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AIMS AND SCOPE

The aim of the Journal is to advance the research and practice in structural engineering
through the application of computational methods. The Journal will publish original papers and
educational articles of general value to the field that will bridge the gap between high-performance
construction materials, large-scale engineering systems and advanced methods of analysis.

The scope of the Journal includes papers on computer methods in the areas of structural
engineering, civil engineering materials and problems concerned with multiple physical processes
interacting at multiple spatial and temporal scales. The Journal is intended to be of interest and use
to researches and practitioners in academic, governmental and industrial communities.
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OBUWAA MHOOPMALIUA O XXYPHAIE

International Journal for Computational Civil and Structural Engineering
(Me>XAyHAPOAHBIH JKYPHAA IO PACUETY IPAXKAAHCKHUX U CTPOUTEABHBIX KOHCTPYKIIUIT)

Me:xnyHapoanblii HaydHbIi kypHaa “International Journal for Computational Civil
and Structural Engineering (MesxayHapoaHbIii :KypHAJI 110 PacyeTy IPakKIaHCKUX U CTPOMUTE/b-
HbIX KoHcTpykumii)” (IJCCSE) sBnsercs BeaylluM Hay4HbIM MEPUOAMYECKMM H3JIaHHEM IIO
HarpasieHuio «/HXeHepHble M TEeXHUYECKUEe HayKW», U3AaBaeMbIM, HauuHas ¢ 1999 roga (ISSN
2588-0195 (Online); ISSN 2587-9618 (Print) Continues ISSN 1524-5845). B xypHaiie Ha BBICOKOM
HAYYHO-TEXHUYECKOM YPOBHE PACCMATPHUBAIOTCS MPOOJIEMbI YUCIECHHOTO U KOMITBIOTEPHOTO MOICITH-
POBaHUS B CTPOUTEIILCTBE, aKTyaIbHBIC BOIPOCH! pa3pabOTKH, MCCIICIOBAHUS, pa3BUTHS, BepruprKa-
UM, anpoOaluy W TMPUIOKECHUN YHCICHHBIX, YMCIEHHO-aHAJTUTUYECKUX METOJIOB, MPOrPaMMHO-
AITOPUTMHUYECKOTO O0CCIICYCHUSI W BBITOJHCHUS aBTOMATU3UPOBAHHOTO MPOCKTHPOBAHUS, MOHHUTO-
pUHra ¥ KOMIUIEKCHOTO HAYKOEMKOT'O PACYETHO-TEOPETHUECKOTO U IKCIIEPUMEHTATIHLHOr0 000CHOBA-
HUS HAITPSDKESHHO-TIE(POPMHUPOBAHHOTO (M MHOTO) COCTOSIHUS, IIPOYHOCTH, YCTONYNBOCTH, HAJCKHOCTH
1 0€30MacHOCTH OTBETCTBEHHBIX OOBEKTOB I'PAXKIAHCKOTO M MPOMBIIUIEHHOTO CTPOUTEIbCTBA, SHEP-
TeTUKH, MAITHHOCTPOCHHUS, TPAHCIIOPTA, OMOTEXHOJIOTHI U IPYTUX BHICOKOTEXHOJIOTHYHBIX OTPACIICH.

B penakunoHHBIN COBET *KypHalla BXOAST U3BECTHBIE POCCUIICKUE U 3apyOeKHBIC IEATEIH
HAayKW U TEXHUKHU (B TOM YHCJIC aKaJIEeMHUKH, YWICHBI-KOPPECIIOHACHTHI, HHOCTPAHHBIC YJICHBI, T10-
YEeTHBIC YIICHBI U COBETHUKU Poccuiickoil akageMun apXUTEKTyphl U CTPOUTEIBHBIX HAyK). OCHOB-
HOU KpuTepuit oTOopa cTaTeil A1 MyOIMKallUK B )KypHaJIe — WX BBICOKHUH HAyYHBIN YPOBEHb, COOT-
BETCTBUE KOTOPOMY OIPEAEISAETCS B XOJI€ BHICOKOKBATH(DHUIIMPOBAHHOTO PEIICH3UPOBAHUSA U 00b-
€KTHUBHOI 3KCHEePTU3bI, TOCTYNAIOUINX B PEIaKIMIO MAaTEPHAIOB.

HKypuan exooum 6 Ilepeuenv BAK P® sedywux peyeH3upyemvix HAyYHbIX U30aHull, 8 Komo-
PbIX 00I24CHBL ObIMbL ONYONUKOBAHBI OCHOBHbBIE HAYYHbIE pe3yTbmamvl OUccepmayuli Ha COUCKaHue
VUeHOUl cmeneHu KaHouoama HayK, Ha COUCKaHue Y4eHou cmenenu 0OKmopa HayK 10 Hay4HBIM CIIe-
LUUALHOCTSIM U COOTBETCTBYIOIIUM UM OTPACIISIM HAYKU:

e 01.02.04 — Mexanuka neopMUPYEMOT0 TBEPIOTO TeNa (TEXHUUIESCKUE HAYKH),

e 05.13.18 — MaremaTuueckoe MOAETUPOBAHUE YHUCICHHBIE METOJIbI U KOMIUIEKCHI MPO-
rpaMM (TEXHUYECKHUE HAYKH),

05.23.01 — CtpouresbHble KOHCTPYKIIMH, 3/1aHUS U COOPYKEHUS (TEXHUUECKUE HAYKH),
05.23.02 — OcHoBanus 1 (pyHITaAMEHTBI, TIOJI3EMHBIE COOPYKCHHSI (TEXHUYECKUE HAYKH ),
05.23.05 — CtpoutenbHble MaTepUaNIbl U U3EUs (TEXHUUECKUE HAYKH),

05.23.07 — I'uaApOoTEXHUUECKOE CTPOUTENILCTBO (TEXHUYECKHE HAYKH),

e 05.23.17 — CrpoutenpHast MEXaHHUKa (TEXHUYCCKHE HAYKH).

B Poccuiickoiit @enepanun xKypHall HHAECKCUPYETCsl POCCHIICKMM MHAEKCOM Hay4YHOIO IH-
tupoBanus (PUHLI).

Kypnan exooum 6 b6azy oannwix Russian Science Citation Index (RSCI), nonnocmwio unme-
epuposannyio ¢ niamegpopmoii Web of Science. XypHan umeeTr MexXayHapOIHBIA CTaTyC U BBICHLIA-
eTcsl B BeAylre OMOIMOTEeKN U HaydyHbIe OpraHU3aluy MUpA.

M3natenan :kypHana — Hzoamenocmeo Accoyuayuu cmpoumenbHbix 8bICUUX YYEOHbIX 3a-
seoenuti /ACB/ (Poccust, . Mocka) u 10 2017 roma Hzoamenvckuil oom Begell House Inc. (CILA,
r. Heto-Mopk). OduuuansHeIMU apTHEPAMU M3JaHus sBNseTcs Poccutickas akademus apXumex-
mypol u cmpoumenvholx Hayk (PAACH), ocyiiecTBIsONIas HaydYHOE KypUPOBaHHE H3IaHUS, U
Hayuno-uccneoosamenvckuii yenmp Cma/[uO (3A0 HULL Ctalu0O).

Leau :kypHajga — IeMOHCTPUPOBATh B MYOJIMKAIUSAX POCCUICKOMY U MEXIYHAPOIHOMY
npodeccoHaILHOMY COOOIIECTBY HOBEHIIINE JOCTHKEHUS HAYKH B 00JIACTH BBIYMCIUTEIBHBIX ME-
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TOJIOB pemieHus (pyHIaMEeHTaIbHBIX M MPHUKIAIHBIX TEXHHUECKUX 3ajad, MPEKIe BCEro B 00IacTu
CTPOUTEIIBCTBA.

3agauu KypHaga:

o NpEeO0CTaBIEHHE POCCUMCKUM M 3apyOEKHBIM YUEHBIM U CIELUAINCTAM BO3MOXKHO-
CTH ITyOJIMKOBATh PE3yJIbTaThl CBOMX UCCIIEIOBaHMIA;

o NpUBJICUYCHIE BHUMAaHHUA K HauOoJiee aKTyalbHBIM, IEPCTIEKTHUBHBIM, MTPOPHIBHBIM H
MHTEPECHBIM HANpPaBJIEHUSAM Pa3BUTHUS U TNPWIOKEHUNM YHUCICHHBIX U UYUCIEHHO-aHAJIUTUYECKUX
METOOB pelleHHs (QyHIaMEHTANbHbIX U MPUKIAJHBIX TEXHUYECKUX 3a/1ay, COBEPLICHCTBOBAHMS
TEXHOJIOTUI MaTeMaTHYeCKOr0, KOMITBIOTEPHOTO MOJICTUPOBAHMS, Pa3padOTKu U Bepudukanum pe-
JIM3YIOIIEro MPOrpaMMHO-aITOPUTMUYECKOTO 00eCTIeUEeHNUS;

o oOecrieueHre 0OMEeHa MHEHHUSIMH MEXJy UCCIIEOBATENsIMU U3 PAa3HbIX PETHOHOB U
rocy1apcTB.

TemaTuka :xypHaaa. K paccMoTpeHuio u nyOiauMKaluy B XKypHaie NIPUHUMAIOTCS aHATH-
TUYECKHE MaTepuaibl, Hay4yHble CTaTbU, 0030pbl, PEIIEH3UU U OT3bIBbl HA HAyYHBIE IMYOJIMKALIUU 110
(dyHAaMEHTaIbHBIM U MIPUKJIAJAHBIM BOIIPOCAM TEXHUYECKHX HayK, IPEX/e BCEro B 001aCTH CTPOU-
TenbCcTBa. B kypHane Takke nyOiauKyroTcs: ”HGOPMallMOHHBIE MaTepUaibl, OCBEIIAOLUE HAyYHbIE
MEPONPUSITHS U NEPENOBBIE NOCTUXKEHUS POCCHIICKON aKaJeMUHM apXUTEKTYpbl U CTPOMTEIbHBIX
HayK, Hay4HO-00pa30BaTEIbHbIX U MPOEKTHO-KOHCTPYKTOPCKUX OPTaHU3aLUM.

Temaruka crateil, pUHUMaeMbIX K MyOJIMKAIlUK B )KypHAJIe, COOTBETCTBYET €r0 Ha3BAaHHIO
Y OXBAThIBACT HANPABJICHUSI HAYYHbIX UCCIIEI0BAaHUI B 00JaCTH pa3pabOTKU, UCCIEIOBAHUS U TPU-
JIOKEHUH YUCIIEHHBIX U YUCJIEHHO-aHAUTUYECKUX METOAOB, IPOrPAMMHOI0 00OECIeUYeHus], TEXHO-
JIOTMH KOMIIBIOTEPHOTO MOJIEJIMPOBAHUS B PEIICHUH MTPUKJIAAHBIX 3a/1a4 B 00JIACTH CTPOUTEIILCTBA,
a TaKke COOTBETCTBYIOLIME NMPO(UIbHBIC CHEIUATbHOCTH, MPEACTABICHHBIE B JUCCEPTALMOHHBIX
coBeTax Mpo(UILHBIX 00pa30BaTEIBHBIX OPTaHU3AIMSIX BBICIIETO 00pa30BaHMUS.

Pepakuuonnas nonuruka. [loautuka pegakiMOHHON KOJUIETHH KypHana 0azupyeTcs Ha
COBPEMEHHBIX IOPUANYECKUX TPEOOBAHUAX B OTHOLIEHWU aBTOPCKOTO IIPaBa, 3aKOHHOCTH, IUIarva-
Ta U KJIEBETHI, U3JI0KEHHBIX B 3aKOHOJaTesnbcTBe Poccuiickoit denepanuu, U STUYECKUX TPUHIIU-
nax, MoAJepKUBAEMbIX COOOIIECTBOM BEAYIIMX M3/1aTesIel HAyYHOU NEPUOIUKH.

3a nybruxayuto cmameii niama ¢ agmopog He @3vimaemcs. Ilyonukayus cmameti 8 Hcyp-
Hane becnnamuas. Ha miIaTHOH OCHOBE B JKypHalle MOTYT OBITh OIyOJIMKOBaHbl MaTe€pHalbl pe-
KJIAMHOTO XapaKTepa, UMEIOINE IPSMOE OTHOIIEHUE K TEMATHKE JKypHaJa.

XKypHan npenocTaBisieT HENOCPEACTBEHHBIN OTKPBITBIA OCTYIl K CBOEMY KOHTEHTY, HC-
X0/l M3 CIIEAYIOLIEro MpUHIMNA: CBOOOIHBIM OTKPBITBHIA JOCTYN K pe3yjibTaTaM HCCIEAOBaHUMN
CHOCOOCTBYET YBEJIMYECHHUIO ITT00AIBHOr0 0OMEHa 3HaHUSAMM.

HNupexcupoBanue. [lyOinkanuy B )KypHaje BXOIAT B CUCTEMBI PACUETOB MHJEKCOB ILIH-
TUPOBAHUA aBTOPOB M KypHaloOB. «MHAEKC IUTHUPOBaHUA» — YHMCIOBOM IOKA3aTelb, XapaKTepu-
3YIOLIUI 3HaYMMOCTh JAHHOM CTaTbU U BBIUUCIISIOLIMICS Ha OCHOBE IMOCIEAYIOIUX MYOJUKALNUMT,
CCBUIAIOLIMXCS HA JJAHHYIO paboTy.

ABTtopam. [Ipexe yem HanpaBUTh CTAaThIO B PEAAKIUIO KYpHAJIa, aBTOpaM CJIEIyeT 03Ha-
KOMHTBCS CO BCEMM MaTepHajlaMM, pa3MELIeHHbIMU B pasjesiax cailTa >kypHana (MHTEepHET-caiT
Poccuiickoii akaneMun apXuTeKTypsl U cTpouTenbHbIX Hayk (http:/raasn.ru); moapasnen «3ganus
PAACH» nnu uatepuer-caiit M3natensctBa ACB (http://iasv.ru); moapazaen «Kypnan I[JCCSE»):
C OCHOBHOW MH(OpMaLUEHl 0 *KypHaje, ero UelsIMU U 3aJjadaMi, COCTAaBOM PelaKIIMOHHOM KoJljie-
MU U PEJAKIIMOHHOTO COBETA, PEIAKLIMOHHOW MOJUTUKOH, MOPAIKOM PELEH3UPOBAHMsI HAIIPaBIIs-
€MBIX B JKypHaJ CTaTel, CBEIEHUSIMU O COOIIOJCHIH PEJAKIIMOHHON STUKHU, O TIOJUTHKE aBTOPCKO-
ro IpaBa M JIMIEH3UPOBAHUSA, O MPEJCTABICHUN XKypHana B HH(OPMAIIMOHHBIX CUCTeMax (MHJIEK-
CHpPOBaHMN), MH(POPMALIUEH O MOANKCKE HA KYPHAJI, KOHTAKTHBIMU JaHHBIMU U TIp. XKypHan pabo-
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EFFICIENCY EVALUATION
OF APARTMENT HOUSES RECONSTRUCTION
WITH OPTIMIZATIONAL CRITERIA APPLICATION

Alexander N. Biryukov ', Igor N. Kravchenko %, Evgeny O. Dobryshkin ',

Yuri A. Biryukov', Valery I. Kondrashchenko®
' Military Academy of Logistics named after Army General A.V. Khrulev, Saint-Petersburg, RUSSIA
2 Russian State Agrarian University — Moscow Agricultural Academy named after K.A. Timiryazev,
Moscow, RUSSIA
3 Russian University of Transport, Moscow, RUSSIA

Abstract. The subject of the study, considered in the article, is the technical condition of the housing stock of the
Russian Federation, which is a totality of objects with a characteristic variety of structural and space-planning
decisions and increased values of physical wear. The objective of the study conducted by the authors was to
develop an optimization criterion for assessing the effectiveness of restoration of housing facilities based on
determining the ratio of one-time costs for restoration work and current projected costs for operation and
maintenance of an apartment house. Since an important stage in reproduction of the housing stock is preparation
of design estimates for reasonable implementation of capital investments by property owners and government
support measures for restoration of buildings, the topic discussed in this article is relevant. The scientific novelty
of the study conducted by the authors is to develop a method for assessing the effectiveness of overhaul
(reconstruction, modernization) of buildings, where the criterion is the choice of innovative design solutions and
building materials when planning the restoration of housing facilities.

