynamic vibration// International
Journal of Computational Mathematics, 2020.
DOI: 10.1080/00207160.2019.1594792
Mashrouteh S. Nonlinear vibration analysis
of viscoelastic plates with fractional damping.
Master Thesis, University of Ontario, Institute
of Technology, 2017.

Permoon M.R., Haddadpour H., Javadi M.
Nonlinear vibration of fractional viscoelastic
plate: primary, subharmonic, and superharmonic
response // International Journal of Non-Linear
Mechanics, 2018, Vol 99, pp. 154—-164.
Babouskos N.G., Katsikadelis J.T. Nonlinear
vibrations of viscoelastic plates of fractional
derivative type: An AEM solution // The Open
Mechanics Journal, 2010, Vol. 4, pp. 8-20.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Marina V. Shitikova, Elena I. Osipova

Hosseinkhani A., Younesian D., Farhangdoust
S. Dynamic analysis of a plate on the generalized
foundation with fractional damping subjected
to random excitation / Mathematical Problems
in Engineering, 2018, Vol. 2018, Paper 1D
3908371.

Malara G., Spanos P.D. Nonlinear random
vibrations of plates endowed with fractional
derivative elements // Probabalistic Engineering
Mechanics, 2018, Vol. 54, pp. 2-8.

Nwagoum Tuwa P.R., Miwadinou C.H.,
Monwanou A.V., Chabi Orou J.B., Woafo P.
Chaotic vibrations of nonlinear viscoelastic plate
with fractional derivative model and subjected to
parametric and external excitations // Mechanics
Reserch Communications, 2019, Vol. 97, pp.
8-15.
Litewka P., Lewandowski R. Steady-state
non-linear vibrations of plates using Zener
material model with fractional derivative //
Computational Mechanics, 2017, Vol. 60, pp.
333-354.

Datta P., Ray M.C. Fractional order derivative
model of viscoelastic layer for active damping
of geometrically nonlinear vibrations of smart
composite plates // CMC, 2015, Vol. 49-50(1),
pp. 47-80.

Rossikhin Yu.A., Shitikova M. V., Shcheglova
T.A. Forced vibrations of a nonlinear oscillator
with weak fractional damping // Journal of
Mechanics of Materials and Structures, 2009,
Vol. 4(9), pp. 1619-1636.

Shitikova M.V., Rossikhin Yu.A., Kandu V.
Interaction of internal and external resonances
during force driven vibrations of a nonlinear
thin plate embedded into a fractional derivative
medium // Procedia Engineering, 2017, Vol. 199,
pp. 832-837.

IIutukoBa M.B., Kanay B.B. Uucnennsiit
aHaJIM3 BBIHY)KJICHHBIX KOJIeOaHUH HEIMHEWHBIX
IUTACTUHOK B BSI3KOYIIPYTOM Cpelle IIPY HAITMYUH
BHYTPEHHETO pe30HaHca OAUH K oqHoMy // U3Be-
ctus By30B. CtpoutenbetBo, 2018, Ne 12. C. 9-22.
Shitikova M.V., Kandu V.V. Force driven
nonlinear vibrations of a thin plate with 1:1:1
internal resonance in a fractional viscoelastic
medium // Journal of Physics: Conference
Series, 2019, Vol. 1203, Article ID 012003.

International Journal for Computational Civil and Structural Engineering



Classification of Internal Resonances in Nonlinear Fractionaly Damped Uflyand-Mindlin Plates

49. Shitikova M.V., Kandu V.V. Force driven 54. Wahi P., Chatterjee A. Averaging oscillators

nonlinear vibrations of a thin plate with 1:1 with small fractional damping and delayed terms
internal resonance in a fractional viscoelastic // Nonlinear Dynamics, 2004, Vol. 38, pp. 3-22.
medium // IOP Conference Series: Material 55. Poccuxun FO.A. Jlunamuueckue 3a1adu Jin-
Science Engineering, 2019, Vol. 489 Article ID HEWHOW BS3KO-YIIPYTOCTH, CBSI3AHHBIE C UCCIIE-
012043. JIOBAaHUEM pETapAALMOHHO-PE- JIAKCALTMOHHBIX
50. Boabmup A.C. HenuneiiHasi fnHaMHKa IJ1aCTH- CIIEKTpOB. Jluccepranys Ha COMKaHUE YYEHOU
HOK 1 obonouek. M.: Hayka, 1972. crerneHu Kau. pus.-mar. Hayk. Boponex, 1970.
51. Camko I.C., Kuabac A.A., MapuueB O.U. 56. Meshkov S.I., Pachevskaja G.N., Postnikov
JpoOHble MHTETpabl U MPOU3BOAHBIC: Teopus V.S., Rossikhin Yu.A. Integral representation of
u npunoxkenus.. Munck: Hayka u texnuka, 1987. -functions and their application to problems in
52. Rossikhin Yu.A., Shitikova M.V. New linear viscoelasticity // International Journal of
approach for the analysis of damped vibrations Engineering Science, 1971, Vol. 9, pp. 387-398.
of fractional oscillators // Shock and Vibration, 57. Shitikova M.V. The fractional derivative
2009, Vol. 16(4), pp. 365-387. expansion method in nonlinear dynamic analysis
53. Haiign A.X. Mertonsr Bo3mytieHuid. M.: Mup, of structures // Nonlinear Dynamics, 2020, Vol.
1976. 99(1), pp. 109—-122.

Marina V. Shitikova, Advisor of the Russian Academy of Architecture and Construction Sciences, Prof., Dr.Sc., Research Center
on Dynamics of Solids and Structures; Voronezh State Technical University; 84, 20-letija Oktyabrya, Voronezh, 394006, Russia;

phone +7 (473) 271-52-68; fax +7 (473) 271-52-68; Senior Researcher, RAASN Research Institute of Structural Physics, Moscow,
Russia. E-mail: mvs@vgasu.vrn.ru.

Hlumuxosa Mapuna Bauecnasosna, coBetHuk PAACH, mpodeccop, mokTop (n3nKo-MaTeMaTHUECKAX HAyK; PYKOBOTUTEIH
MEXIyHApOIHOTO HaydHOro LleHTpa no ¢yHIaMeHTanbHBIM HCCIEA0BAHUSIM B 00JIACTH €CTECTBEHHBIX U CTPOUTEIBHBIX HAYK;
Boponexckuii rocynapcTBeHHBIH TexHndeckni yansepeutet; 394006, Poccns, . Boponex, yi. 20 net Oxtsa0ps, 1. 84, Tem. +7
(473) 271-52-68; hakc +7 (473) 271-52-68; [ maBHBII HAYIHBIH COTPYAHUK, HayuHO-1CCIIe10BaTENECKUI HHCTHTYT CTPOUTEIEHON
¢usuku PAACH, Mocksa, Poccust. E-mail: mvs@vgasu.vrn.ru.

Elena I. Osipova, Cand. Sc., Research Center on Dynamics of Solids and Structures; Voronezh State Technical University; 84,
20-letija Oktyabrya, Voronezh, 394006, Russia, E-mail: oss@vgasu.vrn.ru.

Ocunosa Enena HMsanosna, KannuaaT QU3HKO-MaTeMaTHIECKAX HAYK, JOICHT KadeIphl CTPOUTEIEHON MEXaHUKH, BopoHexckuit
TOCYIapCTBEHHBIN TexHI4Yecknid yHuBepcuteT; 394006, Poccus, . Boponex, yi. 20 et Oxts0pst, a. 84, E-mail: : oss@vgasu.vrn.ru

Volume 16, Issue 3, 2020 77



International Journal for Computational Civil and Structural Engineering, 16(3) 78-99 (2020)

DOI:10.22337/2587-9618-2020-16-3-78-99

A.A. ILYUSHIN'S FINAL RELATION, ALTERNATIVE
EQUIVALENT RELATIONS AND VERSIONS OF ITS
APPROXIMATION IN PROBLEMS OF ELASTIC DEFORMATION
OF PLATES AND SHELLS
PART 2: ALTERNATIVE EQUIVALENT RELATIONS
OF A.A. ILYUSHIN

Aleksandr V. Starov, Sergei JU. Kalashnikov
Volgograd state technical university, Volgograd, RUSSIA

Abstract: The finite relationship between the forces and moments of plates and shells in the parametric form of the theory of
small elastoplastic deformations is investigated of A.A. Ilyushin, to determine the load-bearing capacity of structures from a
material without hardening. A geometric image of the exact yield surface in the space of generalized stresses is obtained. In the
first part of the article the conclusion of the final relation is given. In the second and third parts, by introducing other parameters,
alternative equivalent dependences of the final relationship have been developed and variants of its approximation for application
in computational practice are considered. In the fourth part, additional properties of the final relationship are considered, the
possibility and necessity of its use in problems of plastic deformation of plates and shells is shown.

Keywords: the plasticity theory, plastic deformation of plates and shells, a surface of fluidity, a plasticity condition.

KOHEYHOE COOTHOIIEHHUE A.A. WJIBIOIINHA, AJIBTEPHA-
TUBHBIE OKBUBAJIEHTHBIE 3ABUCUMOCTHU U BAPUAHTDI
ET'O AIIIPOKCUMALNMU B 3ATAYAX TIVNTACTHYHECKOT'O AE®OP-
MHUPOBAHUA ITJVIACTHH U OBOJIOYEK
YACTD 2: AIBTEPHATUBHBIE DKBUBAJIEHTHBIE 3ABUCHUMO-
CTHU KOHEYHOI'O COOTHOLIEHUA A.A. WJIBIOHIWNHA

A.B. Cmapos, C.IO. Kanrawnukos

Bosnrorpanckuit rocynapcTBeHHBIN TeXHUYECKHH yHUBEpCUTET, I. Bonrorpaa, POCCUA

AHHOTaIUA: BINOIHEHO HCCieJOBaHNE KOHEYHOTO COOTHOIICHHSI MEK/Ty CHIIAMH U MOMEHTAMH IIJIACTHH ¥ 000JI0UEK B Iapame-
TPUYECKOM BHJIE TEOPHUH MAJIBIX YIIPyroIiacTHuecKux aedopmanmii A.A. VnbrommHa, 1uis onpeaeseH st Hecyleit criocoOHOCTH
KOHCTPYKIMH 13 Marepuaia 6e3 ynpouneHus. [loiyden reoMerprueckuii 00pa3 TOUHON OBEPXHOCTH TEKYYECTH B IPOCTPaH-
cTBe 00OOIICHHBIX HANPSDKEHU. B repBoii 4acTH cTaThy MPUBOJAMTCS BBIBOJ KOHEYHOTO COOTHOIIECHHS. Bo BTOpOii 1 TpeTheit
YacTsIX BBEICHHEM JAPYTUX ITapaMeTpoB pa3paboTaHbl aJIbTepHATUBHbIC SKBUBAJICHTHBIC 3aBUCHMOCTH KOHEYHOT'O COOTHOIICHHMS
U pacCMOTPEHBI BAPHAHTHI €T0 anMpoKCUMAaINH JUIsl IPUMEHEHHUS B pacdeTHON IpakTHKe. B ueTBepToll yacTu paccCMOTpEHBI J10-
TIOJTHUTEJIbHBIE CBOWCTBA KOHEYHOTO COOTHOIICHUSI, IIOKa3aHa BO3MOXKHOCTh M HEOOXOAMMOCTh €ro MCHOJIB30BaHMs B 3aadax
IUIACTHYECKOTO 1e(OpMUPOBAHUS [UIACTHH U 000I0UEK.