Keywords: housing stock, housing facilities, restoration, overhaul, reconstruction, modernization, variant design

OLHEHKA D9OOEKTUBHOCTU PEKOHCTPYKLIUU
AKNJIbIX 10MOB C IPUMEHEHUEM
OIITUMU3ALINOHHOI'O KPUTEPUSA

A.H. Bupiokos ', U.H. Kpasuenxo ?, E.O. [Joopsuuxun ', F0.A. Buprokos ',
B.U. Konopawenxo’

! BoeHHas akajieMus JIOTMCTHKH UMeHH TeHepania apmun A.B. Xpyunesa, r. Cankr-Iletepoypr, POCCUS
2 Poccuiickuit roCyJJapCTBEHHBIN arpapHblil YHUBEPCUTET - MOCKOBCKas CEIbCKOXO03MCTBEHHAs aKaJAeMus
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AnHotanusi. IlpenmeroMm mccrnenoBaHus, paccMaTpUBacMOTO B CTaTbe, SIBISETCA TEXHHUYECKOE COCTOSHHE
xkworo ¢oHma Poccmiickoit denepanmu, MpeacTaBIAIOMEro co00il COBOKYIMHOCTh OOBEKTOB C XapaKTCPHBIM
pa3HooOpa3neM KOHCTPYKTHBHBIX M IUTAHWPOBOYHBIX PEHICHUH M TOBBIICHHBIMU 3HAYCHUSIMH (DU3HUECKOTO
u3Hoca. llenpio MccienoBaHus, NPOBEAECHHOTO aBTOpPaMH, Obula pa3pabdOTKa ONTHMHU3ALMOHHOTO KPUTEPHS
OLCHKH A(P(PEKTUBHOCTH BOCCTAHOBIICHHSI OOBEKTOB JKWIJIbS HA OCHOBE OIPENENICHHS COOTHOMIICHHS Pa3OBBIX
3aTpaT Ha BOCCTAaHOBHUTEJIbHBIE PA0OTHI M TEKYIIUX MPOEKTHBIX 3aTpaT Ha HKCIUTyaTalMI0 U COJIepIKaHNE JKHIIOTO
noma. [TocKoIbKy Ba)KHBIM ATAllOM BOCCTaHOBJICHHUS JKWJIOTO (DOHJA SIBIISIETCS TTOJI'OTOBKA MIPOEKTHO-CMETHOM
JOKyMEHTallMM JUIsi OOOCHOBAHHOTO OCYIIECTBJICHHS! KallUTAIBHBIX BIJIOXKEHHH COOCTBEHHHKAMH M MEpBI
TOCYAAapCTBECHHON ITOJAEPKKH Ul BOCCTAHOBICHHUS 3/IaHMH, TeMa, 0oOCyxnaeMas B 3TOW CTaTbe, SBISIETCS
aKTyanbHOM. HaydHast HOBM3HA HMCCIIENOBAaHUS, POBEICHHOTO aBTOPAMH, 3aKJIIOYAETCs B pa3pabOTKe METoaa
OLICHKH 3((HEKTUBHOCTH KAIUTAIBHOTO PEMOHTA (PEKOHCTPYKLUH, MOJCPHM3AINN) 3AaHUH, T1€ KPUTEPHEM
ABJSIETCS. BBIOOP MHHOBAIIMOHHBIX ITPOEKTHBIX DPEIICHWH M CTPOMTENBHBIX MaTEpHaliOB TPH IUIAHWPOBAHUH
BOCCTAHOBJICHHSI 00BbEKTOB JKHJIBSI.



Efficiency Evaluation of Apartment Houses Reconstruction with Optimizational Criteria Application

KiroueBble ciioBa: *KUINIIHBIN (OHI, 00BEKTHI KIIIbsI, PECTABPAINS, KATUTATBHBINA PEMOHT, PpEKOHCTPYKIIHS,
MOJICPHU3AIIMS, BAPHAHTHOE TIPOSKTHPOBAHNE

INTRODUCTION

Currently, the legislation of the Russian
Federation defines housing stock as a totality of
all residential premises located on the territory of
the Russian Federation [1].

In the context of the reform of infrastructure
sectors of the economy in the Russian
Federation, one of the most important tasks is
implementation of socio-economic
transformations in the Russian Federation, and
mainly in the housing and communal sector,
since market and administrative approaches are
particularly acute in this sector. Therefore, it is
difficult to find a compromise between economic
feasibility of restoring residential buildings, the
ability of owners to provide proper control over
implementation of work, as well as the ability of
the state to provide financial support to owners in
order to create a comfortable urban environment
[2].

However, the growing degradation of the
housing stock in the Russian Federation, the
disordered legal relationships in it put society and
the state in need of making drastic decisions and
taking measures aimed at improving the current
situation with the technical condition of
residential buildings in the country. This problem
becomes particularly urgent in the context of
regular amendments to the Housing Code of the
Russian Federation, within the framework of
which the powers of participants are expanded
when managing an apartment house,
responsibility is transferred for their (apartment
houses) maintenance to the owners of premises,
and the role of state and municipal authorities is
changing in the housing and communal services
market.

Important is the fact that the housing stock of the
Russian Federation is characterized by a
historically developed variety of constructive and
space-planning decisions (Table 1). The building
of a significant number of cities on the territory
of the Russian Federation has a long history and
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is characterized by increased values of
development of physical wear of building
structures.

Thus, the housing stock of the Russian
Federation totals about 3 billion square meters of
total area, which makes up more than 30% of all
reproducible property. At the present stage,
deterioration of the housing stock of most
Russian cities 1s about 70%. Residential
buildings that have been in operation in disrepair
for more than 25 years without restoration work
represent about 300 million square meters [3].
Housing facilities subject to demolition due to an
emergency technical condition make up about 90
million square meters (3,2% of the total housing
area), where according to rough estimates about
5 million citizens of the Russian Federation live
[3].

It will be advisable to consider in more detail the
technical condition of residential buildings on the
example of Leningrad region, since building of
this constituent entity of the Russian Federation
has been formed for more than 300 years of
formation of the state in the European part of
Russia and for 2017 consisted of 18,127
apartment houses. It is necessary to bring some
clarity to the concept of “apartment house” (since
these buildings are a structural component of the
country’s housing stock) in accordance with the
explanations of the Ministry of Economic
Development of the Russian Federation,
according to which any residential building with
more than one apartment is an apartment house
[4].

At the present stage, 42% of houses or 64% of
the total area of apartment houses in Leningrad
region were built in the period 1971-1995, and
2% of the total area of apartment houses are
characterized by the presence of wooden walling
(Figures 1, 2) [5].

The current legislation of Leningrad region
provides for annual collection of data on the
technical condition of apartment houses [6].
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Table 1. Design schemes of residential buildings of old construction in Saint-Petersburg.

Design ) Design scheme Main Repeatability,
scheme Design scheme . parameters, m o
description %0
type A B
1 2 3 4 5 6
B B
T | p— 1 Double span with
| I 1 1 1 medium 10-18 | 12— 30 59
O longitudinal - -
| D | bearing wall
B B
i i i i i Multi-span
2 ' [ | i I with transverse 4-16 | 12-20 8
bearing walls
[
L 1 1 1 ]
B B
r e .| Single span with
| I i | external
3 | N | A load-bearing 4-14 1222 13
| i I walls
L 1 L I
B B
r—T 1 1
I 1 ! E ! Three-span with 1
4 |\ 1 0 | A two longitudinal 12 24 38 10
| mnner walls
| =
L N
B B
I 1 1 Li |
(. I — up to
5 I 1 I Mixed scheme 9-18 g 5 17
Y I | &
I | !

The authors of the article analyzed the technical
condition of 12 981 housing facilities. The results
obtained by the authors allow us to conclude that
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a significant number of buildings in emergency
condition with increased values of physical wear
are in operation:
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Figure 1. Analysis of the housing stock of Leningrad region by year of construction, m?.
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Figure 2. Classification of the housing stock of Leningrad region by the material of walls, m°.

0-20 % — 1660 apartment houses with total area
of 7626,2 thous. m?; 21-40 % — 3341 apartment
houses 9603,5 thous. m? 41-70 % — 3387
apartment houses 5417,6 thous. m?; over 70% —
988 apartment houses 1091,2 thous. m?.

The largest number of apartment houses with a
physical depreciation value of more than 70% are
in Slantsevsky and Volkhovsky districts (38%
and 20% of the total, respectively). The analysis
of the technical condition of structural elements
of 12981 apartment houses performed by the
authors shows that 30% of foundations, 31% of
roofing, 35% of facades require major repairs [6].

MATERIALS AND METHODS

Volume 16, Issue 1, 2020

In the course of the study, the authors determined
that overhaul should be considered as one of the
ways to preserve and update the housing stock
along with current repair, reconstruction,
modernization and new construction [7, 8, 9].
Moreover, in the absence of economic feasibility
of repairs and reconstruction of buildings,
preference should be given in favor of new
construction. However, new construction often
requires demolition of emergency apartment
houses, which entails the need for resettlement of
residents,  while  during  overhaul or
reconstruction, resettlement of owners is carried
out only with comprehensive performance of
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restoration work. It is advisable to organize
reproduction of the housing stock by
demolishing old facilities and new construction
when the high level of physical wear of
residential buildings does not allow the efficient
use of capital investments of owners and state
support funds for reconstruction work. In
addition, demolition of old buildings, design,
preparation of the territory and construction itself
significantly increases commissioning time and
cost of the future building [10, 11]. Thus,
overhaul costs are 30-35%, modernization - 50-
55%, reconstruction - 60-70% of the cost of 1 m?
of the total area for new construction according
to the Russian Academy of Architecture and
Building Sciences [12]. Therefore, given the
current state of the housing stock in the Russian
Federation, the most appropriate is reproduction
of housing through overhaul, reconstruction and
modernization, implementation of these
processes in the framework of this article, the
authors accept as restoration work to eliminate
physical wear of an apartment house.

One of the main stages of reconstruction of the
housing stock by means of overhaul,
reconstruction and modernization is preparation
of design estimates for all design decisions on
redevelopment, functional reassignment of
premises, replacement of structures, engineering
systems or their installation again, landscaping
and other similar work. As part of the study, the
authors used the analytical method and deduction,
it was determined that a significant number of
scientists whose scientific results were analyzed
and summarized when writing the article were
involved in the study of the issue of efficiency in
implementation of investment construction
projects (including reconstruction and overhaul
projects [13, 14, 15].

RESEARCH RESULTS AND DISCUSSION

In the framework of the study, the authors
developed an approach to implementation of
planning for restoration work based on variant
design (Figure 3).

In accordance with the algorithm developed by
the authors, preparation of projects for
restoration of an apartment house should be
preceded by a survey of the apartment house in
order to determine the category of technical
condition based on [16, 17].

The effectiveness of planning the reconstruction
of the housing stock can be achieved by
evaluating the restoration projects (overhaul,
reconstruction or modernization) of the housing
stock. It is advisable to accomplish this task by
comparing variation of one-time and current
costs when implementing a project for
restoration of an apartment house on the basis of
the following: increasing one-time costs of
restoring a building to a certain level leads to a
decrease in subsequent current costs for
operation and maintenance (Figure 4) [ 11, 12].
So, overhaul of the facade of an apartment house
can be carried out according to the standard
option, i.e. sealing the external joints of a closely
located urban area, repairing plaster and painting
the facade, and an external insulation system
using hinged ventilated facades can be used [18,
19].

The advantages of the latter option are reduction
of heat losses, increase in the service life of load-
bearing enclosing structures by eliminating
condensation of water vapor in the load-bearing
wall, possibility of reconstructing a house
without resettling residents, and reducing the cost
of repairing building envelopes, since the system
in question plays the role of corrosion protection
[20]. The key factor that determines the use of the
system of ventilated facades is to increase
durability and service life in relation to the
standard overhaul period of operation of the
facade in traditional stucco finishing.

In order to compare projects for restoration of an
apartment house proposed for implementation, it
1S necessary to introduce a number of
designations.

We will take K; as one-time costs of restoration
of a building in accordance with the i-th project
for restoration of an apartment house.
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Survey of the technical condition of the apartment house

\

Variant design of apartment house restoration

)\

Assessment of efficiency of projects of apartment house restoration

v
Choice of a project of apartment

house restoration

v

Determination of investment sources for implementation of a project of
apartment house restoration

J v
State support Payments of owners
) i)
Implementation of a project of apartment house restoration

Figure 3. Algorithm of planning of restoration works based on variant design.

Variant No. 1

Variant No.2

[

K A
Ki F=————-
Kk | A
|
|
|
|
0 |
7

/2 V4

Figure 4. Graph of dependence between current and one-time costs
(K — one-time costs, Z — current costs).

We will consider S,; as operating costs for
maintenance of an apartment house for the v-th
year of operation (v= 1,2,3,...,g) during
implementation of the i-th project of restoration
of a house, and C,; — costs of ongoing repairs, if
necessary, for the v-year year of operation of the
house during implementation of the i-th project.
Then the effectiveness of the building restoration

Volume 16, Issue 1, 2020

project can be determined by the ratio of the sum
of the costs of operation and maintenance to the
number of one-time costs of the project:

(1)
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At the same time, planning of current repairs and
distribution of costs for operation of an apartment
house are carried out for a certain period of time
after restoration of the housing stock, which sets
the task of taking into account annual inflation in
assessing the effectiveness of restoration projects
for an apartment house. Then the costs of the
current repair and maintenance of the apartment
house will be set in the form:

S (14p)™! 2)

and

Cui (14p)™! 3)
where p- inflation in fractions of a unit, taken for
the v-th year of operation of the housing stock
after its restoration.

Then the criterion for effectiveness of the
projects under consideration for the accepted
horizon of calculation (in years) should be
determined by the following mathematical
expression:

Ky 4)

ey, (Syi(1+P)?=1+Cyi(1+p)?—1)

Pl =

Thus, the decision to restore apartment houses on
the basis of variant design allows the selection of
projects for restoration of housing facilities with
the highest P/ values. The next stage of work
planning in accordance with the algorithm
developed by the authors (Figure 3) is to
determine the share of owners in implementation
of the corresponding project and the amount of
state support in restoration of an apartment
house. The key point of the considered stage is
selection of the contractor in accordance with the
lowest price criterion [21, 22] during the auction,
and at the same time, the quality of contractor
work to comply with the interests of the owners
(in the form of ensuring a quality standard of
living for citizens) and the interests of the state
(with formation of the comfortable urban
environment). The ultimate goal of the process in
question is to implement the project and reduce
the level of physical wear of the housing facility.

CONCLUSIONS

As a result of the study, it was determined that an
increase to a certain level of one-time costs for
restoration of an apartment house allows to
increase the overhaul periods of operation, which
allows to reduce the amount of costs for the
current repair of the building. In addition, the
choice of innovative design solutions and
building materials when planning restoration of
housing facilities can reduce the costs of current
operation of an apartment house, since in the long
run, taking into account inflation, the cost of
operating an apartment house requires a
significant amount of investment. Since the
owner will continue to bear the costs of current
maintenance of an apartment house, he is
interested in optimizing the consumption of fuel
and energy resources as a result of restoration
(major repairs, reconstruction or modernization)
and minimizing the loss of heat and other energy,
as well as reducing operational housing facility
expenses. The results of the scientific research of
the authors are especially relevant in view of the
fact that the current stage of the need to improve
the energy efficiency of buildings is one of the
key tasks facing the world scientific community
in a number of countries.
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INTEGRAL PARAMETERS OF CONCRETE DIAGRAMS
FOR CALCULATIONS OF STRENGTH OF REINFORCED
CONCRETE ELEMENTS USING THE DEFORMATION MODEL
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Abstracts: In accordance with the requirements of regulatory documents, restrictions are introduced on stress
levels at the end of the falling branch of the diagrams at the maximum normalized strain values. We have
developed mathematical models that establish a uniform sequence for calculating the unambiguous values of
deformations at the base points of concrete diagrams, taking into account the accepted functional relationships
and the rules for their use according to the tables of normative documents. It was shown that for equal values of
deformations and stresses at base points, analytical expressions of diagram recommended by regulatory
documents, even if it differs in structure, give identical outlines, diagram branches coincide. The correlation
between the calculation models by Russian and foreign regulatory documents was established by comparing the
values of the integral parameters of the diagrams and the ultimate forces obtained by calculating the reinforced
concrete element according to the deformation model. As integral parameters of concrete deformation diagrams,
it was recommended to use areas bounded by diagram branches and diagram completeness coefficients.
Analytical modeling of integral parameters allowed us to exclude the procedure for numerically summing
stresses along elementary strips in a section and solving nonlinear equations by the method of successive
approximations when calculating the strength of an element.