Kuarwuesble ciioBa: TCOpPUA MIIACTUIHOCTHU, IMJIACTUUICCKOC )Ie(l)OpMI/IPOBaHI/Ie IJIACTHH U 060.]'10‘-161(, MOBEPXHOCTb TCKYUCCTH,

yCiaoBUA MIaACTUIHOCTH.
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A.A. Ilyushin's Final Relation, Alternative Equivalent Relations and Versions of Its Approximation in Problems of Elastic
Deformation of Plates and Shells. Part 2: Alternative Equivalent Relations of A.A. Ilyushin

2.1. Alternative equivalent relations of a final
relation

In the work [9], in integrating the integrals (4.25),
integration over the intensity of the deformations e, is
performed instead of integrating over the coordinate
z. Let us show that we can obtain an alternative
finite relation by calculating the integrals (4.25) with
respect to the coordinate z, and compare the results
of the calculations.

Intensity of deformations, according to (4.7) [9]:

\/P ~2zP +z'P
P:a:81 +8182+82+312: B{:Xf"‘%){z"‘xg"")(fz:

@.1)

Let's consider values of intensity of deformations in
three points disposed on an axis z

1 1
R, =% t&1, +§81'X?_ +§82'X1 + &% n-

h h .
2= S=+§, z=0. Let's designate them
accordingly:

\/_\/P +hE, +

e, = \E\/P hP. +;';P [
2
e{ﬂzﬁ\/ﬁs (::

Considering the last as the equations concerning three

quadratic forms P,P_,P,wecopy them in a kind:

2
}1+th+h;B{ _3
4

o
[l
+

il
(2.3)
I’ 3 2 3 2
P-hP +—P ="¢6}, P="¢}
£ £) 4 i 4 .r £ 4
Solving them with respect to quadratic forms leads

to the following results:

F, = Eefﬂ, hPsy_ = E("3:21 _efzz)=
2 8 2.4)
h
7 = : (Zefl JrZeef2 74350)
We introduce two basic parameters A and
K:ei, u:e*—“. (2.5)
€. e,
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These parametres satisfy to conditions: 0 < A < 1,
0<u<1ase, —thereis a maximum value of intensity
of deformations, if P_ < 0. Then formulas (2.3) can
be copied in a kind:
3
P==
=" we

rl’ il2

hP, z(l—hz)e?’
(2.6)

EP = i(2+27&2 —4u’)é;

4 16 -

In formulas (4.23')-(4.24") [9], there are three types
of integrals that are common in shell thickness:

h
2 g 21
‘Jl_'\/gcsjddl’dg_\/gcsj-:’
2 = 2 =
2 x?

=+c+bz+az’, 7

2

h
2 2
J, = SGI d_
2 7Y
2X

c=P, b——ZP a:PI.

¢

These integrals tabular. According to formulas
(380.001, 380.011, 380.021) [42]

_ h
1 2
leﬁq L nfovax? + 20 48|
2 | Ja o
2
~ B
1 2
V3 X? b
BT % T T
i a a x? L
h
B 15 2.8)
z 3b L Z (
— X2+
ﬁ [2(1 4q* ]
J; =—o0, 2
2 3b°—4ac \¢ dz
T8 )T
E X2k
2
1
X2 =+Je+bz+az?, c=P, b:_2Pq> a=£:.

As well as in [9], we will consider that tensile
deformation and shift of a middle surface ¢, ¢,, ¢,
are commensurable or small compared with bending
strains of a shell igxl, ig
are dominating if the point z; (minimum) e, does not

fall outside the limits a thickness of a shell, i.e. if

TG igxlz or that the last

b, ta h
2 P2
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Deformations of a middle surface we will name large or
dominating compared with bending strains if the point
z, 1s disposed out of a thickness of a shell i.e. if one of

. .. P P
inequalities takes place -, = = > ﬁ , Ty =< E
P2 P2

Taking into account (2.8) also it is possible to express
an integral J, through integrals J, and J :

1 _g
- 1 2 -
;Xz_ji i_;j d'l
3 a al| a a =
.L—%GS 26 >
_c d=
o 1
| 297 ¢ 1
2
; 2.9
173 )
Jszé B _ij c <, (2.9
2 2a r 4da 2a
a
X2 =+e+bz+a", c=P, b= 2P, a=D.

Corresponding integrals according to (2.8)-(2.9):
1= \/E
X (2.10)

2P B —hP, +—P+hP 2F, -

2( \/P+hP +—P hP, 2P,

hZ
N
24 4 XL ]sz

PRRE +=2LJ, (210)

2 Pr X P

- PsJFhPstFIPx

\/505 1
3= . 2)(

2 4P

K 2.12

(hPI+6PEI)“PE—hPEI+IPI+ 3P PP (2.12)
x T Sl 9 8

I A
+(hPI 76111) P, +hP, +IPI

Taking into account (2.9) also it is possible to present
an integral J; in a kind

hZ
J|P.—hP +--P
g o 1 I\ L ”-++
T2 ap E
’ +y B +hP +—P
& (2.13)

3R, , 1F
T Al e
2F " 2F
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At change of a sign P_ integrals according
to (2.10)—(2.13) J, = J, J, = ~J,, J, = J,. If

Bo. W
P—0J —>w J >0 J - —c——— ¢
2 4JP

Intensity of deformations (2.1) taking into account
(2.4) becomes

- -2
_ 2 =( 2 2 - 2 2 2
€ _\fef{}_z(erl_eﬂ) h_z(zef1+zefz_4efo)°

(2.14)

According to (2.14) integrals in formulas (4.23')-
(4.24") [9]:

L f f
2 - 2 _d_ 2 _2d_
‘Il_GsJﬁ? ‘]2 G| =71 ‘]3 st 1’
_kx? _h x2 o x2
2X 2X 2 X
R ST 1
X2 =+e+bz+az’, c=é}, b———(e,l—efz),

1
a:h—z(Zeﬁ +2e), —4950). (2.15)

Corresponding integrals according to (2.8)—(2.9)
which can be received also substitution (2.4) in
(2.10)—(2.13):

G.h

= X
) ) 2
\/2851 +2¢e, —4e;,

20,2642 0+l w3 —ac) O
‘\/29 +2e}, —4e *(3951 +ep *49}0) ’
Gsh2 (9,-2 - eﬂ) h(é?i - 9;-22)
~ e 126 4e) 2(295#23’?274;330)0’“ (2.17)
_© hs(e,1+e,2)
*4(2d 28 -4d)
730 h3(e. —-e, )(e‘ —e ) (2.18)
4(29 +29 —49 )

H [3(251 + efz )2 - 425{} (Zeﬁ + Zef2 - 42?0 )]
+ It

1"

8(2¢2 +26, —4el )
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Taking into account (2.9) also it is possible to present
an integral J; in a kind

Gshs(eﬂ+efz) 3h(e§—eé).fz
4(26; +2¢), - 4¢y)  4(2¢; +2¢) —4e})
o hzgiz() J

2(2¢, +2¢) ~4€))

Taking into account (2.5) formulas (2.16)-(2.19)
become:

J =

3

(2.19)

J = c.h y
T eoag o
1 2hf2+ 207 —4p® + (14307 —4p?)’ (2.20)
X1
2\/2+27¥2—4le—(3+12—4;lz)
g - ok (1) Wi-v) -
T (2420 —aw’) 2(2+200-4p?) (2.21)
. Gsh3(1+7x ) 365;13(177&2)
| de, (24200 -4w) 4, (2+20% —ap?)’
" [3(1”‘2 ) - (2020 -4y )] (2.22)
2 ‘]p
8(2+2M" —4y’)
o o, (1+2 )
> e, (24200 —4y?) -
3h(1-27) e (2.23)

+ Jh= J
a2+207 —4p’) 7 2(2+207 —4p’)
Formulas (4.44) taking into account (4.66)-(4.68) [9]

3 ok’
PSZZ-GSI (nf—n1n2+ﬂ§+3nfz):
3 thZQ
4 1 ="
3 o'k’
PHZE- - (m'1 mlm2+m,+3mu)=
3 o'’
=7 16 & (2.24)
N 1
273 | ¥ FHy ey IR, =y T —
pmzi.csh 2 -
4 4
n,my +3n,m,
3 oﬁhSQ
4 4 mn
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where
4 1 4 16
ST AR
y ‘ (2.25)
4 4
Qnm g'czhg SH -

From here with the account (4.45"), (4.45"), (4.45"")
[9] we receive a required final relation:

4 1
&3
4 1
3

272
c.h

(/iR —2J,J,P, +J;P,].

o’h’

4 16
ST

4 16  , )

= g-ﬁ[gf; ~2J,J,P, +J;B,|.

AsinA.A. Ilyushin’s theory e, — the minimum value
of intensity of deformations e atz =z, and in offered
model e, — value of intensity of deformations e, at
z = 0 also have different physical sense, we will
designate these parametres as follows:

(2.26)

e. . e.