Keywords: strength, deformations, concrete diagram, integral parameters,
deformation model

NHTEI'PAJIBHBIE ITAPAMETPDLI TUAT'PAMM BETOHA
B PACHETAX HPOYHOCTH KEJIE3OBETOHHbIX
QJEMEHTOB 110 IE®@OPMALIUOHHOU MOJEJIA

B.A. Epvuues ', H.H. Kapnenko ?, A.0. Kemuyes !

' TONBATTUHCKAI TOCYIapCTBEHHBIN YHUBEPCHTET, T. Tombsart, POCCUS
Hayuno-mccneoBaTenbCKuii HHCTHTYT CTPOUTENEHON (HDHU3UKN
2PoccuiicKoii akaJieMUn apXUTEKTYPhl M CTPOMTENBHBIX HayK, T. Mocksa, POCCHU S

AnHotanusi: B cooTBeTcTBUU ¢ TpeOOBaHMSIMU HOPMATHBHBIX JIOKYMEHTOB, BBEJCHBI OTPAaHHUYCHHUS HA YPOBHH
HaNpsDKeHUI B KOHIE HUCHAJAIOIIed BETBU JuarpaMM MpHU MaKCHUMajbHBIX HOPMHMPOBAHHBIX 3HAYCHMSAX
nedopmanmii. Pazpaboransl MaTeMaTHYeCKUE MOJIEIH, YCTAHABIMBAOLIME eIMHOO0Pa3HyI0 (POPMY BBIYHCICHUS
OJHO3HAYHBIX 3HaueHWH Jedopmanuii B 0a30BBIX TOYKAaX JAuMarpaMM O€TOHA, € YYETOM HPHHATHIX
(DyHKIIMOHANBHBIX CBSI3€H M MPABWI MX HAa3HAYEHHS 10 TaOIWIaM HOPMAaTHUBHBIX JOKyMEHTOB. lloka3aHo, 4TO
TIPY PAaBHBIX 3HAYCHUAX JIeQOopManuii U HaNpsOKEHUH B 0a30BBIX TOYKAX, PEKOMEHIOBaHHBIE HOPMATHBHBIMH
JOKYMEHTAMH AHAJIUTUYECKHE BBIPAKECHHs OINUCAHMA JUarpaMM, pasHble IO CBOEH CTPYKType, JaroT
OJMHAKOBBIE MX OUYEPTAHWS, BETBU Anarpamm coBnafgaioT. COOTHOIIEHHE MEXIYy PAaCUeTHBIMH MOJACTAMH B
peIaknIuy POCCHMCKNX M 3apyOEKHBIX HOPMAaTHBHBIX JOKYMEHTOB YCTAHABIIMBACTCS CPaBHEHHEM 3HAUCHUI
MHTErpaJbHBIX [ApaMETPOB JAMAarpaMM M MpPEAEbHBIX YCWINH, NOJYYEHHBIX PacuyeToOM IKeJe300eTOHHOro
aJIeMeHTa 1o AedopMalMoOHHONW Mozenu. B kadecTBe MHTErpajbHBIX MapaMeTpoB JuarpamMM aehopMUPOBAHUS
0eToHa PEKOMEHJYeTCs HCIOJIb30BaTh IUIOMIQAM o00JacTeld, OrpaHWYEHHBIX BETBAMH JuarpamMm H
KO((HUIMEHTH! MOJHOTHI JUarpaMM. AHaJINTHYECKOE MOJICIMPOBAHUE WHTErPaJIbHBIX MapaMeTpOB MO3BOJISET
UCKJTIOUUTh U3 pacueTa MPOYHOCTH HJEMEHTa MPOLEAyphl UYHUCIEHHOIO CYMMHPOBAHHS HaNpsDKEHUil Mo
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neopMaIuoHHasT MOJICb.

INTRODUCTION

The regulatory documents [1, 2, 3, 4]
recommend different types of concrete
deformation diagrams and analytical

dependencies that establish the relationship
between deformations and stresses "€, —G,"

under axial compression and tension. The
curvilinear diagram with ascending and
descending deformation branches corresponds
to the physical properties of concrete and the
experimental test data for standard concrete
specimens most fully. When describing curved
diagrams of concrete deformation under
compression, the authors of Russian and foreign
publications [5, 6, 7, 8, 9] use the base points: at
the top of the diagram on the ascending branch;
at the end of the falling branch, in which the
deformations reach their maximum values. The
differences between analytical dependencies of
the diagrams, the differences between
calculation methods for determining of
deformations and design values of concrete
strength in the base points that is contained in
regulatory documents leads to a mutual
discrepancy between the values of ultimate
forces in the strength calculations of reinforced
concrete elements. In addition, difficulties arise
in the comparative evaluation of the efficiency
of computational models. In calculations by the
deformation model, the numerical integration of
stresses in the selected elementary strips of
concrete over the thickness of the element and
the solution of nonlinear equations satisfying
the condition of equilibrium of forces by the
method of successive approximation (iterations)
is a laborious procedure in the calculations of
complex engineering systems. The transition
from the real stress diagram to the conventional
stress diagram of a rectangular shape for the
compressed zone of an element is important to
simplify the computer modeling technique in

26

the calculations of generalized internal forces.
The performed studies are important for the
discrete-continuum approach in numerical
modeling of the behavior of the load-bearing
systems of high-rise buildings [10], the
improvement of computational models of power
resistance of reinforced concrete [11] and the
development of the survivability theory of
structural systems of buildings and structures
[12, 13,14].

THE PURPOSE AND OBJECTIVES
OF THE RESEARCH

The first purpose of this research is developing
of a mathematical model for calculating
deformations at the base points of concrete
diagrams, taking into account the accepted
functional relationships and the rules for their
accepting in accordance with the tables of
normative documents. The second purpose is to
include the integral parameters of concrete
diagrams in the calculation method based on the
deformation model and establish the
relationships between the ultimate forces for the
respective classes of concrete using the
compressive strength. The third purpose is to
propose a simplified method for calculating the
strength of an element, excluding the procedure
of the numerical integration of stresses over the
thickness and solving nonlinear equations by the
iteration method. Finally, it is to establish a
relationship between the parameters of the
deformation model and the method of ultimate
forces for the ultimate state of an element.

METHOD

The normative documents [2, 3] sign the
concrete class for the axial compression strength

International Journal for Computational Civil and Structural Engineering
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by the letter C and numbers, for example, C12 /
15. The first number means the value of
normative resistance f,, i.e. the compressive
strength of cylinders of 150 mm in diameter and
300 mm in height, tested in age 28 days. The

second number is the value of the guaranteed
strength of the concrete cube of 150 x 150 x 150

mm with a statistical security of 0.95 ( chcub o)

Russian standards are based on the strength of
the cube. In accordance with these principles,
we established the correspondence between
classes C and B (table 1). For example, concrete
class B15 corresponds to class C12/15, etc.
Further, we found respectively the normative
concrete resistance under axial compression

R,, (prismatic strength) and £, (cilindric
strength) for compressive strength classes of

concrete B and C using tables of regulatory
documents. The design values of concrete

resistance R, and f,, (Table 1) are calculated
dividing a value of the normative concrete
resistance under compression, respectively, R,
by the reliability coefficient for concrete under
compression ¥, = 1.3 and f,, by the safety

1.5. When

calculating RC elements for the limit states of
the first group for high-strength concrete of
class C, the work [2] takes into account the

partial coefficient 7Y ,g-. The values of the

coefficient for concrete Yy, =

initial modulus of elasticity of concrete £, and

E_, for the compressive strength class of

concrete B and C are taken according to the
tables of normative documents. When
evaluating the deformation properties of
concrete, the works [2, 3] introduce the average

values of compressive strength £, . Concrete

compression diagrams are plotted in the
coordinates "e, (e.)—o,(f)" Here,
parentheses contain the denotations of

deformations and stresses accepted in [2,3]. The
base points of curvilinear diagrams for strength
calculations are the following ones: the top of

Volume 16, Issue 1, 2020

the ascending branch of the diagram which
takes coordinates €,(€_), R, (f.,); the end of

the descending branch which takes the
maximum strain value and coordinates

€ (€241),04, (f.,). The work [3] (table 6.1)

normalizes the strain values at the base points
€. and €_,,; which uses when calculating the

stresses for concrete compression class C. The
dependence stress — strain is constructed using
the current values of strains

N, = 8c/gcl (‘gc‘ < ‘Scul‘)'

The stress value fc takes its maximum value at

M. =1 in the top of the diagram:

fc:fca

— applied at the calculations for the first limiting
state and

fe=Ju

— applied at the calculations for the second
limiting state. Normative document [1]
normalizes the magnitude of maximum strains

&y, . Deformations €, at the top of the

diagram, in contrast to [2, 3], are not assigned
according to the tables of norms, but it is
calculated by the formula, which takes into
account the class and type of concrete. The
relative stress level

ny =14, =0,85

(7, =1 for high-strength concrete) limits the

descending  branch  of the  diagram.
Transforming the formula that describes the
diagram, calculations can be performed both
through stress and through deformation.
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Table 1. Calculation parameters of concrete deformation diagrams.

Vladimir A. Eryshev, Nickolay I. Karpenko, Artur O. Zhemchuyev

— | Compressive class | C12 C25 C35 C50 | C60 C70 C80 C90
% of concrete
8.0 16,7 23.3 333 39.2 42.6 47.6 50.2
% fcd » MPa
é €. [%o0] 1.9 2,16 2.3 248 | 2.58 2.67 2.76 2.83
<
©
% € .1 [%0] 3.5 3.5 3.47 3.35 3.24 3.11 2.98 2.83
3 Sdc 24.9 50,37 67.75 | 89.4 | 99.2 101.6 105.1 102.9
o)
LO)D o, 0.89 0,86 0.845 0.8 0.78 0.768 0.744 0.725
é €. [%0] 1.89 1.95 1.96 1.94 1.9 1.84 1.79 1.71
5 M, . kKNm 309 630 861 1191 | 1367 1450 1560 1590
Compressive class B15 B30 B45 B60 B75 B85 B95 B105
. of concrete
E R, , MIla 8.5 17.0 25.0 33.0 | 39.0 42.5 45.75 49.0
n =
E €, [%o0] 1.9 2.18 2.36 2.5 2.62 2.68 2.75 2.8
Z £y, [%o0] 3.5 3.5 344 3.31 32 3.04 2.92 2.8
G
° Sdb 26.04 50.9 71.0 872 | 95.1 97.6 98.2 97.6
s
S o, 0.875 0.855 0.826 0.8 0.762 0.755 0.735 0.711
)
é €, [%0] 1.88 1.948 1.95 1.92 1.87 1.82 1.77 1.71
E 0. MPa 8.41 15.3 21.3 254 | 27.8 28.8 29.5 29.9
M, . kKNm 321 636 916 1173 | 1341 1422 1482 1528

Currently, a curvilinear diagram is effectively
used in structural calculations for the second
limiting state, in which the accuracy of the
calculation in comparison with the experimental
data is determined by the analytical description
of the ascending branch of the diagram. It
should be noted that some discrepancy between

the strain values €, and €,, at the top of the

diagram for concrete classes B and C as
amended by normative documents [1] and [2]
does not lead to significant differences in the
outline of the ascending branch of the diagrams
and, respectively, the stress values for given
strains. Strength calculations use the full
concrete deformation diagram for compression.
There are increasing requirements for the
description of the descending branch of the
diagram, for  compliance @ with  the

recommendations of the norms on limiting the
values of both stresses and strains.

Analytical expressions for the description of
concrete deformation diagrams characterize
short-term loading models. The standard is the
test mode of specimens at constant strain growth
rates, which allows you to identify two branches
of concrete deformation diagrams. In
experiments, the rate of change in the load on
the test equipment can be accepted arbitrary, the
descending branch may appear partially or
completely absent. The parameters of the
diagram in the edition of normative documents
[2, 3] were investigated in experiments with
monotonically increasing compression strains,

at a speed 5: ~ 0,015 %o / sec. It is assumed

that the nonlinear properties of concrete for the
corresponding concrete classes B and C for a
given compression test mode of concrete

28 International Journal for Computational Civil and Structural Engineering
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specimens of prisms and cylinders are
manifested equally, and deformations at the
base points have the same values:
€p =E8.158p, =&
Deformation values at base points are
determined according to the rules of the rules

ul *

depending on the average stresses f., in the

formulas (1), (2) and concrete class B — in the
formula (3). This means that the strain values at
the base points can be used in the calculations
for the limiting states of both the first and
second groups.

According to the analytical dependencies
presented in the regulatory documents [1,2,3,4],
taking into account (5), concrete diagrams

“g,(e.)—0,(f.)” are constructed. The

branches of these diagrams pass through the
base points. whose values are calculated from
expressions (1), (2), (3) and (4). The shape of
the concrete diagrams corresponds to the shape
of the stress diagrams in the compressed zone of
the element (Figures 1, 2).

The dependences for the calculating of
deformations at base points. When conducting
calculations in software systems, it is more
convenient to use analytical dependencies in
which the functional relationship is preserved
when assigning normalized parameters from the

tables. Deformations €, increase with

increasing concrete strength at maximum
compression stress. Meyer (1998) proposed a
mathematical model for their calculation:

e, =1,6(f,, /10MI1a)** /1000, (1)

where [, = f, +Af (Af =8 MPa).
It is proposed calculating the ultimate
compressive strain of concrete €_,,, normalized

in tabular form [2, 3], by the formula:

e —

cul = “cl

* 0.2
| o= Lo (IOMHGJ o
81 Mlla Som

Volume 16, Issue 1, 2020

where ﬂ;l is the fixed value of the average

concrete strength for the concrete class, in
which the descending branch is excluded from

the calculation and the equalities ‘8 Cl‘ = ‘8 Cul‘

and f,, = f,, are satisfied (assumed that £, ; =

98 MPa).

The analytical dependencies uniform by the
structure with (1) and (2), are introduced for heavy
concrete in order to determine deformations at

base points €, and €,, (Table 1):

0,2
g, = 1,75(Lj /1000; (3)
10 MITa

X B-B (IOMYa)O'Z
€y =Ep| 1—
98MIla\ B

where B* is a fixed class of concrete, in which
the descending branch is excluded from the
calculation and the equalities

‘é‘b‘ = le,,| and o, =R,

are satisfied (assumed that B*= 105 MPa).

When working with diagrams, there is a general
rule. If deformations are assigned and stresses
are calculated during the construction of
diagrams, then the maximum values of
deformations are limited by values €_,, (2) and

€, @. If

deformations are calculated [1, 4], then the
minimum stress values on the descending
branch are limited by the relative stress value
n,, calculated by the formula:

stresses are assigned and

*

B-B

b > 4)
B+ B

My =1+ A

where, M,, =0,, /R, ,here, B*is a fixed class

of concrete, in which the descending branch of a
diagram is excluded from the calculation
(assumed that B* = 105 MPa).
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If we take into account foreign experience, then
from formula (1) it follows that the minimum
value of the relative stresses on the descending
branch

ncu :fcu/fcd
for o, = f,,.

When increasing the class of concrete accepted
by compressive strength, it varies linearly from
0.9 to 1. In norms [1, 4], it is recommended to
take the value of 0.85 for low-strength concrete,
then

A,=0.2

in the formula (4) and the linear relationship for
1n,, 1s maintained for concrete classes ranging
from 0.85 to 1.

A drop-down branch is carried out from the
expression:

s Mk

where,

Nau :8bu/éb’ Ny ng/éb

are the current values of strains.
The values of deformations at the base points
are determined according to the rules of norms

depending on the average stresses f,, in the

formula (1, 2) and concrete class B in the
formula (3). This means that the strain values at
the base points can be used in the calculations
for the limiting states of both the first and
second groups.

According to the analytical dependencies
presented in the regulatory documents [1, 2, 3,
4] taking into account (5), concrete diagrams

"g,(e.)—0,(f.)" are constructed. The

branches of these diagrams pass through the
base points, whose values are calculated from
expressions (1), (2), (3) and (4). The outline of
the stress diagrams in the compressed zone of
the element corresponds to outline of the
concrete deformation diagrams (Figures 1, 2).

7 75 17 15 77 75 i 75 &4 %o

a5 10 28 25 7

Figure 1. Diagrams of deforming of concrete by regulatory documents:
(a) Building Code of Russia SP 63.13330.2012 and (b) Buiding Codeof Belarus SNB 5.03.01-02
taking in account formulas (1) — (5).
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ENERGY MODEL FOR CALCULATING
THE STRENGTH OF A REINFORCED
CONCRETE ELEMENT USING
MATERIAL DEFORMATION DIAGRAMS

Figure 2 (d) presents the stress diagram and
diagram of internal forces for a rectangular
cross-section with reinforcement in the lower

zone A, and in the upper zone AS/ (Fig. 2b),

taking into account the distribution of the
deformations of concrete and reinforcement
according to the linear law (Fig. 2c). The
relations for curvature based on the linear law of
the deformations' distribution along the height
of the element takes the following form,

l_ _ & _gbn _gbn+gsn (6)
Yo, d hy—x X hy

where A is the working height of the section; x
is the height of the compressed zone; ¢,, — is
deformations of the outer fiber of the
compressed zone of concrete; y - curvature of

the element; p - radius of curvature; & -

deformations in tensile reinforcement.

The values of the internal forces in the
reinforcement, respectively in the stretched and
compressed zone, are

N =RA,. N, =04, =¢E4,.

Here the deformation of the reinforcement is
determined by the formula:

/ /
Eg =&y, — XA . (7)

The value of the force N, perceived by a

concrete strip of unit width (b = 1) in the
compressed zone at the limiting state is
calculated by the formula

Nb:Sdb/Z' (8)

Volume 16, Issue 1, 2020

Taking into account the obtained dependences,
the equilibrium equation for the limiting state
for a symmetric section of width b is written in
the form

Sab | 514" R 4, =0
X
or
S, xb 2

+olAl —R.A, =0,
€

u

In the general case, when the ascending and
descending branches of the diagram are
described by nonlinear equations, small sections
are plotted along the deformation axis using

computer simulation (Figure 2a) Ag,; (i

section numbers).
The height of the elementary area of the section

Ahb,i =Ag,; /Z

with the value of the stress 07, ; corresponds to

deformations on the diagrams A&, ; in the

compressed zone of the element.
For each i-th section, it can be determined the

following parameters using the diagrams: 0 ;
- stress value; &,; - deformations in the

coordinate system &,00,;
4, =gy 04,

- area of the i-th section;

n n
Sap = zAb,i :Z Gb,iAgb,i
i-1 i-1

- the area of the field bounded by the branches
of the diagram.
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Figure 2. Schemes for explaining the methodic for calculating strength of an element using
deformation model (in accordance with regulatory documents [2,3] index ‘b’ changed by index
‘c’): (a) deformation diagram of concrete under compression and scheme for determining the
integral parameters; (b) cross-section of an element, (c) linear distribution of deformations along
the height of a cross-section; (d) stress diagram for compressed zone and scheme of internal forces
into concrete and reinforcement.

The verification of the equilibrium equation (9)
is performed by the method of successive
approximations (iteration method), in which the
variable is the element curvature y determined
from relations (6).

Strength calculation uses the complete concrete
diagram (Fig. 2, a). The area of the field

bounded by the branches of the diagram S,
(S,) An

characteristic of a concrete deformation diagram
is the coefficient of completeness of the diagram

®, (0, ). This coefficient characterizes the

remains  constant. integral

deviation of the actual area of the curved
diagram S, (S,.) from the area of the

rectangle S, (S..) that describes the diagram
by base points. The area of the complete
diagram S, (S ) for each class of concrete is

calculated by numerical methods or using
graphical computer programs (Table). The area
of the rectangular diagram is calculated by the
formula

* *
Sap=Ryey, ot Sy =Ffa€n

32

where R,, 1., the concrete

resistances for the limiting states of the first
group for concrete of compressive strength
classes B and C, respectively; &,,(&,,;) -
normalized values of ultimate strains are

calculated by formulas (2) and (3). Coefficients
of completeness of the diagram

are design

Ogp = Sdb/S:’b

and

WOy = S dc / Sdc
are calculated by the formulas

B
Dy, = 0,71—0,2T 5

Jom = 1o
*

cm

®,, =0,724-0,2

(10)
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where B* is a fixed class of concrete, for which
the descending branch is excluded from the
calculation and the equalities

‘é‘b‘ = |e,,| and 0, = R,

are satisfied (assumed that B =105 MPa); f;n
- a fixed value of the average concrete strength
for the concrete class, for which the descending
branch is excluded from the calculation and the
equalities

fcd :ﬂu

Cul‘ and

‘861‘ - ‘8
are satisfied (assumed that f;n =98 MPa).
For an increase of the class of concrete, the
curvature of the diagram decreases, approaching
to the elastic one (Table), however ®;, > 0.5. If
condition (9) is satisfied the value of the
ultimate bending moment M, perceived by

the cross-section of an element is determined
relatively to a fixed zero line:

S v R Az oAz,
X

M

ult

The distances from the generalized forces

N S/,NS and N, in the reinforcement and

concrete to the neutral axis, respectively, are:

k I (k
Z/_glg)_a;(().
s (k) >
X
CYSSN(
2 =% 0 b (12)
X
i W Epe
b k k) >
Z( )Sdb Z( )

where
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n n
W= Z Ay €, :Z 0,08y &y,

i=1 i=1

is the moment that numerically equal to the sum
of the products of the areas of the elementary
section on the concrete diagrams and the
distances of their centers of gravity to the stress

axis 0, ;
Epe =Wa /Sa

- deformations at the level of the center of
gravity of the diagram O; (Fig. 2a); ;((k) - the
curvature of an element after satisfying the
equilibrium condition (9) at the .-th iteration.

From the formula (12) for z, , it follows that the

deformations at the level of the center of gravity
of the stress diagram in the concrete of the
compressed zone of an element are equal to the

deformations &, at the center of gravity of the

full diagram. Studies indicate that the ratios
between the values of strains at the center of
gravity of the diagrams and strains at the top of
the diagrams

1/]bc = Sbc/éb (77cc = gcc/gcl )

are a monotonically decreasing functions (for
increasing concrete class B and average

concrete strength £, ) that can be described by
analytical expressions:

*

0.1
- :(0,751\41761} 02988,
B B
0,1 *
{0,65]\4170:) _0935fcm *fcm

cm

b

(13)

cc

where the parameters B* and f;n are taken
from (10).
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Modeling of the parameters of the diagrams by
analytical dependencies allows us to exclude
from the calculations of the strength of elements
the procedure of the numerical integration of the
areas of elementary sections and the solution of
nonlinear equations by the iteration method. The
calculation of the strength of the element, taking
into account the proposed dependencies, is
performed in the following sequence:

- it is assigned a class of concrete, section,

. /
reinforcement: A, A ;

- for a given class of concrete, the coefficient of
completeness of the concrete deformation

diagram @, is calculated by formula (10), for

the area of a rectangular diagram S:,b , the area

S, of the region bounded by the branches of

the diagram is calculated;

- taking into account (6) and (7), equation (9) is
converted into a quadratic equation with respect
to the actual height of the compressed zone x:

X Sab +x(¢, E A ~R A)~d'e, E A =0;
gbn
(14)

- according to formula (11) and taking into
account (12), the moment value in the limiting
state is calculated, where the force distances to
the neutral axis are not determined with the

parameter )((k) obtained by the sequential

approximation procedure, but by solving the
quadratic equation for the height of the
compressed zone (14) and calculating the
element curvature from formula (6).

TRANSITION TO THE METHOD
OF ULTIMATE FORCES

For calculation by the method of ultimate
forces, a simple rectangular diagram of normal
stresses in the compressed zone of concrete was
adopted. The relationship between the
curvilinear stress diagram and the rectangular

stress diagram is established from the condition
of equality of the forces in these diagrams

S pxb (15)

&y

= be*b,

u

from which a relationship between the heights
of the compressed zone, respectively x and x* is
established for a given cross-section,
reinforcement and class of concrete compressive
strength. The value of the bending moment

* . .

M, perceived by the cross-section of the
element, according to ultimate forces, is
calculated by the formula:

M*

ult

= R,bx (B, —0,5x) + R A, (h, —a).
(16)

A comparative analysis of the methods for
calculating strength is performed for a
reinforced concrete section with dimensions /# =
60 cm, b = 30 cm. Reinforcement in the
stretched zone is periodical steel rebars of A400
class. The condition of the equilibrium of forces
in the normal section is satisfied by the
reinforcement saturation of the stretched zone at
given strain values: in the reinforcement

€, = RS/ES , where R, =355 MPa;

in the outer concrete fiber of the compressed
zone &, , calculated by the formula (3). For the

simple case of bending, the calculations are
carried out in the same sequence, just for given
deformations using the formulas (6), the
element curvature and the actual height of the
compressed zone x are calculated. Using the
equilibrium equation (9) and without taking into
account the reinforcement in the compressed
zone, the reinforcement area A is determined.

The forces in concrete for given concrete class
of compressive strength are equal to the forces
in the reinforcement.
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Table 2. Design values of parameters for limiting state by deformation model (A)

and the method of ultimate forces (B)

Compressive class B15 B30 B45 B60 B75 B85 B95 B105
of concrete
X, cm 37.3 37.2 37.0 36.4 35.8 354 34.9 34.3
A M . kN 317.7 644.8 | 8243 1178.7 | 1342.7 | 1419.5 | 1478.0 | 1523.1
ult > m
x', cm 32.2 32.0 30.7 29.2 27.7 26.6 25.5 24.3
B M* KN 327 653 834.8 1196.4 | 1366.0 | 1449.8 | 1514.2 | 1566.5
ult > m
The curvature of the element and the height of REFERENCES
the compressed zone x decrease due to a
reduction in the limit values of nonlinear 1. Building Code of  Russia Sp
deformations in high-strength concrete ~when 63.13330.2012. Betonnyye i
increasing the class of concrete, and the value of zhelezobetonnyye konstruktsii. Osnovnyye
the ultimate moment M, increases (Table 2, gggfhsezn_lgf;gggu?lclggrveign:gg redalisiya
A). The height of the compressed zone x* of concrete structures. The main provisions.
rectangular shape is smaller than the actual Updated edition of SNiP 52-01-2003].
height of the compressed zone x, however, the Moscow, Minregion Rossii, 2013, 175
increase in the shoulder of the inner pair of forces pages (i N Russian). ’ ’
compensates the difference between the values of 2. ENV 1992-1I: Eurocod 2: Design of
the limiting moments calculated by formula (16) Concrete Structures. Part 1: General rules
without taking into account the reinforcement in and Rules for Building. European
the compressed zone (Table 2, B). Prestandart. Tune, 1992.
3. Building Code of Belarus SNB 5.03.01-02
Betonnyye i zhelezobetonnyye konstruktsii
CONCLUSION [Concrete  and  reinforced  concrete
The ratio of ultimate efforts when‘ calculating ;gggfulrzg]p a;\g;n(sil;,Rlll\;I ;?;r‘gf)yarkhltektury,
the strer}gth of e‘lements 'accordlng to the 4. Posobiye po proyektirovaniyu betonnykh i
deformation model is depermmed by the integral zhelezobetonnykh konstruktsiy -
p aramete.rs of the dlagra'ms of conc?ete tyazhelogo betona bez predvaritel'nogo
deformation under compression, the analytical napryazheniya armatury (k SP 52-101-
modeling of which allows us to exclude from 2003) [A guide for the design of concrete
the calculation of strength the procedure for and reinforced concrete structures made of
numerically summing of stresses along heavy concrete without prestressing
elementary strips in a section and solving reinforcement (to Building Code of Russia
nonlinear equations by successive SP 52-101-2003)].  TSNIIPromzdaniy
approximations. Replacing a curvilinear stress NIIZHB. Moscow 0 AO’
diagram with a rectangular one does not “TSNIIPromzdaniy” 2005’ 214 pages (in
introduce a significant error in the calculation of Russian). ’ ’
ultimate forces, since a decrease in the height of 5. Karpenko N.I.  Obshchiye modeli

the compressed zone with a rectangular diagram
is compensated by an increase in the shoulder of
the internal pair of forces.
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Abstract: For regular hinge-rod structures, an engineering method for analyzing the stress-strain state is devel-
oped, taking into account the transformation of the form by folding repeated fragments of the structure. For the
software implementation of the proposed calculation algorithm, a macro is compiled in the APDL language,
which is built into the ANSYS software package. A step-by-step procedure that simulates the transformation of
the farm geometry was tested.
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AHHOTAIMSI: JUIsl PETYJISIPHBIX IIApHUPHO-CTEP)KHEBBIX KOHCTPYKIMIT pa3paboTaHa HH)KEHEpHAsi METOAMKA aHa-
JM3a HaNpPSDKEeHHO-1e()OPMUPOBAHHOIO COCTOSIHUS C YUeTOM TpaHchopManuu (OpMbI IyTEM CBOPAYMBAHUS TO-
BTOPSIOMINXCST (PParMEHTOB KOHCTPYKIMU. J{JIsi mporpaMMHON peanu3alyy MpeuiaraeMoro ajaropurMa pacuera
cocraBiieH Makpoc Ha si3pike APDL, BcTpoenHoro B nporpammHsiil kommieke ANSY'S. BeinonneHo tectupoBa-
HUE [IaroBOM MPOLEAYPHI, MOJICIUPYIOIIEH Mpoliecc TpaHc(opMaluy reOMETPHH IIPOCTPAHCTBEHHOH (hepMBl.

KaioueBble c10Ba: mapHUPHO-CTEPKHEBBIE KOHCTPYKIIUH, METO KOHEUHBIX AJIEMEHTOB,
MaTpHIa KECTKOCTH (PEPMEHHOTO IEMEHTA, MaTPHUIIA )KECTKOCTH MEXaHMUYECKOTO TIPHBO/A,
HaIpsUKEHHO-16()OPMUPOBAHHOE COCTOSTHHE

INTRODUCTION

One of the creative directions in modern archi-
tecture is the so-called kinematic design, based
on a controlled change in the geometry of the
structure in order to obtain the required space
planning decisions [1,2]. According to the prin-
ciple of transformation of geometry, building
structures can be divided into the following
groups [3]:

e moving in space along the guides;
e performing a rotation about the axis of rota-
tion;

e folding or rolling on the principle of a fan.
The technology of constructions made of ori-
gami, which are capable, compressing and
stretching, to qualitatively change shape should
be added to this. The idea of creating such
building structures was taken from the field of
aerospace systems such as solar panels and mir-
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rors with a large surface [4].

As examples of existing original transformable
building structures, Thomas Heterwick’s folding
bridge [5], built in London in 2004 and the fold-
ing bridge in Germany (1997), which is called
«Horn», which became a landmark of Kiel [6],
can be mentioned.

At the same time, there is practically no infor-
mation in the literature of structural mechanics
about the mathematical modeling of transform-
able building systems taking into account the
form change. In this regard, the direction asso-
ciated with the development of an engineering
methodology, the calculation of geometrically
variable structures using the finite element
method (FEM) is relevant.