_ _ Ti0.min _ _ i

ceey = Comins Main = s G|y =G0 ="
€ €

The relationship between these parameters is obtained
from (4.34) [9]

2

2 P
Comin = = 4 [P~ (2.27)

£ 3 P}t

Where P, PP according to (2.4):

2 2}
& . =e)— (<) (2.28)
om0 426k v2eh —48d)T
2
1-A?2

Mo =1 (1-») (2.29)

4(2+207 —4p’)
Deciding biquadratic the equations (2.28)-(2.29),

we find
e +e,+2e)  F

i0,min

. (2.30)

1
Go = Al [2_ 2 2, 2 4
+2/e1 — €0 min (351 g 252)4— €0 min
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L[ 1+ 20, F

min

- 4 ?2\/12 = uim (1+12)+p.4

min

Ty

2.31)

In formulas (2.30)-(2.31) upper sign (—) concerns to a
case of a dominating bending of a shell, and lower (+)
to a case of a dominating stretching — compression.

Analysing (2.29), (2.31), we find limits of change of
parametres A, p ., L

For a dominating bending of a shell:

A=L 0=p_, <A, p=p_.;

1-A 1
A<L p,, =0 p=—, 0spu<s—;
v W= w=
J1+32% 1
A<l py, =A p= , —<u<l;
: L 5 Sl
=0, p. =0, M:%_ (232)

For the dominant extension — compression of the
shell:

A=10=p . <A, pu=1
I+ 1
;\‘<]" mn Vs =" "> —< Sl;
n > > H
V143070 1
K{l) = A, U= e <1.,
l‘ll'ﬂl.l'l u 2 2 l‘l
A=0, iy =0, H=>. (2.33)

Another variant of the relation between the
parameters e u is obtained from (4.60)
[9] and (2.4)

2, 2 2 T
1€ teat 2j0 min T

€0 = >

4 $2\/ e - ez'20.111in \/ e~ ez'zO.min
n = i(1+ A +2ul F 2\/1 —ul \/kz —nl, ) (2.35)

In formulas (2.34)-(2.35) upper sign (—) concerns to a
case of a dominating bending of a shell, and lower (+)
to a case of a dominating stretching — compression.
Formulas (2.30), (2.34), (2.31), (2.35) are equivalent.
Product of radicals in (2.34)—(2.35) is equal to
a radical in (2.30)—(2.31). Limits of change of
parametres are naturally identical. Deciding (2.34)
and (2.35) rather e we receive (2.28) and
(2.29).

The right parts of system of the equations (2.26)
are functions only two parametres A, W, in three-
dimensional space with variables O , O , O  they

S o .
i0,min’ "~ i0” “’mm’

(2.34)

i0,min’ l'lmin’
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represent a surface F(Q , O , O ) =0, and (2.26) is
the parametric equation of this surface and coincides
with (4.70") [9].

If to enter new functions by analogy with (4.62)-
(4.65) [9] after enough bulky transformations of the
right parts of the equations (2.26), relation (2.26) can
be resulted in a kind (4.70") [9]

A (R 1), AR, R, w2, u-)a}

Q}J - QH
L)(?L): H

A (R m), A ), w(Rs ),
Qnm - Qnm |:(P(?\‘), i }3
A w) AR p), w(Rs ),

Qm Qm[(p(l), M }a

1-2°
AF =24207 —4p?, A= ~

1

w=J A, p=h-1. (2.36)

It is possible to notice that function X here does not
enter, as and in (4.70") [9] it is not independent and
(r+1)A, (A-1)A

. | B
1s equal X 5 5

Similar transformations are necessary in the absence
of high-power computer facilities. Now in it there
are no necessities and the right parts of the equations
(2.26) are more convenient for calculating directly.
Ratio (2.26) and (4.70") [9] are equivalent.

As well as in the work [9] we consider three special
cases of a final relation.

1. The momentless tension state occurs if the
deformations of the fibers along the thickness of the
shell are the same:

€1 T T 6T ¢ A=p=pg, =L

In the formulas (2.31)-(2.35) it is necessary to take
the lower sign (+). Expanding the uncertainties in
the formulas (2.20)-(2.23) and (2.26), we obtain the
Mizes condition (4.71)-(4.71") [9]

In formulas (2.31)-(2.35) it is necessary to take the
lower sign (+). Opening uncertainty of formulas
(2.20)-(2.23) and (2.26), we receive a condition of
Mizes (4.71)-(4.71") [9]

= = — 2 _ 2 2 —
0 =0 =00 n n1n2+n2+3n12 1. (2.37)

i0,min
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2. Purely moments the tension takes place in the
absence of lengthening of a middle surface. Quadratic
forms P, = PSX =0.

As appears from (4.19) [9], intensity of deformations
e 1s even function z and, according to (4.34) [9], (2.2)
ishad:e, =e, ,e =e =0, A=1,u=p_ =0.

i0 i0,min

In formulas (2.31)-(2.35) it is necessary to take the
upper sign (—). Opening uncertainty of formulas
(2.20)-(2.23) and (2.26), we receive a condition
(4.72)-(4.72") [9]. The final relation (4.70") [9]
becomes:

0,=0,,=0,0, =m —mm,+m+3m’=1. (2.38)

3. The elementary difficult tension of shells at
Py #0,P #0 takes place, if the bilinear form

1 1
F, =gy +&), "'E % ++E£1Xz + Xif2 = 0.

Possible versions:
1 1
F, =1 81+EE;: +Xs EE+EEI + H12812 = 0,

1 1
Psx =g (XI +512J+32(12 +511J+%128u =0.

It can take place in cases (4.74) [9] and in addition:

1

a) 1 #0, %y =% =0, 81*552:&
1

b) %, %0, %, =%, =0, E2*551:0=
1

c) g #0, g,=¢,=0, XI+E)(2:0,

d) e, #0, g,-¢5 =0, xz+%x1:0,

€) X=Xz E1= € J) A= Aas & =8y
From (4.60) [9] - (2.4)itishad:e, =e,>¢e,=¢, ..
A=1,u=p . <1,ie. dominating bending strain.
According to (2.6)

| YR
IP’ = Z(lfp )eﬂ.
Corresponding integrals according to (2.20)-(2.23):

P = %ﬁeﬁ, hP,, =0, (2.39)

J- c.h : hllJmﬂ*hz =0,
Zei.l(lfu ) ]_7\/17],1-2
__oh 2.40
75= 89,-1(1_”'2)(1 g Jl)- R

Volume 16, Issue 3, 2020

The final relation (2.26) becomes:

_ 1,12 hzl—l——\,‘l—}lz —0
& A1) 1o G 0
o - 1 T 11114”#17”2

” -I'Il—],l-z 2(1_}1-2) 1—\,‘1—]12

Considering identity (341.01 [42]

2

(2.41)

1, a++a* —x? 1 a++a’ —x?
-nh— = In— |
a x 2a  g-~Jat —x?

the final relation (2.26) becomes (4.74) [9]:

2 1 ’1* .2
Q = l,l h12 h !'l » Qnm = 0’

"o1-p? 1
2
T 1+4/1-p? 1
Q,= yIn - 7| - (2.41)
I-p u \/1—u

In table 2.1 shows the coordinates of points of a
curve (2.42) and (4.74) [9] for the elementary difficult
tension of a shell are presented.

4. A difficult tension of shells if the bilinear form P,
submits to a relation f:j =P P,

In case of a dominating stretching of a shell at the
lower sign (+) in (2.31) it is had:

A<l,p . =0,u= 1-577» Substituting corresponding

integrals in (2.26), we receive Q =1,0 =0 =0,
1.e. the line p = 0 degenerates in a point.

In case of a dominating bending the upper sign (—)
in (2.31) it is received:

1-A

A<l p. =0 pn=——
3 4 >

Substituting corresponding integrals in (2.26), we

receive (4.79') [9], and excepting parametre A also
(4.77), (4.79), (4.80) [9]

(1-% ¥ _ An(1-n) _
QH(HJ » O ) 0, )

02,=0,0,. 0,=(1-0,). |0,.]=(1-0,)J0, (2.42)

In table 2.2 coordinates of points of a surface (2.26)
and (4.70) [9] on lines A = const for a dominating
bending of a shell are presented A = const.

In table 2.3 coordinates of points of a surface (2.26)
and (4.70) [9] on lines A = const for a dominating
stretching — compression are presented A = const, in
work [9] given table is not presented, is visible that

161.°
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gives small enough quantity of points in a vicinity - hz(% +e{1)

Q. — 1 with ordinates x =y = 0,3876, z = 0,3872. Jy = +

Tables 2.4 and 2.5 is other form of representation (\/ e, —ey _\/ e, —e )

of results of calculation. Table 2.4 corresponds to a

dominating bending of a shell, table 2.5 — to a case Sh( én _eﬂ!)

to a dominating stretching — to compression. ( \/ 2+ \/eé 2 )

In relation (2.26) integrals (4.25) [9] are calculated

under unified (unequivocal) formulas. The account 2 ( _ — Y ]

of a dominating bending of a shell and a dominating B g { \/ e~ +\/ ) + 4 J (2.46)
stretching — compression is executed at level of . ( \/ T gy \/eé ,0) - .

communication of parametres pand p__ .

Let us show that a finite relation can be obtained using
the parameters of A.A. Ilyushin and calculating the
integrals (4.25) [9] along the coordinate z.

Taking into account the introduction of two
basic parameters A and p according to (4.61) [9]

e. e. .
Quadratic forms according to (4.60) [9]: A= e‘—z, o= ei—o, the relations (2.43) take the form
il il
3
WP ==(e: -2 ), 3
&y 8( i 12) hP[—:,f _g(l_}\/z)a

il

( e; —el Fajel, —e; ) +4ef}: _ 3 — 2 )

1 |:\/ 1~ €io \/ 0 P‘a_l6efl |:(\/1 H2+\/;L2 Hz) +4Hz:|’
3502, _ _ h 3 2
_16|:2(er.1+82) (\/e ezD*\/e e ) } IPI'=163_2 (\/l—pzi\/;\‘z—pz) = (247)
" P _i( \/ et —e t \/ e, - ;o) ) (2.43) and the integrals J, J,, J, are expressed in terms of

1?22
4

the basic parameters A and TR
Substituting (2.43) into (2.10)—(2.13), we obtain the . 6,h
integrals J , J., J.: ! e, \/1 i+ \/kz e

1292 %3
l‘\/l—uz i\/kz—pz +

+\/7\,2 -’ -(\/kz -’ i\/l—
x1

3 ! ‘\/l—pz i\/Kz —p?
\/ ’ (\/\/;2 10 —\/ ' ) (2.44) —J1-p ‘(\/l‘“z i‘/?“z_uz)

—\/ei—efo-(x/e% 27 -4) e KO
ez’l(\/l_H2 i\/KZ—MZ)

£

.rl_ .r{]—\/ .r2_er
e, e —e £ e —e

a ) (2.48)

;o 5,1 (e, -e,) . i (1-2) ) . (2.49)
+ 7
(\/e,l—em_\/e,z {0) (\/l—pzi\/Kz—Mz)
+ Wei k) J s (2.45)

2(Jel VB )
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Table 2.1. Coordinates curve Q , Q. (the expanded version of table 4 [9]).