In FEM, the relationship between deformations
at an arbitrary point of a finite element and the
corresponding nodal displacements is generally
represented in matrix form [7]

{et=[D]{u} (1)

where {¢}and {u#} — are the column vectors of

the components of the strain tensor and nodal
displacements;[ @] — is a matrix of form func-

tions, depending on the type of the finite ele-
ment and the approximating functions.

By the hypothesis of infinitesimal deformations,
it is generally accepted that the matrix does not
change during loading on element. This assump-
tion is the basis of the so-called infinitesimal
theory of deformations, i.e., a theory when de-
formations are considered infinitesimal quanti-
ties. The use of this theory is quite justified if a
change in the nodal coordinates of the finite el-
ement mesh can be neglected, during the defor-
mation of the structure. However, in some cas-
es, due to large elasto-plastic strains or large
translational and angular displacements of the
model, in order to obtain an exact solution, it is
necessary to take into account the change of the
matrices of finite elements. Such a theory is
called the theory of finite strains. In the frame-
work of the theory of finite strains, various step-
by-step procedures are applied for the numerical
implementation of calculations, the essence of
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which is to represent the loading process in the
form of a stepwise or continuous increase in the
load parameter. Moreover, at each step, as a
rule, a scheme for iterative refinement of the
solution is provided.

The method to describe the current deformed
state of the finite element model and the initial
coordinates are used is called the method of La-
grange. In case of large displacements, for ex-
ample during structural modificationat the be-
ginning of each loading step, the initial coordi-
nates are used. This method of representing de-
formations is called the modified method of La-
grange [8]. The present work is devoted to the
extension of the modified Lagrange method to
the problem of analyzing the stress-strain state
of a spatial truss structure with kinematically
directed shape transformation in the plane of
minimal stiffness.

2. CALCULATION METHOD

To analyze the stress-strain state of a hinged
structure with a regular structure, we use the
ANSYS Mechanical software [9], which im-
plements the FEM in the form of a displacement
method. As an object of research we consider a
space truss structured in the form of repeating
semi-octahedron (Figure 1).

_ ,
y '&

X
Figure 1. Initial state of the truss.

The geometrical dimension of the truss are set
in the global Cartesian coordinate system
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X,¥,z . The truss shape transformation is pro-

vided using, located in the back bar of the struc-
ture, rods-drives with variable length. In this
case, the process of forming takes place in such
a way that the lengths of the rods of the top-
chord and the lattice of the truss practically do
not change. In Figure 1, the drive rods are indi-
cated byS . Note that the operating mechanism
of these rods provides a direct and reverse
stroke, i.e., mounting and dismounting of the
structure. To simulate the process of kinemati-
cally oriented structural change, we use the fi-
nite element (FE) LINK 11 (Figure 2), which
allows you to change the distanceS between
nodes 7 and j .

y

X
Figure 2. FE with a variable length LINK 11.

We model the rods of the top-chord and lattice
with 3D truss elements of the LINK 180 type
(Figure 3). In this figure the next symbols are
marked: / — the length of the rod; EF — longi-
tudinal stiffness.

The axis x of the truss CE forms with the axes x,
y, z the angles directing cosines, which are

determined by the formulas:
Yi=V;.

5 cos(yx)= 5

xi—xj

cos(xx)=

Z. zZ .
(2
@

cos(zx)=

Let s introduce the notation:

t, =cos(xx), t,, =cos(yx), t, =cos(zx).

Figure 3. Truss FE LINK 180.

The relationship between the FE nodal dis-
placements u,. and u . and their projections

Uy Uy, u,and u, ,ou; , u

s ;y» u;. on the global

coordinate axes is described by the relations:

Uz =U; Ty tu, b, Ul
U, :ujxt11 +ujyl‘12 +ujzt13 .

Hereinafter, the first index corresponds to the
FE node number.
Axial force N in the axes x, y, z is decom-

posed into the following nodal components:

F,.==-Nt,; Fiy:_Nt]2;

F_/.sztu;

Fiz:_NtD;
ij:Nt”; ij:Ntw'

The equilibrium equation of truss FE in the axes
X, y, z in matrix form has the form

[h]{u}={F}, 3)

where column vectors of nodal displacements
and forces

{u} :{uixuiyuizujxujyujz}T )

7
{F} :{FixFiniszijijZ}

(T — the symbol of matrix transposition opera-
tion); finite element stiffness matrix
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[h]=—"-[t], 4)
/
direction cosines matrix
2 2
I Itz s —I —Ifintiy i3
2 2
y, 12013 2ty —typ  —l12043
2 2
i3 —hiztn —hiztiy i
[t]= 2
T ity 111413
2
5P 112113
2
i 113

As is obvious, the matrix elements[h]depend
on the nodal coordinates x,, y,, z, and x,, y,
> 25 which, with large displacements of the rod,

change significantly compared to the initial val-
ues.
The LINK 11 element (Figure 2), having a

length in the initial state /,, is endowed with

longitudinal stiffness properties K and viscoe-
lastic damping C. The latter is not used in this
analysis. The stiffness matrix of the LINK 11
element in the global coordinate system can be
represented in the form

[h,, 1=K[t], S))

The components of the corresponding column
vector of nodal forces are written as
{Fax}:Nax{_tll_tIZ_tB n fis |3} where
N, =Ks — axial force, due to the stroke of the

drive § .

Thereafter, we accept the following assump-

tions:

e to describe the deformation of the structure
in the process of shaping, we apply the
modified method of Lagrange;

e the process of transformation of the struc-
ture represents a quasistatic sequence of
steps k=1,2,...,n of discrete change in the
lengths of elements LINK 11 by a small
amount S ;
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e rectilinear rods before deformation remain
rectilinear after deformation,;

e the cross sections of each rod remain nor-
mal to its longitudinal axis during defor-
mation;

e we neglect the change in the longitudinal
stiffness of the rods during the structural
modification, i.e. we believe that the behav-
ior of the material throughout the course of
form-change obeys Hooke's law;

e in the process of transformation of the
structure, the achieved level of the stress
state of the rods is remain intact.

The geometry and stress state transformation of
the rod modeled by the LINK 180 element is
schematically shown in Figure 4. We emphasize
that the transition from the current position of
the rod to the subsequent position is accompa-
nied by small increments in the values of the
nodal coordinates.

X

2) (2) (2
(’)yj)()

MONOEQ)

xye ot

N ANy N W k= n

L@.0.0 N NjeirZ
; Xi2YisZ
090
l’yl’ 14 ] X
A0 m - No=0 20 o) 0
XisYisZj :y]
z iG
L0),0)_(0)
XisYisZi
X
y

Figure 4. Visualization of the process
of transformation of the rod.

The flow diagram of the algorithm developed on
the basis of the accepted assumptions is shown
in Figure 5. Abbreviations are introduced here:
BC — boundary conditions; SLAE — simultane-
ous linear algebraic equations. APDL program-
ming language is used For the software imple-
mentation of this algorithm [10], which is built
into the ANSYS Mechanical. Created on the
basis of this language the application macro is
entered into the command window, after which
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each line of the macro is processed by the
APDL interpreter and, if the result is positive, is
immediately launched. Thus, the macro allows
you to automatically create the geometry of the
structure, build a finite element mesh, set the
boundary conditions and load, start the solver to
perform the calculation, as well as carry out in-
termediate operations associated with extracting
information from the ANSYS database at the
current loading step and generating working ar-
rays by performing the necessary algebraic pro-
cedures. In addition to the above actions, the
macro contains commands to delete the finite
element model at the current calculation step.

Start of calculation

Preprocessesor entrance

Preprocessesor entrance

The model update taking into account

the obtained displacements
Building the initial finite
element model of the structure 1. Deleting previous grid of FE
2. Deleting all BC

3. Deleting previous geometry (lines

Exit the preprossesor

and points)
k=1 (&> 4. Construction of updated geometric
model
@« 5. Building a new finite element model
v Exit the preprocessor

Solver entrance

Setting static and Her

kinematic BC <k=nstep?> ®

Solving SLAE Jla

Calculation of the axial
forces Bxox B noctnporneccop

Exit the Solver dopmupoBanue Ta6{[HleI
é NPO/I0BHBIX yeuuid B KD

Busyanu3sanus pesysbTatoB
Bbixon 13 nocTporeccopa

OxoHYaHue pacyeTa

Figure 5. The block diagram
of the transformable hinged structure
calculating algorithm

Note that in the proposed macro the procedure
of direct calculation of the axial forces in the
truss rods using the formula

N, =IE—F(1k ). 6)

k-1

This approach is explained by the fact that when
using LINK 180 FE values y, are calculated in

relation to the initial (undeformed) element
length. With the proposed step-by-step method
of representing the process of structural modifi-
cation, this method leads to incorrect results.

2. NUMERICAL CONVERGENCE
OF CONVERGENCE

Testing the developed algorithm and the corre-
sponding macro is feasible on the example of
the spatial truss shown in Fig. 1. Initial data:
rods of the top-chord and lattice have a tubular
cross-sectional area of F =0,113-10 °m?;, modu-
lus of elasticity of the material of the rods (steel)
E =2,1-10° MIla ; specific density y= 7800 kg/m
3. Overall dimensions in meters for a repeating
fragment of the truss (semi-octahedron) are
shown in Figure 6.

0,5 0,5

0,5

z
y Vx
Figure 6. The repeating fragment of the truss

Stiffness coefficient and mass of the mechanical
drive modeled by the LINK 11 element is
K=1.10" Nm; »_ =20 kg.

In Figure 7 shows graphs of changes in the
height of the lift 4 and the bay ;_f the truss de-

pending on the stroke of the drives and taking
into account its own weight.

hi(s),l;_p(s), M

3,5

2,5

1,5

()’5 1 1 1 1 1
0 0,1 0,2 0,3
S.M

Figure 7. Gmphshi,lnip ~s for s =0,01 m
and nstep=30.
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Here, the «+» sign corresponds to the forward
stroke (camber of truss), the «-» sign to the re-
verse stroke (returning the truss to the initial state).
The graphs in Figure 7 are obtained with the
stroke value at the transformation steps =0,01m

and the number of transformation nstep = 30.

Visualization of the patterns of the forward and
reverse transformation of the truss for these pa-
rameters § and nszep are presented in Figure 8.

o
Figure 8. Visualization of the patterns of direct

and reverse transformation of the farm
s=0,01 m and nstep= 30.

Analyzing the graphs in Figure 7 and the type of
structure after the reverse transformation, we
establish that the geometry of the model as a
result of the assembly-disassembly cycle is not
restored to its original state and in this case
there is a residual deflection of the truss top
chord and truss back bar.

Figures 9 and 10 show the results of a similar
calculation for the values of the parameters
5=0,001m and nstep =300 . For comparison, the

of the

amounted to: for s=0,01 m and nstep=30 —
h7(0,3)=1,071m, [ (063)=0,8553m;

5=0,001m and nstep =300 — 4" (0,3)= 1,036
m, ;+ (0,3)= 0,9263 m.

values parameters ;*(0,3)and; * (0,3)

for

From the data presented it follows that with a
tenfold decrease in the parameter § and the same
increase in the parameter nsrep a satisfactory co-
incidence of the simulation results with a picture
of the real behavior of the structure under con-
sideration during direct and reverse transfor-
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mation is observed.

hi(s),lnip(s), M

35r
i L (), 1y (5)

2,5

L3F n*sn )

0,5 1 1 1 1 1
0 0,1 0,2

0,3

S,M
Figure 9. Graphs h i,lni; ~s for s =0,001m
and nstep =300.

\VAVAVAVAVAVAVAVY

Figure 10. Visualization of the picture
of the reverse transformation of the truss
for s=0,001 m and nstep=300.

Axial force diagram N in the rods of the top
chord and the lattice of the test truss for various
values of the parameters s andnsfep are shown

in Figures 10 and 11. From the above data it can
be seen that the values N in the truss rods sub-
stantially depend on the calculated parameters
s and nstep .

For comparison, Figure 12 shows a picture of
the transformation of a test truss with a direct
forward stroke of actuators by a value. s=0,3m.

This solution was obtained as part of a linear
calculation.

As you can see the picture of the farm in a de-
formed state, shown in Figure 12, differs quali-
tatively from the picture obtained in the step-by-
step transformation scheme of Figure 8.

When using the option of accounting for large
displacements («Large Displacement Staticy») in
the case of simultaneous calculation (s=0,3m)
we obtain a picture of the structure in the trans-
formed state similar to that shown in Figure 8.
The values of the transformation parameters are

h*(0,3)=1,037m, /7 (0,3)= 0,9034 m.
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N,N
-544.655
161554
323654
485753
647852
8085831
972050
L113E+07
.130E+07
.146E+07

HERREEEOT

s =0,001m;
nstep =300 N,N

-83027.8
-66150.3
-39272.8
-12385.4
14482.1
41359.86
68237.1
§5114.8
121992
148870

HREREEEE0O

Figure 10. Axial force diagram N in the rods
of the truss top chord

s=0,01m; N,N
nstep =30 26132.6
159678
293223
426768
260314
693E59
827404
Qp0949
L109E+07
L123E+07

HENREREE0

s =0,001m; N,N
nstep =300 ~10830.2
2633.33
b 22214.
3BB00.
35384,
T1967.
BB351.
105135
121718
138302

HRRRREEO0

Figure 12. Simultaneous transformation
of the truss fors=0,3m.

However, it was found that the calculation in a
geometrically nonlinear setting does not allow
to take into account the installation history. The
obtained values of the longitudinal forces in the
truss rods are very underestimated.

3. EXAMPLE.

As a demonstration example, consider an indus-
trially significant truss formed by 24 semi- oc-
tahedron (Figure 13).

Figure 13. Initial truss position.

Initial data: rods of the top chord and lattice
have a tubular cross section with an area of
F =0,2901 -10 > m %; modulus of elasticity of the
material of the rods (aluminum alloy D16T)
E=72-10"MPa; specific density y= 2885
kg/m>. he value of the temporary resistance of
the material o,,, = 420MPa. The overall dimen-

sions of the semi-octahedron are tripled in com-
parison with the test example (Figure 6).
Mounting process is simulated by analogy with
a test example, accepting s= 0,001, nstep =

Figure 11. Axial force diagram N in the rods of ~ 200. The initial bay /, =35 m.

the truss lattice
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The results of finite element modeling are pre-
sented in Figures 13-16.

Figure 14. The truss position after the form
transformation.

1 (5), Lp(5), M
40

lnp(5)
30\

20+

10%

) S Y I Y O T I N
0,02 006 0,1 0,14 0,18,

Figure 15. Graphsh =1 ~s.

-.280E+07
.358E+07
.995E+07
.163E+08
.22TE+08
.281E+08
.355E+08
L418E+08
.482E+08
.546E+08

IRREEREOD

Figure 16. Axial force diagram N .

The resulting height of the farm was 42" (0,2) =
8,43 m, and the total bay/ (0,2) = 25 m (Fig-

ures 14, 15).
Figure 16 shows that the maximum value of
compressive axial force y  =-2800 kN arises in

the elements of the «boss» of the arch. This val-
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ue NV 5% corresponds to the maximum com-

pressive stresso  =—0,965MPa, Which is sig-

nificantly less than the value & .

The critical value of the axial force for a axial
compressed rod with a given size and mechani-
cal characteristics is equal. N, =9044 kN .

Safety factor for a compression rod

n,=N_/

y

N o [=3.23.

Thus, the initial stress state of the arched type
structure under consideration fully satisfies the
requirements of operation.

CONCLUSIONS

1. An engineering method for calculating the
stress-strain state of regular hingerod struc-
tures with a kinematical oriented shape
change has been developed.

2. A numerical study of the convergence of
the step procedure modeling the process of
controlled shaping of a regular hinged rod
structure was carried out.
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FINITE ELEMENTS OF THE PLANE PROBLEM
OF THE THEORY OF ELASTICITY WITH DRILLING DEGREES
OF FREEDOM
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Abstract: Twelve new finite elements with drilling degrees of freedom have been developed: triangular and
quadrangular elements based on a modified hypothesis about the value of approximating functions on the sides
of the element, which made it possible to avoid dimensional instability when all rotation angles are zero;
incompatible and compatible triangular and quadrangular elements which can have additional nodes on the sides.
Approximating functions satisfy the following condition: the value of the rotational degree of freedom of a node
is nonzero and equal to one only for one of them. Numerical examples illustrate estimated minimum orders of
convergence for displacements and stresses. All created elements retain the existing symmetry of the design
models.
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KOHEYHBIE 3JIEMEHTHI IIJIOCKOH 3AJIAUU TEOPUU
YIIPYT'OCTHU C BPAIHATEJBbHBIMU CTEHEHAMUAU
CBOBO/bI

B.C. Kapnunoeckuii
000 ScadGroup, r. Kues, YKPAUHA

AnHoTanust: [TocTpoeHO 1BEHaANaTh HOBBIX KOHEUHBIX 3JIEMEHTOB C BPAIIATEIbHBIMU CTEIICHSIMH CBOOOMBI:
TPEyroJIbHble W YeTBIPEXYroJbHBIE JJIEMEHTHl HA OCHOBE MOJIU(DUIMPOBAHHOW TUIOTE3bl O 3HAYCHUH
anMpoKCUMHUpYIOMMX (QYHKIMH Ha CTOpPOHAX »JJIEMEHTa, MO3BOJMBIICH HCKIIOYHTh TI'€OMETPUYECKYIO
HU3MEHSIEMOCTh IIPU PABEHCTBE HYJIO0 BCEX YIJIOB IIOBOPOTA; HECOBMECTHBIE U COBMECTHBIE TPEYTOJIBHBIE U
YEeTBIPEXYTOJbHBIE 3JIEMEHTHI, KOTOpPbIE MOTIYT HMETh JIONOJHUTENbHBIE Y3/l Ha CTOpoHax. llpu sToM
anMpoKCUMHUpYIOmKe (YHKIMH yJIOBICTBOPSIOT YCIOBHIO: 3HAYCHHE BpPAIIATEIbHOW CTENEHH CBOOOABI y3ia
TOJIBKO Ul OJJHOW U3 HUX OTJIMYHO OT HyJsA U paBHO eauHuie. IlpuBeaeHbl OLIEHKH MUHUMAIBHBIX MOPSAKOB
CXOOVMOCTH TI0 TIEPEMEIICHMSAM M HANpsDKEHHSM, HWUIIOCTPHPOBAHHBIC YHCICHHBIMH mpuMepaMu. Bce
TIOCTPOCHHBIE 3JIEMEHTHI COXPAHSIOT CYIIECTBYIONLYI0 CHMMETPHIO PACUETHBIX CXEM.

Ki1roueBble c10Ba: KOHEUHBIC 3JIEMEHTBI, BPAIIATENIbHBIC CTENICHN CBOOOIBI, IIIOCKAs 3a/1a1a,
TPEYTOJBHBIN IEMEHT, IPSIMOYTONBHBIIN 3IEMEHT, YEThIPEXYTOJIbHBINA 3JIEMEHT

1. INTRODUCTION where: Q — plate of thickness h: solid body with

a midplane XOY;
Let us consider the Lagrange functional of the

plane problem of the theory of elasticity: {u ( x)}

() =1 [ (Au) DAWQ - [ fTudy (1)

20 Q . :
— displacements of the point,
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— area load.
The geometry operator 4 and the elasticity
matrix D (for an isotropic material) are:

9 4 9 1 v 0
AT =| O ay' D= Ezv 1 0 ()

0 & 9 I=vilo o 1zv

gy Ox 2

E — Young’s modulus, v— Poisson’s ratio.
Classic finite elements have two degrees of
freedom in each node: nodal displacements u;
vi, i=1,2,...,N, where N is the number of element
nodes. There are also more complex elements
with three degrees of freedom in a node, when
the following values can be taken into account
in addition to the displacement values:

e averaged rotation angle:

w; =, (x;), a)z:l(av ou

it BENC)

According to [1] the value @. characterizes the

rotation of an infinitesimal volume surrounding

a point. This value is invariant with respect to

orthogonal transformations of coordinate

systems.

e the paper [2] proposes and the papers [3-5 et
al.] develop the approach when the degrees
of freedom ¢ with the following hypotheses
are introduced at the nodes:

a) tangential displacement u. varies linearly on

the side ij;

b) normal displacement u, varies according to

the law:

Uy = (1= Oy + &y + 16~ O)E-E), (@)

x=xi+§(xj -X;), T, :(Xj _Xi)/aij

aj :|xj -X; |
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— side length,

e in order to avoid dimensional instability
which can occur when all degrees of
freedom are equal & according to the
hypothesis (4), we will assume that the
normal displacement u, varies according to
the law proposed in [6]:

u,=(1-%)n,, +§unj +

% e1-&)(6,-6,+£(6,+0)(1-28)) )
2 Joi J i

g=const.

Degrees of freedom &, created according to the
hypothesis (5) will be called quasi-rotational.
And for the function ¢i(x), corresponding to the
degree of freedom 6

0.5(l-¢), i=},
o, (g;(x)) X, = —0.25(1+¢), i#j, side (6)
‘ 0, 1 # J, diagonal

If we substitute £=—1 into (6), we obtain:

u, =(1=8u,,; +(1=S)u,, +
a;&(1=8)(0,5 - 6,(1-S))
and @, (¢;(x))1, =5/, ij=12,....N.

(7)

The direction of the normal vector to the side n;;
for (4) and (5) is selected in such a way so that
the system nj, 7;j and OZ is right-hand. The
compatibility of the respective system of
approximating functions is provided in both
cases.

However, (4) has the following disadvantages:
a) since the degrees of freedom & in (4) are
included only as a difference between the values
on the sides, it is necessary to create additional
constraints in order to avoid degeneracy of the
system or to introduce fictitious rigidities;

b) the calculated values & can be quite far from
the actual rotation angles.

Additional constraints are not required for (5).
As shown by numerical experiments we obtain
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good accuracy of the results for small values of
€, which almost coincides with that of the
results for displacements and stresses with the
elements according to the hypothesis (4). The
values of the “rotation angles” & are more
realistic.

For hypotheses (4) and (5):

a) moment loads are incorrect,

b) when creating elements with intermediate
nodes on the sides, it is almost impossible to
agree the physical meaning of & at the vertices
and on the sides. Therefore, § are either not
determined on the sides as in [7], or are
determined artificially as in [8].

The degrees of freedom & for (4) and (5) no
longer have an exact physical meaning. They
can hardly be interpreted as “rotation angles”.
However, the corresponding approximating
functions do not contradict the ideology of the
FEM as a projection-grid method and show
good results in shell analysis.

A large number of elements with rotational
degrees of freedom based on formulations other
than the Lagrange functional were created:
hybrid elements based on a mixed functional
[9], elements based on the Trefftz method [10],
on the expansion by displacement modes [11]
etc. [12,13,14 at al.]. The list of publications on
this subject is obviously not complete. The
elements considered in this paper are based on
the Lagrange functional.

As confirmed by numerical experiments, the
load can be given as moments: both nodal and
distributed over an element (for example, along
the side), for elements which have degrees of
freedom @. and ensure convergence of the
method. The reduced nodal moments are
calculated according to a standard formula:

M;=[M(x,y)o,(@;)d (8)
Q

When there are three degrees of freedom in a
node, finite elements have 3N unknowns, which
are arranged in the following order during the
generation of a stiffness matrix of the element:

50

Viktor S. Karpilovskyi
{u,,v,,@...,uy,vy,0y} and, accordingly,
{up V0 uy,Vy.0n ), 9)

which have a corresponding
approximating functions:

system of

{w(x,y), ®; = {Z’} i=1+N, j=1,2,3 } (10)

/8%

For example, the displacement field for the
degrees of freedom 4 is represented as:

N
u(x,y) =X (u;0,; + v, +0p;3) =
il

, 11
%{ui(oil,u + vi§0i2,u + 0i¢i3,u } ( )
i Uiy +Vi®iay + 0033,
Functions satisfying (5) will be represented as
follows:

@;3(x)=x;(x)+&¢,(x), =12,....N, (12)
where — y; functions obtained from hypothesis
(4), & — correction functions.

Let us introduce the notation L;; for operators of
degrees of freedom:

Li(@(x) =@,(x;), Li(e(x)=p,(x;),

L5 (p(x)) = o, (ep(x)) lxi , i=1,2,...,N. (13)

For i=1,2 — these are nodal displacements in the
respective directions.
The following condition has to be satisfied:

L@, ) =5", =1,2,...N,  (14)

j=1,2 for (4) and (5) and j=1,2,3 for w,.

Convergence criteria

Criteria for proving the convergence of both
compatible and incompatible finite elements for
problems with elliptic differential equilibrium
equations of arbitrary order were proposed in
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[15-17] and were used in [15] to create new
elements.

Let us formulate them for the plane problem of
the theory of elasticity. Equalities of the
completeness criterion of the minimum order
for the degrees of freedom u;, v, ®;:

N 1 N X

i=1

%%2()‘)5{?}, %yi¢i2(x) E{O},
i=1 i=1 Yy

g(yi(Pn(X) + ¢,~3(X)) = {g},
(15)

N
Zl(xi(”iz (X)— ;3 (X)) = {g}
Conditions (15) must be satisfied for the
approximations according to (4) and (5), if we
assume that ¢,= 0. Adding independent
approximations can only increase the order of
the completeness criterion.

When (15) is satisfied, it guarantees the
displacement of a finite element as a rigid body,
and for compatible approximations according to
[15,16], the method will converge in
displacements with the 2-nd order, and in
stresses with the 1-st order.

An incompatibility criterion is introduced for
incompatible approximating functions. For the
considered problem it lies in finding such a
compatible system of functions

{W;(xy), i=12,.N, j=1,23},(16)

that must guarantee the displacement of the
finite element as a rigid body (or the fulfillment
of all equalities (14), which are more strict
conditions) and satisfy the equations

o 2 0 of 0
[{ax oy o O (‘Pij_(pij)dQ: 0 (17)
Q0 0 o Oy 0

i=1,2,...,N, j=1,2.,3.
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When performing (15) and (17) for
incompatible approximations, according to
[15,16], the method will converge in

displacements with the 2-nd order, and in
stresses with the 1-st order. When analyzing
incompatible approximations for elements with
rotational degrees of freedom, approximations
of classic elements with two degrees of freedom
of a node can be used as a compatible system of
functions (16). The incompatibility criterion
enables to analyze the approximations for one
finite element unlike the piecewise testing
[18,19,20], which requires the analysis of all
possible stars of elements.
Functions for some nodes corresponding to the
rotational degrees of freedom w, will be
determined as follows for some elements:
@;3(%) = p; (%) + A,(x) (18)
where ui(x) and Aix) are compatible and
incompatible approximations, respectively.
It follows from the incompatibility criterion (17)
that A;(x) must satisfy the equations:

0 T

o 2 0
[l ox &dby o O
Q0 0 ox

0
A, (x)dQ =101 (19)
oy 0

The aim of the work is to build 12 new finite
elements with rotational degrees of freedom
using the above convergence criteria, ensuring
the convergence of the finite element method.

2. FINITE ELEMENTS

2.1. Finite Elements with Quasi-rotational
Degrees of Freedom

a) Three-node Element

Let us consider a triangle in the local coordinate
system shown in Figure la. After changing the
coordinates (20), it is transformed into a right
triangle with unit legs shown in Figure 1b.

51



Viktor S. Karpilovskyi

AY A
Q, 3(0,1)
n, 3(b,c)
4 Q, 6
n
4 6 /23 Q, >§
Q3 2(110)

5 X

: > . >
1 l 2(a,0) 1 5,0)  2(1,0) g 5

n12

(a) (b)

1(-1,-1) ©

Figure 1. Triangular element.

§=l(x—§yj, 77=%y (20)

a

We will determine the degrees of freedom only
at the vertices of the triangle.
Normal’s to the element sides:

The following approximation of displacements
in the form (12) satisfies the conditions (5):

T

@1 (x)={v;, O}Tr e (x)={0,v;} @D

y=1-8-n, w,=¢, y3=n,i=1,23

_1-&-n)-cn _&l-en
L= ag+by" 2272 —all- &)+ by

_nlel=n)

X3_§{a§—b(l—n)} (22)
¢ :1—5—71{—c77(é+2f7—1)] }
1 2 |mac(-28—n)—bn(1-<—2n))
¢ zé{c’?(f—’?] }
27 2\bn(n—=<S)—a(H=&)f

_nlcH=n)

52 {af(é —n)—b(H—n)}' @)

H(E,n)=1-2E-2n+2&E% +2En+2n°

Functions (22) — approximations [2].

b) Four-node Isoparametric Element
Let us consider a convex quadrangular finite
element in the local coordinate system shown in
Figure 2a. After an isoparametric transformation
of the coordinate system (24), it is transformed
into a unit square shown in Figure 2b.

x=al(l-n)+b(l-En+dén,

y=c(l-Em+ecn 24)

Normals to the sides:

n _[0 ny, =1

oo Lfe=el 1 [
34 = g ld—=b” ™3 T b

We will determine the degrees of freedom only
at the vertices of the quadrangle.

The following approximation of displacements
in the form (12) satisfies the conditions (5):

<p,.1(x)={0 } (piz(x):{l/(/)i},ZI,Z,3,4, (25)

v =01-80-n), w,=&1-n),
ws=(1-S)n, Wy =<&n
_(I=)(1=¢) |—cn
13 2 bn+a&|’
_&(l=n)|-en
O =T al= &) +(d—a)n|’

52 International Journal for Computational Civil and Structural Engineering



Finite Elements of the Plane Problem of the Theory of Elasticity with Drilling Degrees of Freedom

AY
n Y
3;\ 4(de) 3(0,1) 4(1,1)
n13
3(b,c)
7, 7,
Ny,
. -
™ » X
1 l 2a,0 1 2(1,0)
ny, (1.8)
(@ (b) (c)

Figure 2. Quadrangular element.

_ (=8 |cll=n)+(c—e)d

=7 {(d—b)é—b(l—n)}’

énfell-n)+e—)1-£)
5= {(b—d)(1—§)+(a—d)(l—r7)} (26)

Functions (26) — approximations [4].