1l 0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09
0.00 er 0.0000 |0.0905 (02190 03473 (04676 |0.5781 (06789 (07706 |0.B541 09303
Qm 1.0000 09502 |0.8558 (0.7447 |0.6283 [0.5122 (03995 02014 (0.1887 |0.0916
0.01 er 0.0028 [0.1028 (02320 03597 04791 |0.588B6 (06885 (0.V793 |0.8621 09378
Qm 09000 [09421 |(0.8452 |0.7332 (06166 |0.5008 (03884 (02809 |0.1787 |0.0822
0.02 er 0.0085 |0.1153 (02450 03721 (04905 |0.5990 06980 (0.78B0 |0.B699 00448
Qm 09967 |0.9336 (0.8344 07216 (06049 04894 03774 (02704 |0.1688 |0.0728
0.03 er 0.0159 [0.1280 (02580 (03843 05018 |0.6094 (07073 (07965 (08777 09519
Qm 09933 |09248 (0.8236 |0.7100 (05933 |04780 03665 (02600 |0.1590 00635
0.04 er 0.0245 [0.1409 (02710 03965 05130 |0.6196 (07166 (0.BOSD |0.BE54 09580
Qm 09891 |09156 (0.8125 (06984 (05816 04666 (03556 (02497 |0.1492 00543
0.05 er 0.0341 [0.1538 (02839 04086 (05241 |0.6297 07258 (08134 |0.8931 09659
Qm 09841 |09062 |(0.8014 06867 (05700 04553 03448 (02394 (01395 00451
0.06 er 00444 |0.1667 (02967 (04206 (05351 |0.6397 |0.7350 (08217 |0.9007 09720
Qm 09784 |0.8966 (0.7902 06751 (05584 (04441 03340 (02201 |0.1298 |0.0360
0.07 er 0.0553 [0.1798 (03094 (04325 05460 |0.6497 (07440 (08299 (09082 09797
Qm 09721 |0.8867 (0.7790 06634 (05468 (04328 03233 (02189 |0.1201 |0.0269
0.08 Qm 0.0667 |0.1928 (03221 (04443 (05568 |0.6595 (07530 [0.B3BD |0.9156 |0D.9865
Qm 09653 |0.8766 (0.7676 (06517 (05353 (04217 03126 (02088 |0.1106 |0.0179
0.09 er 0.0784 |02059 (03347 (04560 (05675 |0.6693 |0.7618 [0B461 |0.9230 09933
Qm 09580 |0.8663 (0.7562 |0.6400 (05237 (04105 (03020 (01987 |0.1011 |0.0089
1.00 er 1.0000
Qm 0.0000
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_ Crsh3 ()\, +1) _ J = G;h3 (eiz +ei1) 4+
e, (it 207 ) #(Vei = - Jet e )
3h(1-27) L 3h(ef-e)

- 2 - J -
4(J1—p2 £ 02— )2 4(\/631 —¢, —Jen—eh )2 2
3?2 |:(\/1_H2 1\/7L2 _? )2 AU h* |:(\/efl -el +\/eiz2 -e’ )2 + 43;20:|

2 } (2.50) . "l
3(Vi-p £ ) ’ INEEEEN Y = G359

In case of dominating bending strains of the formula  Taking into account introduction of two key
(2.44)-(2.46) become parametres A and p according to (4.61) [9] in case of

dominating bending strains of the formula (2.51)-
\/ e + \/e _ez (2.53) become:

J =

J = c.h
s T
xIn s (251) .
& (1+J1—],L2 )(?L +4/A7 —u.z) @37)
o,k (ei2 —ei.]) xIn 2
= + u

2

(Ve =ch+er=h ) L ok
.

+
h(ezzl 8122) (\/1_“-2"‘\/?\2—],[2)2
+ J, s (2.52) , > (2.58)
(\/e —e +\/e —ez ) + h(l—l) J.
2(\/171-1.2+\/12*I-L2 )2 1
3
g = U”’(e ve) P
Vet V] ]
. %h( €; 62) - ‘ X 3]1(1712)

4(\/651 B em N \/efz - efzo ) 4(\/1— 1,1.2 +-\/K2 — 1,1.2 )2 no

2 > 2 2 2V 2
_h |:(\/ei1 € \/eiz efo) ':4eio:|‘]l. (2.53) ) P [(\/l_uz _\/7\2 _u )2 +4I~l‘2:|
8(\/31.2] —e +\/e’f2 —efo) 8(\/1—[.1-2 +\/?Lz 0 )2

In case of dominating lengthening of a middle surface
from formulas (2.44)-(2.46) it is found:

J.  (2.59)

In case of dominating lengthening of a middle surface
from formulas (2.54)-(2.56) it is found:

= o.h (e”Jr e"zz_ef”) o, (l +ﬂ)‘
Jl—\/ﬂ = m(ﬁ\/:) (2.54) | ) | (2.60)
oo e) o)
J, = + J,= s ]
(V= ei=at) (v
h(et-ed) ’ (2.55) R = 2.61)
i I N 2z 2 T\ !
+2(\/gf]—efo—\/efz_efo )2 ! z(ﬂfﬂ)
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o, (A +1) The relations (4.45) [9] — (2.26) can be given a
— 0\ - different form if we introduce the new integral
( S L ) according to (4.28) [9]
3n(1-27) J X i
+ =
4( o m)z Jo = DB =20 Ry TP = J;Gse,.d::
2

s [(Jluz +4/A - )Z+4pz} g
- —J. @) N S
w o w) s fonrann,
2

Intensity of deformations (2.1), taking into account
(2.43) it is possible to present in a kind:

h
2
Jo—fd J-de:, X?=+Je+bzra?,

2
i[(\/efl—efo$\/ei—e§)) +49f20}_ ‘%
ef = ) . (263) c= P b——ZPE),, L‘J:])}E. (267)
—i(ei —e )+ (\/ € —\/ €n ,o) This integral tabular. According to the formula
. 380.201 [42]
According to (2.63) integrals in formulas (4.25) [9]: i
h h h 2
2 2 .2 \/5 2az+b) .t (4ac-b* d= ?
dz t zdz z°dz —— 2
legs A JEZGSJ. = Jo 5 O [ e JX S J.X; -
e e g E

1 -
2 _ /c+bz+azz, X?=+e+bz+az?, ¢c=P, b= -2F,, a=P,. (2‘68)

From here follows

1 > 2 - 2 3\
C‘z[(\/eﬁ % e - ef‘o)*“%} 5, =Y 1

= X
1), . 2 : 2 4P
b=—(éi-i), a=— (Ve i) . .60 f -
Considering (2.8)-(2.9), transformations become less (hPx - 21Dax) i P+
bulky and to receive (2.44)-(2.46) it is possible much X _ +
more fast. Jr(}:uvaf +2P87) PaJtha?Jrh_pT
The relations (2.44)-(2.46) are equivalent to (4.38), (4.59), : : 47
(4.60) [9]. This can be seen if (4.38) [9] leads to the form . PEPZII: P, 7 (2.69)
P )
‘]1: \/51 3 zzijl—i_iA: . . ’ . . .
5 p2 ” 4P, Cons1der1ng (2.8?, (2.68) it is possible to express an
\;’_ ) (2.65)  integral through integrals J,and J,:
3 2
Ji= 3 1 i . 1 72
53 - 1 2 -
8};{_— r x Zoyr Xt b Id-l N
and to consider identities J = ﬁ - 2 Ha 24 43 _
hP_ = 3 _¢ R cr d-
£y g(efl € ) + 5 J. T

=

o X: _h
3 R T > - -3
Pg[(\/ea—e;o T e e ) +4e;o} :

16 5 R
3 - c
3 2, 2 2 2 2 7V =—o,|=-X? Shed Ly e b
:El:z(enJrexz)(\/eue:o +‘\/exze:0):|= 2 S|:2 i|_[_1 477 27!
2
K 3 2 2 2 7Y : 3
4 B,(_:E(\/eﬂ*eio J—r\/eizfeio) . (266) X?=~Jc+bz+az", c=P, b= 72}::_7, ] P)r (270)
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Then (2.69) becomes (2.71)

\/505 1

-— X

2 4

W W
X \/PE—hPEﬁ—P}, +\/PE+hPE;,+—P; =
h 4 h 2 4 h

P, P
LT, +—=J,
2 2

0

2.71)

Integral (2.69) taking into account (2.4)

2 2 2
(ei1 +3e, —4eﬁ0)eﬁ2 +
c.h

5

2 2 2
+(3.ef.1 +e, —4e ) e,

4(2¢; + 2, 4ep)

2
2 2
1 (ei—€3)
N S W J.

2| 7 4(26} 26, - 4e})

J, = +

(2.72)

According to (2.5) formula (2.72) for an integral J,
becomes

) o, bl (14307 —4p )i +(3+07 - 4*) |

= de, (2+22° —4p?) N
(12
oy p?— 4(2+273 _4}1_2) (2.73)

The final relation (4.45) [9] — (2.26) taking into
account (2.67) takes the form:

Py=JJ,~(JJ,~J)P,
P,=JJ,~(JJ,~ )P,
Py, =JJ,~(JJ,— )P, .

(2.74)

The relations (2.74), (2.26) and (4.70") [9] are
equivalent.