_(1=&)1=n))en(1—2n)

Ga="—3 {—bna—zn)—aéa—zf)}'
¢ (x)zé(l—n){en(l—m }
2 2 |alE—1)(1-28)-(d—-a)n(l-27)]"
7.0 = {c(l —)1-21)— (e —e)E(1 - 28) }

3 2 |(b-d)E(1-28) - bll—n)(1-27))]’

ell—)(1-2n) +
0= (e—c)1-&)1-2£) 27)

2 |(b=d)(1-8)(1-28)+
(a—d)(1-n)(1-2n)

Two more functions are sometimes added which
correspond to some internal degrees of freedom
with their subsequent condensation:

W, ={&(1-&ml-n), 0},
w, ={0, £1-&ni-n)"

1—277—§2+772,
_ B |1-2p- A 417,

xeQ),

xeQ)
4 2

1-2n-&*+B’n?, xeQ,
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-2 1-2n— A& + B2, er3’

¢) Four-node Element with a Piecewise
Polynomial Approximation

Let us consider a quadrangular finite element in
the local coordinate system shown in Figure 2a.
It is transformed into a quadrangle shown in
Figure 2c¢ by replacing the coordinate system
(28). A 1is the intersection point of the diagonals
of the element.

y=yal=&)+(e=y,)n

{§=P11x+l912)’
nN=pyx+tppy+p

{XZXA +(a_xA)§+(d_xA)n, (28)

1 d _c _a=b
Pn—ar Pn= P le—A' Pn= A’
_eb—dc _ac
a= 2 'B__X' A=c(d—a)(a—b)e,

A=1/a, B=1/p,

A, :1/(1—0!), B, :1/(1_18)

If the quadrangle is a rectangle, then a=£=1.
Let us consider functions (29) y;, i=1+8, which
are second-degree polynomials in each of the
subareas Q;, =1,2,3,4 and are continuous
together with their first derivatives on the
diagonals of the element:

—a+2E—al* +an?,
_4 —a+2E-AET +an®, xeQ,
2 —a+2&E - AE* +aB’n?, xeQ,

—a+2§—a§2+aB2 2, xeQ,

xeQ),
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1-26+& %, xeQ —B+2n+ P -pn’,  xeQ

AN -2E+ AP, xeQ, B |-B+n+ APE-pn’, xeQ,
T2 1-2&+ A2E* — B*n?, er3’W4_ 2 |-B+2n+ A2 BE - Bn?, xeQ,
1-2&+&% - B*n?, xeQ, —B+2n+ E* - By?, xeQ,

20 —4PE—4an+ 22 —a) +4En+2a(2—- Bn?, xeQ,
Vo= AB 20 -4PE —dan+2ABE* +4En+2a(2- B, xeQ,
> N 2B —apE —dan +2ABE +4En + 2a.Bn, xeQ,
2a,6’—4ﬂ§—4a77+2ﬂ(2—a)§2+4§77+2aB772, xeQ,
2B +APE+An-2E° —4n— (428", xeQ
v = A B | 2BTABE AN APA-2A 4y —(4-2B)", xe
O TN 284488 + 40— AP —2A)E* —4En - 2B, xeQ,
2B +4ABE+4n -2 BE* —4En —4En—2Bn?, xeQ,
2 —4E —4n+2E% +4En+ 217, xeQ
Vo= AB D —4E—An 247 (1-2a)E* +4&n+ 217, xeQ,
TN o mag—an—247(1-2a)E% +4En - 2B (1-28)0%, xeQ,
D—AE—An+2E% +4En-2B*(1-28)n°, xeQ,
2o +4E +dan—(4-2a)E? —4En—2an?, xeQ,
Do +4E +dan —2A4E% —4En—2an?, xeQ
l//g — AlBl (:Z n 52 577 n 5 2 (29)
2a+4E+4an—-245° —4En—aB(4-2B)y”7, xeQ,
Do +4E+dan—(4-2a)E* —4En—aB4—-2B)y*, xeQ,
Since ¢,.(xj)=5,:" , ,j=1,2,3,4, we can assign X :l cyy +(c-eyg }
37 8\(d—-bywe—by,|’
7 _)0 - _ljeys+(e—clye
(pll( ) {0 }' ‘piZ(x)_{l//i}’ =1,2,3,4 (30) X4_8 (b—d)l//6+(a—d)l//5 (31)
. . . { :l CW7(A§_B77)
The functions y;, i=5,6,7,8 at the vertices of the 173 bl//7( AE - Bn)- ayg (Bn-&)[’
quadrangle are equal to zero. They are nonzero
at the middle of the sides and equal to one only _1leys (&—n)
at the node with a number matching that of the 6= —ayg(Bn—&)—(d—-a)ys(E—n)|’

8
function. The following expression is obtained
& eXp 1{—0%(%15—377 +(C_e)l//6(77_Aéj)}
8

in (12) for functions corresponding to quasi- &
rotational degrees of freedom and satisfying (d =Dl (nn— AZ) + by, (AS - B)

conditions (5): {el//s(é‘ n)—(e—clyq(n— AS)

(b—dys(n—AZ)+ (32)
_ L=y _1)-ews
= 8{1)1//7 + at//g}' X2 = 8{—0{//8 +(d —a) l//s}'

—

(a—dys(c—n)
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2.2. Incompatible Finite Elements (®z)

d) Triangle with Nodes at Vertices

Let us consider a triangle shown in Fig. la,
which is transformed into a triangle in Fig. 1b
by replacing the coordinates (20). The system of
approximating functions of an element will be
sought as third-degree polynomials in the finite
element area. We will determine the degrees of
freedom only at the vertices of the triangle.
Consider auxiliary functions corresponding to
the rotational degrees of freedom obtained from
Ji(x) in (27) and satistying (14):

A (x)=—-4,(x)+(x), i=1,2,3,
{(x) =4, (x)+ T, (x) + {5(x)

(33)

We adjust the functions (21) corresponding to
the linear degrees of freedom of the classic
element, so that the equalities (14) are satisfied:

‘P11(X):{})_§_77}—c;—;cb“x),

«plz(x)={f_ . n}*ﬁ“""

1

0
¢2l(x)={§}—%z(x), cpzz(x)={ gg}—zzo«),

«p31<x):{g}+2icz<x>, (p32(x):{g} (34)

The obtained approximations are incompatible
now, because the equality of displacements on
the sides of the element when it is connected to
other elements of the design model is not
provided. If in (18) we assume that

@i3(X)=Ai(x), i=1,2,3,

then the resulting system of functions already
ensures the convergence of the method, since
the equations (17) of the incompatibility
criterion will be satisfied if we take the
functions (21) of the classic element without
rotational degrees of freedom (assuming they
are zero) as the system of functions (16). But, as
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shown by numerical experiments, there is no
significant increase in calculation accuracy.
Since the element with quasi-rotational degrees
of freedom shows good accuracy, then in (18)
we take pi(x), which are proportional to
functions (22), as compatible functions, and {(x)
— as incompatible ones. We obtain the only
possible combination where the equalities of the
completeness  criterion  (15) and  the
incompatibility criterion (17) are satisfied (If we
use functions {i(x), there can be alternative ways
of representing functions ¢;3(x), but (35) has
shown the best results in the tests):

@, (%) :%(4xi(x)+((x)), i=1,2.3. (35)

To increase calculation accuracy, it is
reasonable to add five “internal” degrees of
freedom with their subsequent condensation.
They have corresponding approximations,
which satisfy the conditions (19):

3
W;(x)=@;(x) - kZ_ll/\k (X)L (@;(x)),

i 7 i,u}T'w4 :{I_I’ O}TIWS :{O' H}T
H=én(l-&—n), =1.2.3

@, ={4,, -4

e) Six-node Triangle

Let us consider an element in the local
coordinate system, shown in Fig. la. After
changing the coordinates (20), it is transformed
into a triangle shown in Fig. 1b.

We will use fourth-degree polynomials.

Let us determine functions corresponding to the
following degrees of freedom:

o rotation angles on the sides:

_ 2acp(x)elg—1)+(1—q)E+(e—q)n) |b
BT apd(-dy)e(l-g)Hg-e)d) |cJ’

_ep)dg+(1—g—d)S—qn) |2
37 e(l-e)dg+(1—g—d)e) |0 |
_ 2acp(x)(ed —d& —en) {a—b
6 = apq(i—g)ed—dq—eli—q)) |c

},(36)
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= En(l—&— -
pO0 =1 =& 1) q0=n Sy s a0+

e displacements on the sides: {0 } H(x) (40)
‘ng(x):H;‘,‘(X)_(Pi_;(x)Lﬁ(Hly(X))a (37) 3
i=4,5,6, j=1,2, 0.5¢n(( —n), q=0.5
IO 1Y P (O | o /L Hy(x)=128n((1- )¢ ~qn)
Hll ’ Hi2 ’ })1 2 P
0 B d*(1-d) ((5¢-2)¢ +(3-5¢)n), ¢#0.5
_& 1-¢- n' o, & Hy(x)=2(1=& = 1)(-d +dE +17)
A-ef 7 Fl-g) ((3-5d)+(10d - 5)7)
- , Hj(x)=2{(1-C—n)(e—S—en)
o rotation angles at the vertices of the ((3 -5e)+(10e-5)¢)
triangle, similarly to (35):
6 The incompatible function {(x) in (40) satisfies
@;(X)=@.(x)— > @ ;L ..(@;(x)), the equations (19), and the coefficients #;,
= j=1,2,3, are found from the system of equations:
@,(x)=3(4x:x +00). %) Lygx)=1, i=12,3. (41)
1&g cen(—dy(1=&—mn)
Xi="75 aé(l-¢&(1-&-n))- e nodal displacements of the element:
bn(1—d,(1-&— 77)77
£ |~egnti=aén) 0,0 =0, (X 3 0 L (@,),  (42)
=51 asl=g-nl-esl-&=n)-, k=4
(a—b)en(l—q,&n)

6
D, (x)=W,;(x) - katpkg (X)L (W)

c&(l—qén)—c(l=&—n)(1-d,|(1-&—n)n)
=2 a=b)Eli-g,én)+ ,

2
b(l-&-n)l-d|(1-&—nn) i=1,2,3, j=1,2, W;(x) are linear functions (21).
d = 1 1 1 The completeness criterion (15) and the
' di-d)’ = e(l—e)’ = q(1—¢q) incompatibility criterion (17) are satisfied.

The calculation accuracy can be increased by
adding functions corresponding to the internal

Compatible functions xi(x) are obtained from the
degrees of freedom:

condition that the tangential displacement . on
the side ij varies quadratically, and the normal .
displacement u, varies with &; according to the W.(x)=Z,(x)— Y @ ;L,(Z,(x), i=1,2
law: ' ' 2 ' T

B 2={H, 0}, 2,={0, H}', H=énl=¢-1)
ij

f) Rectangle with Nodes at Vertices

Let us consider a rectangular finite element in

the local coordinate system: aio=a, aiz=c. The

system of approximating functions of an

element will be sought as fifth-degree

k —node on the side ij.
Formula (39) is an extension of the formula (4)
taking into account the intermediate node.
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polynomials. Assuming &x/a, n=y/c we will
display the element on that shown in Fig. 2b:
Determine the compatible functions @, i=1,2,3
in (12) with the help of (26) and (27) for &=1:

—en(l-n)*(1-¢&)

o _{af(l—é)z(l—n) }

I b G

P —agu-a0-n)’

0. = {cnz(l—n)(l—é)}’
aé(l-&)’n

on {cnz(l—n)f }
et 1-6m

We adjust the functions of the linear degrees of
freedom:

(43)

Py :‘Dn_zic(/\l +A),
P =D +2—1a(/\1 +4,),
@ =@,y —%(/\2 +Ay),
Py =Dy _2_1a(A1 +4,),
@3 =5 "‘%(Al +4;),
@3, =Ds, +%(/\3 +4,),
Py =Dy +2LC(A2 +4y),

1
(P42 = a’42 - %(A3 + A4 ): (44)

where: @;i(x) is a bilinear system of functions
(25);
A (X) =5 (x)+H(x),
Az(x) = ‘P23(X)_H(x)r
/\3(X) = ¢p33(x)—H(x),
A (X) = 3(x)+H(x), (45)
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_5Jelt=28m* (-1’
H(X)—Z 2 2
—a(l=2n)¢*(& 1)
Functions A;, satisfy the equations (19) and
ensure the fulfillment of the completeness
criterion (15) and the incompatibility criterion

(17).

2) Quadrangle

Let us consider a quadrangle shown in Figure 2a
and perform the transformation of the
coordinate system (28) into a quadrangle shown
in Figure 2c. The system of approximating
functions of an element will be sought as fourth-
degree polynomials in each of the subareas €;
of the finite element.

Determine the compatible functions @s,
i=1,2,3,4 in (12) with the help of (31) and (32)
for &=1. Functions Ai(x) for adjusting linear
approximations can be represented as follows:

A(X) = @15 () - ér,-kzkm (46)
Z, ={y;(x), O}T' Z,,,=10, 7i(x)}T’ i=1,2,

- {aziznz, (&meq UQ,
-

_62772’ (5177) € Qz UQ3 '
. {ﬂzéznz, (meUQ,
et EmensUa,

Coefficients r; in (46) are obtained as solutions
of the systems of equations (19).
Functions corresponding to displacements:

3
@;(x)=W;(x) —Elilk (X)L (Wy;(x),  (47)
i=1,2,3,4, j=12,

where W;(x) are approximations (30) of an
element without rotational degrees of freedom.
The completeness criterion (15) is satisfied for
the obtained approximations, since it follows
from the properties of functions (31) and (32)
that:
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S (@0~ A4,() = z 53 Z,(x) (48)

i=1 ik=l1

Functions {i(x) (32) satisfy the equations (19)
and, therefore, we obtain a system of equations
(19) in (48) for determining the coefficients si
with zero right-hand side.

h) Eight-node Quadrangle

Let us consider a quadrangle shown in Figure 2a
and perform the transformation of the
coordinate system (28) into a quadrangle shown
in Figure 2c.

1Lpavpavpaup J(49)
lla(:z 2167] 1285 228

The system of approximating functions will be
sought as incomplete sixth-degree polynomials
in the finite element subareas.

Determine functions for the nodes on the sides:

@ = i ;(x){ } i=5,6,78,  (50)
{nxi' nyi}T
—normal to the side for the node i;
fra =l 5y 206 40 =
—((I’Z i1 +nyzr12)a§
(nxlr21 nylr22) ); (X) le.j
(l_g_ﬂ)p(er:LB): XEQI
o | AE == A5+ (2-3B)), xeQ,
V- 4s- By, xeQ,
(1-&=Bnf(1+(2-34)E - B), xeQ,
(I-&-n)(1-E+(2-3B)y),  XxeQy
‘- (1- 45 -n)p(4.1,1,B), xeQ,
21— 4E-Bn)(1+(24-3)E - By) x e Q,
(1-&-Bn), xeQ,
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(1-&-n), xeQ)
£ U= AE=nP (14 (24-3)5 - 1), x €,

P (- a8 - By)pl(4.1,B)), xeQ,
(1-&=Bn)P(1-£+(2B-3)n), xeQ,
(1—§—n)2(1+(2—3A)§—n),xEQ
(1-A4E-n), :

£y =4(1—AE=Bp)’ xeth (51)
(1-AE+(2B-3)y), X<
(1-&—-Bn)p(l,4,B,), xeQ,
plzy,25,25,24) =14+ (2) =32,)& + (23 =324 )7 +
(32, —22,)E% + + (32, —223)1°
(22,23 =3z, =3z, +62,24)én

Let us determine functions corresponding to the
rotational degrees of freedom in the nodes:

~

@5 (X)=@;(x)— X r, X, (x), (52)

k=1

8 -
@,(x)=H,(x)- X @,;L,;(H;), =1,2,3,4,
k=5

where r; are solutions of the systems of
equations (19),

H;(x) =5 (x)T;(x)
Y, (x) are compatible functions of a
quadrangular element  with  piecewise

polynomial approximation (29-31) for e=1;

T,="Pyg, T, =Py, I;=F3, Ty = Py, (53)
(%)= (é:_gi)(nj_771')_(77_771')(5]'_51‘)
T —é)mj—m)—( -, )& - &)

X(0)=2,- 3 X 0yLy(Z) (54)

j=1k=5

s =1{7:(x), O} , 7l.(x)}T, =12,

1+2_{
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B xeQ,
3

B, er2’
3

-a”, xel),

B, xeQ,

a’,

71 253773

7/2253773

xeQ,

Adjust functions (29), y;, i=1+8:

200=p 0= X l)z,00,. (59
. V/k(x)
Xk(X)_—l//k(Xk)

i=1,2,3,4, k=5,6,7,8.

Functions corresponding to displacements are
obtained using (55):

8
@;(x)=W;(x)— El ®3(X)L,5(W), (56)

wil(x) = {(/’%/i}' wiz(x) = {OZ}; 1':1+8, ]:1:2

The obtained system of functions satisfies the
completeness  criterion  (15) and  the
incompatibility criterion (17).

2.3. Compatible Elements (®z)

i) Triangle with Nodes at Vertices

Let us consider a triangle shown in Fig. 1a, and
perform the transformation of the coordinate
system (57) into a triangle shown in Fig. lc,
where point A is the intersection point of the
medians of the triangle:

E=ppxtppy—1

(57)
n=pyx+ppy-1
=g =a—2b =l =2a—b
P11 a’ P “ac ' Pai a’ P» ac
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Let us write the functions Ai(x), i=1,2,3, which
are second-degree polynomials in each of the
subareas, are zero on the sides of the triangle,
continuous within Q and satisfy the conditions
(14). We obtain the unique solution:

%W=9%ﬁﬁﬂ>

(58)
nx)=01-&-n),

72(x)=(1-&+2n)J,
73(X)=(1+2&-n)C,

=3[ o w3l

Ao = g{;a_ b}yz (x)

1-&-n, xe
=41+25-n, x€Q),,
1-8+2n, xeQ,

Functions A;, i=1,2,3 have discontinuities ®, at
the boundaries €; (sides of connected elements,
segments of medians), but o, (A(x)) are
continuous at the nodes of the element.
Compatible functions corresponding to the
rotational degrees of freedom and satisfying the
conditions (14), similarly to (35), can be
represented as follows:

0= 14,00 +M),  (59)
200 =4, 00+ A, 00) + A5 (4

where yx; are functions (22) in the coordinate
system (57).