2.2. Approximate dependencies of the final relation

The integrals J |, J,, J,, J, can be found by the Simpson
formula, performing integration within each half of the
section, since the intensity of deformations e, function
can lose monotonicity at z = 0. According to (2.14—

2.15), (2.67), the approximate values of the integrals:

1 1 2 16
—+——+—+
c,h| % G2 o \/12230 +6e; —2e,
SR 16 ’

+
J12¢ +6el, —2¢

Aleksandr V. Starov, Sergei JU. Kalashnikov

11 8
—— +
L _op| e e J12¢2 + 662 —26%
P24 8 ’
+
J12¢2 +6¢% —2¢
11 4
—t—+
J_(TSSF"A3 € G \/123520"'63521_2332
=g A . (2.75)
+
J1262 + 66 —2¢
3 c.h
Ozi. ><
4 12
(2.76)

e, +e,+2e,+

X .
2 2 2 2 2 2
1126}, + 662 —2e2 +,12¢%, + 6e?, — 2

Taking into account (2.5) formulas (2.75)-(2.76)
become:

1 2 16
I+ —+—+ +
L _oh| Mo V12n +6-22
' 12e, 16 ’
+
J12u? +6A% -2
,1+l, 8 +
o, A \/12p3‘+6—2l2
? 24e, 8 ’
+
JI2p2 602 -2
1 4
1+—+ +
o I AooJ12p? +6-227
7 48, 4 (277
il 4
J12u? + 607 -2
3 o[ 1+A+2u+ 1202 +6-20% +
J -3.9 i . 278

=2
4 12¢4| 4 121 +60 -2

Believing that within each half of section intensity of
deformations e, changes under the linear law

e —e. +E e, —e OS:Sﬁ
i i0 A ( i2 !0)5‘ 2’ .

) , , According to
€; :ef{l_?(en_em)v _ESZSO

formulas (90.1, 91.1, 92.1) [42]

88 International Journal for Computational Civil and Structural Engineering



A.A. llyushin's Final Relation, Alternative Equivalent Relations and Versions of Its Approximation in Problems of Elastic
Deformation of Plates and Shells. Part 2: Alternative Equivalent Relations of A.A. Ilyushin

o, 3 c.h
J,=—=|Inla+bz| %, Jy==-—"(1+2+2 2.83
7 :cs_[(a%‘ _aln \a+bs\]g Integrals J, Jz, . J, (2.80) and (2.83) also can be
> p? —g ’ found under Simpson's formula, executing integration
h within each half of section
, L
+bz : '
JBZG—; u—Za(aer:)Jrazln‘aer:‘ , Ghl 1 1 2 8 8
b . = —+—+—+ -~ .
= 121 e, e, e (erl+ef0) (9124'9;0)
a=e,, b—l(eﬂ—em), OSSSE, J _Ushz o1 4 " 4
h 2 2T P
1 h 24 € €n (e:l+ef0) ( 12+eIO)
b=——(e1—e,), ——<z<0. (2.79) ; -
h 2 ookl 1, 2 2 2.84)
From here follows P48 ) (%1"‘%) (er'?, +ef-o)_ ’ .
J = c.h I &2 c.h lnﬂ, 3 o
2(9,2 em) € 2(9,1 em) € .,."O:Z T(e +e, +2e, ) (2.85)
hz
Jy=- % 2 {(en _em)_em In }"
4(ex —e0) o ch(. 1 8§ 8
”? D e M e e )
c
- 2 |:(e!2 em) €0 lﬂi], 1
4(9;'2_9;0) €io Gshz[ 1 4 4 ]
27 A >
5 (Se%Jrefl —4eme,.1)+ e, Aol+p A+
T fesP(i 1,2, 2
16(e, —e,) +2efglne—” 48\ A 1+p Adp)
i0
3 ch
) . Jy==-——(1+A1+2p). :
+L3{(Se§] +e, —4eme,.2)+29§1 lnei}, ° 4 4e, ( },l) (2.86)
16(9{.2 —&, €io

2.80
. On the basis regression the analysis of a curve (2.41)
Jy = 3 o.h (en te,+ 2%)_ (2.81) (the minimum line Q , table 2.1) are received
4 4 versions of its approximation by polynoms of the
second, third and fourth degree and its first derivative

Taking into account (2.5) formulas (2.80)-(2.81)

become: is found:
J, = G h 2 G h ]ni“ Polynom of the second degree.
2h=n)en b 2(1-u ), n O =1.0099235-0.642635-Q, —0.3718551- 07,
n 1
J2=—0572|:(1_u)_”_]n_:|+ y=1.0099235-0.642635x—0.3718551x",
4(1_”') € ay
, & o _0.642635-2-0.3718551x,
c_h s ox
+————|(A—p)-pl=|,
Ar-n)e = D o626 P —_ 1386
i Ox| _ Ox|,_
Jo=— % (e s1-ap)e2im b ’ 1
16(1—p) e, i
G

A
— = |(3pt+ A —4p +2p.2h1—],
16(2—n) e, {( M (2.82)
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Polynom of the third degree.
Q. =1.0037431-0.5575663-Q, —0.586892- O’ +
+0.1423386-0’,
¥ =1.0037431-0.5575663x —0.586892x” +
+0.1423386x°,

% =—0.5575663—2-0.586892 x +3-0.1423386 x~,
X

@ =-0.5576, @ =-1.3043.

Gx =0 ax x=1

Polynom of the fourth degree.
Q. =1.0019337-0.5128967-Q —
—0.7948953- 07 +0.4669156 -0’ —
-0.1613785-0",
y=1.0019337—-0.5128967 x — 0.7948953 x* +
+0.4669156x° —0.1613785x",

;ﬁ =—0.5128967—-2-0.7948953 x +
x

+3-0.4669156 x> —4-0.1613785x°,

@ =-0.5129, @ =—-1.3475.
ox| o Ox

x=1

Infig. 2.1-2.3 the curve (2.41) (table 2.1) (the minimum
line O )is presented, the variants of its approximation
by polynomials of the second, third and fourth degree
(the lines merge) and its first derivative on the basis of
regression analysis. As you can see from the graphs, a
polynomial of the second degree is sufficient.

~
08
06
04
02 =N
c ~
S o0
I
8 02
g o4
- 06
S .
o 08
o T~~~
“E’_ -1
T .42 —
o —
14
16
18
2

“0 01 02 03 04 05 06 07 08 09 1

Ta6nuua: 101 anemeHTOB(a)
Y(x)=-0.3718551*x"2-0.642635"x+1.0099235
Y(x)=-0.3718551*2*x-0.642635

Figure 2.1. Curve (2.41) (table 2.1, a minimum line
Q ), version of approximation by a polynom of the
second degree and its first derivative on the basis
regression the analysis.
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Perpeccus, regression

“0 01 02 03 04 05 06 07 08 09 1

Tabnuua: 101 anemeHTOB(a)
Y(x)=0.1423386"x" 3-0.586892"x" 2-0.5575663"x+1.0037431
Y(x)=0.1423386"3"x" 2-0.586892*2"x-0.5575663

Figure 2.2. Curve (2.41) (table 2.1, a minimum line
Q. ), version of approximation by a polynom of
the third degree and its first derivative on the basis
regression the analysis.

1
08
06
04 I~
02

0

02

04

06 ™

08

-
a2

14

16

18

P~

Perpeccus, regression

2
0 01 02 03 04 05 06 07 08 09 1

Ta6nuua: 101 anemeHToB(a)
Y(x)=-0.1613785"x"4+0.4669156"x" 3-0.7948953"x" 2-0.5128967*x+1.0019337
Y(x)=-0.1613785"4*x" 3+0.4669156*3*x" 2-0.7948953"2"x-0.5128967

Figure 2.3. Curve (2.41) (table 2.1, a minimum line
0 .), version of approximation by a polynom of the
fourth degree and its first derivative on the basis
regression the analysis.

. 09 \‘

s AN N

£ o0s N

ol 1IN\

\\ N

g 02 \\\ \\

£ 02 SNSRI
NN
O \\

0
0O 01 02 03 04 05 06 07 08 09 1

Ta6nuua: 101 anemeHToB(a)
—_— 3120
— y+x"0.5386-1=0

y-(1%)"2=0

Figure 2.4. Curve (2.41) (table 2.1) (the minimum line
Q. ), variants of its approximation by a power law, and
also the surface cross section (2.26) with a parabolic
cylinder O —(1-Q )’ = 0 (maximum line Q ).
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Table 2.2. Coordinates of points of a surface Q , QO , Q onlines /. = const for a dominating bending of
a shell (the expanded version of table 5 [9]).

L 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
A

0 1.0 0.00000 |0.09050 |(0.21897 |0.34726 |0.46759 |0.57813 |0.67891 |0.77062 |0.85414 |0.93033 (1.00000

7

Q 1.00000 (0.95024 |0.85582 |0.74470 |0.62830 [0.51225 |0.39946 |(0.29140 |(0.18871 |0.09159 |0.00000

Rl

0 0.00000 |0.00000 |(0.00000 |0.00000 |0.00000 |0.00000 (0.00000 |0.00000 |0.00000 |0.00000 [0.00000

ik

0 0.9 0.00277 |0.09967 0.23533 |0.36942 |0.49421 |0.60812 |(0.71152 |0.80540 |0.89130 |0.98296

A7

Q 0.99447 10.94107 |0.84032 |0.72261 |0.60010 |0.47868 |0.36119 |0.24887 |0.14161 |0.02263

AN

0 -0.05249 |-0.04451 |-0.03491 |-0.02663 |-0.01984 |-0.01434 |-0.00989 |-0.00627 |-0.00330 |-0.00049

ik

0 0.8 0.01235 |0.11627 |0.25958 |0.39974 |0.52919 |0.64683 |0.75362 |0.85192 |0.96525

i

Q 0.97546 |0.91947 |0.81312 |(0.68917 |(0.56061 |0.43347 |0.31025 |0.19067 |0.04585

Rk

0 -0.10974 |-0.09179 |-0.07067 |-0.05278 |-0.03831 |-0.02672 |-0.01740 |-0.00979 |-0.00212

ik

0 0.7 0.03114 |0.14275 |0.29415 |0.44066 |0.57518 |0.69753 |0.81067 |0.94710

B

0 0.93869 |0.88187 |(0.77115 |0.64145 |0.50666 [0.37264 (0.23984 0.06914

i

0 -0.17098 |-0.14060 |-0.10576 |-0.07681 |-0.05374 |-0.03540 |-0.02056 |-0.00522

ik

Q 0.6 0.06250 |0.18247 |0.34238 |0.49568 |0.63638 |0.76701 |0.92891

i

0 0.87891 |0.82409 |0.71076 |0.57572 |0.43364 |0.28818 |0.09161

Rk

0 -0.23438 |-0.18858 |-0.13757 |-0.09607 |-0.06339 |-0.03727 |-0.01015

ik

0 0.5 0.11111 |0.24010 |0.40897 |(0.57016 |(0.72111 |0.91146

7

0 0.79012 |0.74153 |0.62771 |0.48690 |0.33257 |0.11168

AN

0 -0.29630 |-0.23153 |-0.16178 |-0.10618 |-0.06235 |-0.01731

ik

0 0.4 0.18367 |0.32224 |0.50097 |0.67432 |0.89616

-1

0 0.66639 |0.62989 |0.51718 |0.36587 |0.12669

Rk

0 -0.34985 |-0.26211 |-0.17111 |-0.09927 |-0.02699

ik

0 0.3 0.28994 |0.43862 (0.63097 |0.88572

7

0 0.50418 |0.48669 (0.37210 |0.13201

AN

0 -0.38234 |-0.26757 |-0.15260 |-0.03900

il

0 0.2 0.44444 |0.60511 |0.88564

B

0 0.30864 |0.31363 |0.11966

AN

Q -0.37037 |-0.22529 |-0.05138

ik

0 0.1 0.66942 |0.90868

-1

0 0.10928 |0.07641

Rk

Q -0.27047 |-0.05552

S iiiid

0 0.0 1.00000

7

0 0.00000

AN

Qm 0.00000
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Table 2.3. Coordinates of points of a surface Q , Q , Q on lines 4 = const for a dominating stretching
— compression.

18 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
A
Q 1.0 1.00000 |1.00000 |1.00000 {1.00000 |(1.00000 |1.00000 |1.00000 {1.00000 [1.00000 |(1.00000 |1.00000
Bl
Q 0.00000 |0.00000 |(0.00000 |(0.00000 |0.00000 |0.00000 (0.00000 [0.00000 |(0.00000 |0.00000 |0.00000
R
Q 0.00000 |0.00000 |0.00000 |0.00000 |0.00000 |0.00000 |0.00000 |0.00000 |0.00000 |0.00000 |0.00000
B il
Q 0.9 1.00000 [0.99999 ]0.99996 |0.99990 (0.99980 |0.99964 |0.99938 |0.99889 |0.99766 |0.98296
Sl
Q 0.00000 [0.00001 |(0.00006 |(0.00014 |0.00027 |0.00048 |(0.00082 |0.00149 |0.00312 |0.02263
| =m
Q 0.00000 [0.00000 |0.00000 |0.00000 |-0.00001 [-0.00001 |-0.00002 |-0.00003 |-0.00007 |-0.00049
o
Q 0.8 1.00000 |0.99995 |0.99978 |0.99947 |0.99896 |0.99810 |0.99653 |0.99302 |0.96525
B
Q 0.00000 [0.00007 |0.00029 (0.00070 |0.00138 |0.00253 |[0.00461 |0.00927 |0.04585
(==n
Q 0.00000 [0.00000 |-0.00001 |-0.00003 |-0.00006 [-0.00011 [-0.00021 [-0.00042 |-0.00212
(==
Q 0.7 1.00000 |0.99985 [0.99936 [0.99843 |0.99683 (0.99392 |0.98772 |0.94710
47
Q 0.00000 |0.00020 |0.00085 |0.00207 |0.00420 |0.00802 |0.01619 |0.06914
i
Q 0.00000 [-0.00001 |-0.00006 |-0.00015 |-0.00030 |-0.00058 |-0.00118 [-0.00522
B il
Q 0.6 1.00000 |0.99964 |0.99846 [0.99614 |(0.99182 |0.98274 |0.92891
Erl
Q 0.00000 |0.00048 |0.00202 |0.00506 |0.01069 |0.02253 |0.09161
| =m
Q 0.00000 |[-0.00005 |-0.00021 |-0.00053 |-0.00111 |-0.00237 |-0.01015
B il
Q 0.5 1.00000 |0.99920 [0.99654 [0.99099 (0.97904 |0.91146
47
Q 0.00000 [0.00103 |0.00446 |(0.01160 |0.02693 |0.11168
==l
Q 0.00000 |[-0.00015 |-0.00063 |-0.00166 |-0.00390 |-0.01731
(R i
Q 0.4 1.00000 |0.99826 |0.99223 |0.97781 |0.89616
7
Q 0.00000 [0.00219 |0.00977 |(0.02780 |0.12669
i
Q 0.00000 [-0.00042 |-0.00188 |-0.00542 |-0.02699
(==
Q 0.3 1.00000 |0.99604 |0.98065 |0.88572
Erl
Q 0.00000 [0.00479 |0.02327 |(0.13201
il
Q 0.00000 |-0.00124 |-0.00612 |-0.03900
Rl
Q 0.2 1.00000 |0.98930 |0.88564
Sl
Q 0.00000 [0.01197 |0.11966
=il
Q 0.00000 |-0.00440 |-0.05138
(R i
0.1 1.00000 |0.90868
9,
Q 0.00000 [0.07641
(==n
Q 0.00000 |[-0.05552
o
0.0 1.00000
9,
0.00000
Q-H.I‘
0.00000
Q-H}H
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Table 2.4. Coordinates of points of a sur- Table 2.5. Coordinates of points of a sur-
face O, O,., O, on lines A=const for| tace O,, O,, O,, on lines A=const for
a dominating bending of a shell. a dominating stretching — compression.

A Moo M 9, 9, O A (LI L 0, 9, O

10 0.0 0.00000 [0.00000 [1.00000 [0.00000 1.0 0.0 1.00000 [1.00000 0.00000 [0.00000
1.0 0.1 0.10000 [0.09050 [0.95024 [0.00000 1.0 0.1 1.00000 [1.00000 [0.00000 [0.00000
10 0.2 0.20000 [0.21897 [0.85582 [0.00000 1.0 0.2 1.00000 [1.00000 0.00000 [0.00000
1.0 0.3 0.30000 [0.34726 [0.74470 [0.00000 1.0 0.3 1.00000 [1.00000 0.00000 [0.00000
1.0 0.4 0.40000 [0.46759 [0.62830 [0.00000 1.0 0.4 1.00000 [1.00000 [0.00000 [0.00000
1.0 0.5 0.50000 [0.57813 [0.51225 [0.00000 1.0 0.5 1.00000 [1.00000 [0.00000 [0.00000
1.0 0.6 0.60000 [0.67891 [0.39946 [0.00000 1.0 0.6 1.00000 [1.00000 [0.00000 [0.00000
1.0 0.7 0.70000 [0.77062 [0.29140 [0.00000 1.0 0.7 1.00000 [1.00000 [0.00000 [0.00000
10 0.8 0.80000 [0.85414 [0.18871 [0.00000 1.0 0.8 1.00000 [1.00000 [0.00000 [0.00000
1.0 0.9 0.90000 [0.93033 [0.09159 [0.00000 1.0 0.9 1.00000 [1.00000 [0.00000 [0.00000
1.0 1.0 1.00000 [1.00000 [0.00000 [0.00000 1.0 1.0 1.00000 [1.00000 0.00000 [0.00000
0.9 0.0 0.05000 [0.00277 [0.99447 |[-0.05249 0.9 0.0 0.95000 [1.00000 [0.00000 0.00000
0.9 0.1 0.11190 [0.09967 [0.04107 |-0.04451 0.9 0.1 0.95000 [0.99999 [0.00001 0.00000
0.9 0.2 0.20640 [0.23533 [0.84032 |-0.03491 0.9 0.2 0.94990 [0.99996 [0.00006 [0.00000
0.9 0.3 0.30460 [0.36942 [0.72261 |-0.02663 0.9 0.3 0.94990 0.99990 [0.00014 0.00000
0.9 0.4 0.40380 [0.49421 [0.60010 |[-0.01984 0.9 0.4 0.94970 [0.99980 [0.00027 |-0.00001
0.9 0.5 0.50350 [0.60812 [0.47868 |-0.01434 0.9 0.5 0.94950 [0.99964 [0.00048 |0.00001
0.9 0.6 0.60350 [0.71152 [0.36119 [-0.00989 0.9 0.6 0.94910 [0.99938 [0.00082 |-0.00002
0.9 0.7 0.70390 [0.80540 [0.24887 |[-0.00627 0.9 0.7 0.94840 [0.99889 [0.00149 |0.00003
0.9 0.8 0.80550 [0.89130 [0.14161 |[-0.00330 0.9 0.8 0.94670 [0.99766 [0.00312 |0.00007
0.9 0.9 0.92600 [0.98296 [0.02263 |-0.00049 0.9 0.9 0.92600 [0.98206 [0.02263 |-0.00049
0.8 0.0 0.10000 [0.01235 [0.97546 |-0.10974 0.8 0.0 0.90000 [1.00000 [0.00000 0.00000
0.8 0.1 0.14190 [0.11627 [0.91947 [-0.09179 0.8 0.1 0.89990 [0.99995 [0.00007 [0.00000
0.8 0.2 0.22480 [0.25958 [0.81312 [-0.07067 0.8 0.2 0.89970 [0.99978 [0.00020 |-0.00001
0.8 0.3 0.31820 [0.39974 [0.68917 [-0.05278 0.8 0.3 0.89930 [0.99947 [0.00070 |-0.00003
0.8 0.4 0.41530 [0.52919 [0.56061 |-0.03831 0.8 0.4 0.89860 [0.99896 [0.00138 |-0.00006
0.8 0.5 0.51440 [0.64683 [0.43347 [-0.02672 0.8 0.5 0.89740 (0.99810 [0.00253 |-0.00011
0.8 0.6 0.61510 [0.75362 [0.31025 |[-0.01740 0.8 0.6 0.89540 [0.99653 [0.00461 |-0.00021
0.8 0.7 0.71880 [0.85192 [0.19067 [-0.00979 0.8 0.7 0.89070 [0.99302 [0.00927 |-0.00042
0.8 0.8 0.85440 [0.96525 [0.04585 |-0.00212 0.8 0.8 0.85440 [0.96525 [0.04585 [-0.00212
0.7 0.0 0.15000 [0.03114 [0.03869 [-0.17008 0.7 0.0 0.85000 [1.00000 [0.00000 0.00000
0.7 0.1 0.18120 [0.14275 [0.88187 [-0.14060 0.7 0.1 0.84980 [0.99985 [0.00020 |-0.00001
0.7 0.2 0.25270 [0.29415 [0.77115 [-0.10576 0.7 0.2 0.84920 0.99936 [0.00085 [-0.00006
0.7 0.3 0.34030 [0.44066 [0.64145 [-0.07681 0.7 0.3 0.84800 [0.99843 [0.00207 |0.00015
0.7 0.4 0.43500 [0.57518 [0.50666 |[-0.05374 0.7 0.4 0.84600 [0.99683 [0.00420 [-0.00030
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0.7 0.5 0.53420 ]0.69753 |0.37264 |-0.03540 0.7 0.5 0.84240 0.99392 1|0.00802 |-0.00058
0.7 0.6 0.63900 |0.81067 [0.23984 |-0.02056 0.7 0.6 0.83470 (0.98772 |0.01619 [-0.00118
0.7 0.7 0.78580 10.94710 |0.06914 |-0.00522 0.7 0.7 0.78580 (0.94710 1|0.06914 |-0.00522
0.6 0.0 0.20000 ]0.06250 |0.87891 |-0.23438 0.6 0.0 0.80000 [1.00000 |0.00000 (0.00000
0.6 0.1 0.22510 |0.18247 |0.82409 |-0.18858 0.6 0.1 0.79960 (0.99964 |0.00048 [-0.00005
0.6 0.2 0.28790 |0.34238 |0.71076 |-0.13757 0.6 0.2 0.79820 (0.99846 (0.00202 [-0.00021
0.6 0.3 0.37040 |0.49568 |0.57572 |-0.09607 0.6 0.3 0.79550 (0.99614 |0.00506 [-0.00053
0.6 0.4 0.46370 |0.63638 |0.43364 |-0.06339 0.6 0.4 0.79050 (0.99182 |0.01069 [-0.00111
0.6 0.5 0.56690 [0.76701 |0.28818 |-0.03727 0.6 0.5 0.78010 (0.98274 0.02253 [-0.00237
0.6 0.6 0.72110 |0.92891 |(0.09161 |-0.01015 0.6 0.6 0.72110 (0.92891 (0.09161 [-0.01015
0.5 0.0 0.25000 |0.11111 |0.79012 |-0.29630 0.5 0.0 0.75000 |[1.00000 |0.00000 (0.00000
0.5 0.1 0.27160 ]0.24010 [0.74153 |-0.23153 0.5 0.1 0.74910 (0.99920 |0.00103 [-0.00015
0.5 0.2 0.32860 |0.40897 |0.62771 |-0.16178 0.5 0.2 0.74630 (0.99654 (0.00446 [-0.00063
0.5 0.3 0.40830 |0.57016 |0.48690 |-0.10618 0.5 0.3 0.74050 (0.99099 (0.01160 [-0.00166
0.5 0.4 0.50500 ]0.72111 |0.33257 |-0.06235 0.5 0.4 0.72800 (0.97904 (0.02693 [-0.00390
0.5 0.5 0.66140 [0.91146 |(0.11168 |-0.01731 0.5 0.5 0.66140 (0.91146 (0.11168 [0.01731
0.4 0.0 0.30000 |0.18367 |0.66639 |-0.34985 0.4 0.0 0.70000 (1.00000 |0.00000 (0.00000
0.4 0.1 0.31990 ]0.32224 |0.62989 |-0.26211 0.4 0.1 0.69830 (0.99826 (0.00219 [-0.00042
0.4 0.2 0.37460 |0.50097 |0.51718 |-0.17111 0.4 0.2 0.69260 (0.99223 |0.00977 [-0.00188
0.4 0.3 0.45700 [0.67432 |0.36587 |-0.09927 0.4 0.3 0.67910 (0.97781 (0.02780 [-0.00542
0.4 0.4 0.60830 |0.89616 [0.12669 |-0.02699 0.4 0.4 0.60830 (0.89616 (0.12669 [-0.02699
0.5 0.5 0.66140 [0.91146 |(0.11168 |-0.01731 0.5 0.5 0.66140 0.91146 (0.11168 [-0.01731
0.4 0.0 0.30000 [0.18367 |0.66639 |-0.34985 0.4 0.0 0.70000 (1.00000 |0.00000 (0.00000
0.4 0.1 0.31990 [0.32224 |0.62989 |-0.26211 0.4 0.1 0.69830 (0.99826 (0.00219 [-0.00042
0.4 0.2 0.37460 |0.50097 |0.51718 |-0.17111 0.4 0.2 0.69260 (0.99223 1|0.00977 [-0.00188
0.4 0.3 0.45700 |0.67432 |0.36587 |-0.09927 0.4 0.3 0.67910 0.97781 [0.02780 [-0.00542
0.4 0.4 0.60830 |0.89616 [0.12669 |-0.02699 0.4 0.4 0.60830 (0.89616 (0.12669 [-0.02699
0.3 0.0 0.35000 ]0.28994 |0.50418 |-0.38234 0.3 0.0 0.65000 |[1.00000 |0.00000 (0.00000
0.3 0.1 0.36980 |0.43862 (0.48669 |-0.26757 0.3 0.1 0.64670 0.99604 [0.00479 |-0.00124
0.3 0.2 0.42770 ]0.63097 [0.37210 |-0.15260 0.3 0.2 0.63410 (0.98065 (0.02327 |-0.00612
0.3 0.3 0.56350 |0.88572 |0.13201 |-0.03900 0.3 0.3 0.56350 (0.88572 |0.13201 [-0.03900
0.2 0.0 0.40000 |0.44444 |0.30864 |-0.37037 0.2 0.0 0.60000 |[1.00000 |0.00000 (0.00000
0.2 0.1 0.42290 ]0.60511 |0.31363 |-0.22529 0.2 0.1 0.59260 (0.98930 1(0.01197 [-0.00440
0.2 0.2 0.52920 ]0.88564 [0.11966 |-0.05138 0.2 0.2 0.52920 (0.88564 |0.11966 [-0.05138
0.1 0.0 0.45000 |0.66942 |0.10928 |-0.27047 0.1 0.0 0.55000 |[1.00000 |0.00000 (0.00000
0.1 0.1 0.50740 |0.90868 [0.07641 |-0.05552 0.1 0.1 0.50740 (0.90868 (0.07641 [-0.05552
0.0 0.0 0.50000 |1.00000 [0.00000 |0.00000 0.0 0.0 0.50000 |[1.00000 |0.00000 (0.00000
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A.A. llyushin's Final Relation, Alternative Equivalent Relations and Versions of Its Approximation in Problems of Elastic
Deformation of Plates and Shells. Part 2: Alternative Equivalent Relations of A.A. Ilyushin

In fig. 2.4 shows the curve (2.41) (table 2.1) (the
minimum line Q ), variants of its approximation
by a power law, and also the surface cross section
(2.26) with a parabolic cylinder O — (1 -Q )*=0
(maximum line Q). Other variants of approximation
are given in part 3 of the article.

CONCLUSIONS

Alternative dependences of the finite relationship
are developed, their equivalence to the relations
A.A. Ilyushin is proved, approximate dependences
of the final relationship are obtained. Based on the
regression analysis of the minimum line , variants
of its approximation by algebraic polynomials are
obtained.
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Abstract: This paper discusses the use of bar analogues for calculation of internal forces in the cross-sections of building structures,
which are modelled by a set of finite elements. It also introduces the concepts of bar analogues, explains their basic theoretical
premises and provides the results of the calculations of verification problems.

Keywords: bar analogues, finite elements, structural modeling, internal forces
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AHHOTanus: B craree paccMaTpuBaeTcss HOBBIM MOAXOZ K MOAEIMPOBAHUIO HECYIUX KOHCTpykuui. Ilonxon 3akirouaercs B
HCTIOJTF30BAaHUH CTEP)KHEBBIX aHAJIOTOB JJISI BRIYMCIICHUS YCHIMH B IMOMEPEYHBIX CEUCHHUIX CTPOUTEIBHBIX KOHCTPYKINH, MO-
JIETUPYEMBIX COBOKYITHOCTHIO KOHEUHBIX 3JIEMEHTOB. BBOISATCS MOHATHS CTEPIKHEBBIX aHAJIOTOB, Pa3bsCHSIIOTCS MX OCHOBHBIC
TEOPETUYECKUE MPENOCHUIKH, PUBOJIATCS PE3YJIbTAThl pacueTa BepU(PUKAITMOHHBIX 3a]1ad.

KnroueBble cjioBa: CTCPIKHEBBIC aHAJIOT'Y, KOHCYHBIC DJICMCHTBI, MOJACITIUPOBAHUEC KOHCprKL[PIfI, BHYTPCHHUEC yCUIINA

Information about the object and its stress-strain
state when calculating the bearing system, as a rule,
differs from the actual work of the structure. When
using the finite element method for modeling, the
choice of a particular type of finite element, firstly,
is done in order to ensure a sufficient degree of
correspondence between the mathematical model and
the actual operation of the simulated structure under
the given conditions [1]; secondly, it is important
to correctly model the joints between the elements,
which is necessary, first of all, for the analysis of
the calculation results and further design. Modern
software systems for strength analysis and design,
such as the LIRA-SAPR software package [2], when
calculating according to the classical model, make
it possible to determine the internal forces arising in
structural elements and use them to perform other
applied calculations: for strength, stability and for
the design of reinforced concrete, steel and reinforced
masonry structures. The values of internal forces in
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structural elements are indirectly influenced by the
choice of types of finite elements in modeling.
Modern BIM technologies imply obtaining a design
model in an automatic mode from architectural
models that operate on three-dimensional structural
elements. In this case, a number of load-bearing
building structures such as pylons, lintel zone,
deep beams, prefabricated floor slabs, diaphragms,
building stiffeners, etc., can contain only lamellar and
sometimes volumetric finite elements.

However, by the nature of their work, these structures
are similar to the pivot ones. The cross sections of
these structures are represented in the design models
by a set of finite elements and nodes. For a detailed
analysis of these structures, it is useful (and for
applied calculations it is necessary) to determine the
internal forces in their compound cross-sections,
similar to the forces in the cross-sections of the rods.
In the Software Package LIRA-SAPR, this problem
is solved by the system “Rod analogs”.
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Concepts of bar analogues

A bar analogue (Fig. 1) is a group of finite elements
and their nodes, logically connected according to
a certain rule that determines a special algorithm
for calculating internal forces in one bar finite
element. Internal forces in the design sections of
the "rod analogue" are calculated not based on the
displacements of its nodes, but by summing nodal
reactions from sets of selected finite elements. It is
assumed that each such set of finite elements forms
a composite cross-section of the analyzed structure,
and the nodes, reactions in which are summed up,
lie in the plane of this section. Such nodes and
elements will be called the original objects of the
"rod analogue".

The nodal reactions (nodal forces) of a finite element
mean the resultant force and the resultant moment
applied at the element node, which are the impact
of other model elements on the given node of this
finite element.

Figure 1. Bar analog: a—initial objects of the model,
b—nodes and elements of the initial section, ¢ — nodes
and elements of the final section, d — target bar ("bar
analog").

Volume 16, Issue 3, 2020

The vector of nodal reactions of the i-th finite element
is calculated by the formula (1):

R =K -Uj, (1)

where K, is the stiffness matrix of the i-th finite
element, U, is the vector of displacements of nodes
related to the i-th finite element.

The initial finite elements of a bar analog can be bar,
plate, volumetric finite elements, special elements, as
well as all kinds of their combinations. In this case,
the original elements and nodes can be those for
several "core analogues".

In order to determine the forces in the design sections
of the "bar analogue", sets of initial nodes and
elements are specified that form planar composite
sections of the structure under consideration. The
set that forms a composite section includes nodes
lying in the plane of this section and finite elements
adjacent to the section plane with nodes: rods — one
node, plates — one node or edge, volumetric FE —one
node, edge or face.

"Bar analogue" has two design sections — at the
beginning and at the end. If the analysis of a
composite structure requires a greater number of
design sections along its length, then it is necessary
to create a chain of bar analogues. The "bar analogue"
must be in a certain position in relation to the
considered composite structure: the planes of its
initial and final design sections must coincide with
the corresponding planes of the original composite
sections of the structure.

Algorithm for calculating internal forces

Internal forces in the calculated cross-section of the
"bar analogue" are calculated as follows.

1. The whole model is calculated, nodal reactions
from all elements are calculated.

2. In the composite section formed by n initial nodes
and m elements, the summed nodal reactions R and
M _ from these elements are calculated (Fig. 2).

2.1. The geometric center C of the composite section
is determined on the basis of the abutment areas A].
with the centers of gravity (xj; v zj) (2) of the original
finite elements to the plane of the composite section:
for a bar, its abutment area is calculated based on the
section area, for a plate — based on the plate thickness
and the distance between the nodes, for a volumetric
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FE — as the area of the face adjacent to the plane of
the composite section.

m m

Z(ijj) Z(A,-y,-)

Jj=1 Jj=1

m s VeSS
2.4
J=1

24,
Jj=1

Xo =

2

j=1

2.2. Nodal reactions from the initial elements — R,
(4) and M, (5) — in the composite section are summed
taking into account the shoulder d (3) between the
node point N, and the geometric center of the section C.

d,=x; —x; dy:yi_yc; d,=z,-2.; 3)

R.\'c = ; R.\'ij > R_\'c = ; Ryij > R:c = ; R:ij > (4)

M, =Y (M, -R,d. +R,d,);

i=1 j=1

n m

My =33 (M, ~Ryd, +Ryd.)s (5)

i=1 j=1

n m

M, =33 (M, -R,d, +Rd,).

i=1 j=1

Figure 2. Calculation of the summed nodal reactions

3. The summed nodal reactions reduced to the center
of the composite section are interpreted as internal
forces in the corresponding design section of the
target bar by converting from the global coordinate
system to the local coordinate system of the composite
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section. The local coordinate system of a compound
section is defined as a coordinate system with origin
at the geometric center of the compound section and
axes parallel to the local axes of the target bar.

Scope of ""bar analogues"

"Bar analogues" in SP LIRA-SAPR can be used to
determine internal forces at
1. linear static and dynamic calculations, except for
time-history dynamic analysis [3],

2. nonlinear calculations at the last stage of loading
(full load) [3],

3. calculations using engineering nonlinearity
techniques [4, 5,7],

4. calculations with a changing design scheme
(modeling of installation and dismantling processes),
provided that all the original elements of the bar
analogue have the same stages of assemblage and
disassemblage (target bars are recommended not to
be included in the process of changing the design
scheme or to be determined at the same stages of
assemblage and disassemblage, as the original objects
of the corresponding rod analogs) [6, 7, §].

A "bar analog" can be a two-node finite element
of any type, except for special ones, which allows
solving problems with various characteristics of the
scheme. By default, when creating a “bar analogue”,
FE type 10 is used — universal spatial bar FE.

Calculation of ""bar analogues' in SP LIRA-SAPR

Calculation of “bar analogues’ occurs when performing
a complete calculation of the model at its final stage.
The result of the calculation of "bar analogues" are
the forces obtained in their design sections, calculated
for all loadings. The forces obtained should not be
interpolated along the length of the "bar analogues";
they are valid only at the points of its initial and final
design sections. This should be taken into account
when viewing the calculation results in the form of
diagrams, or use the presentation of forces in the form
of mosaics and / or in tabular form.

The calculated internal forces in the sections of the
"bar analogues" are further used to determine the
forces for the calculated combinations of loads and
forces, as well as in the operation of the structural
systems.
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Verification problems

Let's consider examples of verification problems that
can illustrate the operation of the “bar analogues”
system in the LIRA-SAPR software package.

Problem No. 1.

We consider a vertical cantilever bar with a square
cross section, loaded with axial and transverse
concentrated loads at the free end (Fig. 3).

N
Px

4

7

Figure 3. Design scheme for problem No. 1

Elasticity modulus is £=3.0 - 107 Pa; Poisson's ratio
is 1 = 0.2; length of the bar is / = 10 m; cross section
dimensions are b = h = 0.5 m; axial force that acts
along axis X, P_= 10 kN; cocpenorouennas cuia,
JEUCTBYIOIIAsl BAOJb OCH Y, Py = 10 xH; transverse
force that acts along axis Z, N = 10000 kN.

It is necessary to determine the internal forces in the
support cross-section of the bar.

The solution to the problem is presented in [9]. For
non-deformed schemes, the axial force from a vertical
load, as well as shear forces and bending moments from
horizontal loads, are calculated by the formulas (6):

N(0)=N;
0(0)=P; 0(0)=P; (©)
M(0)=P[; M(0)=P].

When calculating in SP LIRA-SAPR, three design
models were considered. These models were made of
finite elements of various types: bar FE 10 (universal
spatial bar FE); shell FE 48 (universal quadrangular
FE shell with intermediate nodes on the sides);
volumetric FE 35 (universal spatial eight-nodal iso-
parametric FE with intermediate nodes on the sides).
In models of shell FE, a 4 x 10 FE mesh is used, and
for volumetric models, a4 x 4 x 10 FE mesh. Also bar
analogues for determining the forces were created.
The calculation results are presented in table. 1. The
forces in the “bar analogues” correspond to the forces
calculated from the model from the bar FE 10.

Problem No. 2.

A beam clamped at the ends and loaded with a
uniformly distributed load ¢ (Fig. 4) is given.
Elasticity modulus is £= 3.0 - 107 Pa; Poisson's ratio
is 4 =0.2; beam length is / = 2.4 m; the width of the
cross section is b = 0.2 m; the height of the cross
section is 2 = 0.3 m; load is ¢ = 10 kN/m.

It is necessary to determine the internal forces at the
characteristic points of the beam.

Table 1. Results of calculating problem No. 1

The sought value Bar solution Solution using bar analogues
FE 48 10000.00
Axial forces N(0), kH 10000.00
FE 35 10000.00
hoar £ 0.0). 0.0).k FE 48 10.00
Shear forces QO (0), O (0), kN 10.00
* ! FE 35 10.00
' FE 48 100.00
Bending moments M (0), M (0), kN-m 100.00
g FE 35 100.00
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The solution to the problem is presented in [9].
Support reactions R , R,, M,, M,, shear force 0,
bending moment M, internal forces in characteristic
sections are calculated by the formulas (7):

q
R, \§RB
| f
N\ g\

Z
{

1/2 W—%’

al? (2 gl?
A& L

S I B e

Figure 4. Design scheme for problem No. 2

ql gl?
RA=RB=7; M, =M,=-—;

0zl

M(Z)=£(E_i_lj. ™)

_4. o)etl,
00)=2; o=-2,

12 12
M(O)=M(Z)=—%; M(1/2)=‘§—4.

When calculating in SP LIRA-SAPR, several
computational models were considered made of
finite elements of various types: bar FE 10 (universal
spatial bar FE), plate FE 21 (rectangular FE of a plane

Maria S. Barabash, Andrii V. Tomashebskyi

problem (beam-wall) and plate FE 28 (rectangular FE
strain problems (deep beam) with intermediate nodes
on the sides). In the models of plate FE, a 16 x 6 FE
mesh is used, and bar counterparts are also created
to determine the forces.

The calculation results are presented in table. 2. The
forces in the target members of the bar analogues
sufficiently correspond to the forces calculated from
the corresponding models from the bar FE 10.

CONCLUSIONS

The use of “bar analogues” in FE-models in some cases
may be the most acceptable approach for the automated
design of elements whose work is close to the work of
rods. So, when designing a lintel, reinforcement should
be placed at the upper and lower edges of the element,
when designing a column —it's preferably at the corners
of its cross section. Regulatory requirements guide
engineers to select reinforcement based on integrated
forces in bar cross sections. On the basis of the stress-
strain state of a bulkhead or a column, obtained from
a model from flat finite elements, the selection of
reinforcement is very problematic.

Bar analogues also indirectly solve the problem of taking
into account the stress concentration at the support
points and other points of singularity. Determination of
stresses at nodes of finite elements is always associated
with a loss of accuracy. For "bar analogues" this problem
is integrally solved automatically, since the equilibrium
is always observed.

In conclusion, we note that the system "bar analogues"
of the LIRA-SAPR software package is a useful tool
for the analysis and applied calculations of structural
elements. Many areas of its application have yet to
be determined in engineering practice.

Table 2. Results of calculating problem No. 2

The sought value Bar solution | Solution using bar analogues
. FE 21 12.00
Shear force in the support 4, kN 12.00 FE 28 12.00
. . FE 21 —4.77
Bending moment in the support 4, kN-m —4.80 FE 28 179
FE 21 243
Bending moment in the middle point of the span, kN-m 2.40
FE 28 241
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