The functions corresponding to displacements
are obtained by substituting the functions {i(x)
from (59) and linear functions into (34):

1 1
vilx)=3(1=&=1), vl =3(1+2£ ),
1
w30 =5(1-& +27)
The calculation accuracy can be increased by
adding functions equal to zero on the sides of

the element as those corresponding to internal
degrees of freedom:
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w,(x)={R, 0}, w,(x)=1{0, R},
(1—§—ﬂ)2, xeQ

R(x)=1(1+2&-7), xeQ,
(1-&+27), xeQ,

J) Six-node Triangle

Let us consider a triangle shown in Figure la,
and perform the transformation of the
coordinate system (57) into a triangle shown in
Fig. 1c. The functions are sought as third-degree
polynomials in each of the subareas.

Functions corresponding to the rotational
degrees of freedom at the nodes are given by
adjusting (58) (functions (36) can be applied,
which will result in fourth-degree polynomials):

@1500= 4,1~ X @500, (4, ). =1.23, (60)

a5 o)

®s3(x)

A
3a38s (55 _775) ¢
ac a—>b
‘Pes(x)—{ }Hs
3a§3§6’76 ¢
o =& (1-&+2n), xe Oy
700, xeQ UQ, ’

o _JEE-m(1+25-n), xeQ,
2700, xeQ,UQ, ’

H. = 577(1_5_77):)‘691
3700, xeQ,UQ,

Functions corresponding to displacements are
obtained from approximations of a classic
element ¢;(x) without rotational degrees of
freedom:

@, ()=, (x) - é%(x)Lkg(%(x», (61)

i=1+6, j=1,2

Viktor S. Karpilovskyi

The calculation accuracy can be increased by
adding functions equal to zero on the sides of
the element as those corresponding to eleven
internal degrees of freedom:

W 0=20~ % WL, (2,(0), =123,

T
zi(X)={§0i+3,3,v' —(0i+3,3,u} )

o -t -] v

Wy =SW,, W,=3W;, W, =n¥,, ¥, =n¥s
0, xeQ)
Ri(x)=18(1+25—n)(1-n), xeQ,
n=&+2n)(1-34), xey

k) Quadrangle with Nodes at Vertices

Let us consider a convex quadrangle shown in
Figure 2a and perform the transformation of the
coordinate system (28) into a quadrangle shown
in Figure 2c.

The functions are sought as second-degree
polynomials in each of the subareas.

Let us write the functions A«(x), i=1,2,3,4, which
are second-degree polynomials in each of the
subareas, are zero on the sides of the
quadrangle, continuous within QQ and satisfy the
conditions (14). We obtain the unique solution:

2 pll} 2{p21}
Ax)== , AXx)=—= ,
1( ) p{pIZ 7/1 2( ) P \P» 7/2

_ 2Py __2)ry
"3"‘"p{p22}73' A x) p{pu}m )

P=P1Prp —P12P2 >

n(l—A4&—-Bn), xel)y

71 =yn(l-& - Bn), xeQ,
0, xeQ,UQ,
‘5(1_5_77)' XEQI

72 =150-&-Bn), xeQ,
0, xeQ, Uy,
77(1—145—77)' X EQZ

v =4n11-AE-Bn), xeQ;
0, xeQ, UQ,

60 International Journal for Computational Civil and Structural Engineering



Finite Elements of the Plane Problem of the Theory of Elasticity with Drilling Degrees of Freedom

5(1_5_77)' XEQI
V4=15(-45-7), xeQ,
0, xeQ,UQ,

Similarly to a triangular element, functions A;,
i=1,2,3,4 have discontinuities ®, at the
boundaries €2; (sides of connected elements,
segments of diagonals), but w,(Ai(x)) 1is
continuous at its nodes.

Compatible functions which correspond to
rotational degrees of freedom, preserve
equalities (15) and satisfy the equations of the
incompatibility criterion (17) are given in the

following form, taking into account the
experience of creating triangular elements:
1 o
@3 (x) =3 (4x; ()= X0, /)A; (x)), (63)
j=1

K(l ) , lj - Side
/ 0, ij —diagonal

where xi(x), i=1,2,3,4 are functions (31).
Functions corresponding to displacements are
obtained from approximations (29) of an
element without rotational degrees of freedom
by adjusting them with the help of functions
Ai(x) to satisty the conditions (14):

0,0 =, () é/\k MLaW,),  (64)

The calculation accuracy can be increased by
adding functions equal to zero on the sides of
the element as those corresponding to internal
degrees of freedom:

W, ={R,0}", Wix)={0, R\, (65)
(1-&-n),  xeQ

R |1 A=), xeQ,
(1— AE — Bn)*, xel),
(1-&-Bnp)  xeQ,
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) Eight-node Quadrangle

Let us consider a convex quadrangle shown in
Fig. 2a and perform the transformation of the
coordinate system (28) into a quadrangle shown
in Fig. 2c. The functions are sought as third-
degree polynomials in each of the subareas.
Functions corresponding to the rotational
degrees of freedom can be given as follows:

04X~ A0~ X @isLs ALK, (66)

(pk3 (X) = lka (X) s i:152,3:45 k:53657,8:

where ¢i3(x) are functions (50), A(x) are
functions (62).

Functions corresponding to displacements are
obtained according to formula (56) by
substituting functions (66).

The calculation accuracy can be increased by
adding functions equal to zero on the sides of
the element as those corresponding to eleven
internal degrees of freedom functions (65).

2.4. Accuracy of Elements

The considered finite elements, except for the
1soparametric ones, use polynomial or piecewise
polynomial approximations of the displacement
field over the entire area of the element.
Equalities of the completeness criterion (15) are
satisfied  for all  elements including
isoparametric ones. Let us add the equalities of
the completeness criterion of the 2-nd order to
them:

N 2 0
Eoun={s ], Srtebto =}

(1@l () - 2<p,3(x))-{’5y }

Mz

I
—_

i

M=

v (y:07, (%) — @j3(x)) —{

Il
—_

y
ol
v 0
S (x«plz(x)+<p,3(x))s{x2},

0
Xy

Mz

V(X (%) + (Pl3(x))_{ } (67)

~
L
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They are satisfied only for compatible 6-node
triangular and 8-node quadrangular elements
whose functions are sought as second-degree
polynomials. Despite a rather large number of
degrees of freedom, the equalities (67) are not
satisfied for elements with quasi-rotational

degrees of freedom and all incompatible
elements.
Considering that the equalities of the

incompatibility criterion (17) are satisfied for all

incompatible elements, we obtain the following

minimum estimates of the order of the

convergence rate according to [15] for regular

partitions with sufficiently smooth boundary in

the L, norm for elements:

o a-i, k — the first one in stresses and the
second one in displacements;

e j, I (high-precision compatible elements) —
the second one in stresses and the third
one in displacements.

3. TESTS

All tests for elements with quasi-rotational
degrees of freedom were performed with the
value &0.001. Since the wvalues of
displacements and stresses calculated for these
elements according to the hypothesis (4), and
hypothesis (5) for the given ¢ differ only in the
fourth significant digit, and only on the coarsest
mesh, they are not provided.

All the approximations considered in this paper
and corresponding to the “internal” degrees of
freedom of the elements are applied.

The loads specified as uniformly distributed,
trapezoidal and parabolic were reduced to nodal
ones taking into account the condensation of
“internal” degrees of freedom.

All calculations were performed in SCAD,
which is a part of SCAD Office®.

3.1. Patch Tests

Patch tests [21] are performed in order to check
whether the equalities of the completeness
criterion (15) are satisfied for all considered
elements:

Viktor S. Karpilovskyi

e stiffness matrices of all considered finite
elements each have three eigenvectors
corresponding to their displacement as rigid
bodies;

e the results for plates under constant stresses
were obtained with an accuracy up to a
computational error.

These tests serve only as a correctness criterion

of the program code.

3.2. Narrow Rectangular Plate

The plate of rectangular section shown in Fig. 3
1s subjected to a trapezoidal load applied at its
ends P=t2kEy, E=100kPa, v=0, h=1m, a=10m,
b=Im. Coefficient £=0.06 results in unit
moments at the ends of the plate, when it is
considered as a bar.

The problem has an analytical solution, known
from the theory of elasticity:

__2 ) % e S S
u= bkxy, v—bk(y +x 4aj (68)

The design models shown in Fig. 4 are taken
from [7], where this problem was considered.
Table 1 contains calculated  vertical
displacements at the point A(0,5), stresses oy at
the point B(0,—5) and rotation angles ® at the
point E(1.6(6),0). The following analytical
solutions are obtained from (68):

va=1.5m, oxp=6kPa, wr=0.4rad.

If the given plate is considered as a bar, then
after applying a pair of moments at its ends

My=+2kEJ,/h, J,=hb%/12

(moment of inertia of the plate section), we
obtain the same values of vertical deflection and
rotation angle using rod theory.

A loading statically equivalent to the given load
was considered to study moment loads, when
the moments My are specified in the nodes C(-
5,0) and D(5,0). Table 2 shows the results of
experiments.
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Figure 3. Narrow plate.
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Figure 4. Design models 1x6 for a narrow rectangular plate.

Table 1. Displacements, stresses and rotation angles in a narrow plate.

Ele-
ment

Mesh
type

Displacements wa (m)

Stresses og (kPa)

Rotation angles g (rad)

Mesh

Mesh

Mesh

1x6 | 2x12 | 4x24 | 8x48

1x6 | 2x12 | 4x24 | 8x48

1x6 | 2x12 | 4x24 | 8x48

S
o

-1.5

6

0.4

-1.231|-1.4221-1.480|-1.496

4.874 | 5.673 | 5.915|5.978

0.3255]0.3783]0.3943|0.3986

-1.203|-1.412]-1.478 |-1.495

4.775 1 5.639 | 5.905 | 5.976

0.3199(0.3761]0.3937|0.3984

-0.923|-1.295]-1.442 |-1.485

3.052 | 4.743 | 5.529 | 5.817

0.2430(0.3450{0.3846(0.3960

-1.298|-1.458]-1.490 |-1.497

5.711 | 6.020 | 5.998 | 5.999

0.2945|0.3771]0.3933|0.3961

-1.318|-1.458]-1.490 |-1.497

5.686 | 6.027 | 6.001 6

0.3234/0.3838]0.3943|0.3964

-0.777(-1.2221-1.418 |-1.479

3.267 | 5.241 | 5.805 | 5.951

0.2005]0.3198]0.3758|0.3936

-0.766 |-1.200|-1.410|-1.476

2.332 1 4.088 | 5.280 | 5.747

0.2011]0.3193]0.3758|0.3936

-0.858]-1.261 |-1.432|-1.482

3.318 | 5.026 | 5.741 | 5.939

0.2079]0.3750{0.4570{0.4780

-0.920]-1.291|-1.440|-1.484

4..81416.096 | 6.252 | 6.171

0.2323]0.3389]0.3823]0.3952

-0.684-1.118|-1.372|-1.464

1.779 | 3.412 | 4.894 | 5.635

0.1793]0.2991]0.3667]0.3908

-1.512|-1.502 -1.5

6.038 | 6.009 | 6.002 | 6.001

0.4012]0.399310.3998| 0.4

-1.5

6

0.4

-1.511|-1.502|' -1.5 [ -1.5

6.246 | 6.072 [ 6.019 | 6.005

0.3934]0.3958/0.3983]0.3993

-1.5

6

0.4

-1.367]-1.461]-1.490 |-1.497

5318]5.754 [ 5.914 ] 5.970

0.3601]0.3897]0.3974]0.3993

S~ [~~~ Q[0 |0 |09 [~

-1.5

6

0.4

The obtained results slightly differ from those
given in Table 2 only for elements with the

degrees of freedom ..

Numerical experiments show that the obtained

3.3. Cantilever Plate under Simple Bending
Let us consider a plate shown in Figure 5:

E=3e7kPa, v=0.25, h=1m, a=48m, b=12m. The

rotation angles for the element with quasi-

rotational degrees of freedom are incorrect. .

Volume 16, Issue 1, 2020

plate is subjected to the following loads:

on the side x=a :

fy=>06ry(b-y) — parabolic load;
. on the side x=0 : fi=6ra(b-2y);

ﬁ/:6TY(b—Y),

r=f1b3/E, f=40kN.
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Table 2. Displacements, stresses and rotation angles in a narrow plate

(loaded by a concentrated moment).

Displacements wa (m)

Mesh| Ele-

Stresses os (kPa)

Rotation angles wg (rad)

Mesh

Mesh Mesh

ment

type

1x6

2x12

4x24

8x48

1x6

2x12

4x24

8x48 | 1x6

2x12

4x24

8x48

S

-1.499

-1.467

-1.457

-1.453

5.996

5.998

5.997

5.991 |0.6877

1.5776

5.0046

18.805

-1.499

-1.474

-1.464

-1.454

5.996

5.998

5.997

5.991 10.6877

1.5516

5.0064

18.803

-1.286

-1.397

-1.449

-1.470

4.877

5.673

5915

5.978 |0.3178

0.3784

0.3943

0.3986

-1.255

-1.403

-1.452

-1.470

4.775

5.639

5.905

5.976 10.3170

0.3749

0.3937

0.3984

-0.938

-1.291

-1.431

-1.472

3.053

4.743

5.529

5.817 10.2409

0.3454

0.3846

0.3960

-1.225

-1.393

-1.456

-1.442

5.801

6.424

6.446

6.413 |0.5241

0.9224

2.8121

10.096

-1.295

-1.419

-1.441

-1.443

5.803

6.392

6.428

6.408 10.6074

1.2582

3.103

10.373

-0.796

-1.208

-1.390

-1.455

3.264

5.241

5.805

5.951 |0.1970

0.3207

0.3758

0.3936

-0.780

-1.194

-1.396

-1.461

2.336

4.088

5.280

5.747 |0.1999

0.3186

0.3758

0.3936

-1.029

-1.502

-1.700

-1.747

4.305

6.959

8.027

8.017 |0.5514

0.6701

2.4418

9.1624

-0.916

-1.279

-1.423

-1.467

4..801

6.097

6.252

6.171 |0.2429

0.3447

0.3828

0.3952

-0.697

-1.113

-1.359

-1.451

1.781

3.412

4.894

5.635 |0.1785

0.2983

0.3668

0.3908

-1.528

_1.494

-1.494

-1.490

6.072

6.013

6.002

6.001 |0.3897

0.4034

0.3953

0.3991

-1.511

-1.496

-1.487

-1.483

6.003

6

0.3991

0.3996

0.4

-1.521

-1.493

-1.495

-1.489

6.295

6.069 | 6.019 | 6.005

0.3703

0.4088

0.3976]0.3987

-1.504

-1.490

-1.484

-1.484

5.998

6

0.3993

0.3974

0.4

-1.372

-1.477

-1.490

-1.488

5.300

5.754 1 5.914 | 5.970

0.3788

0.3917

0.3974

0.3993

~ 0 |~~~ [ [0 || [~]|0

-1.514

-1.519

-1.485

-1.482

6.001

6

0.3983

0.3994

0.3999

0.4

> X
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Figure 5. Cantilever plate and its design models.

This problem has an analytical solution:

u= V(3(b - 2y)(x — a)2 —(v+ 2)(3by2 —
20°)(6a% + (v+2)b%)y —3ba?)
V:r(—6v(by—y2)(x—a)+ (69)
2(x—a)’ = (6a% +(v+2)b)x+2d°)
The load on the side x=0 was ignored in many
studies. In the case of the third degree of
freedom it is an approximation even when there
no additional nodes on the side of the cantilever.
The design models shown in Figure 5 are taken

from [2], where this problem was considered.
Table 3 contains calculated  vertical
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displacements at the point A(48,6) and stresses
ox at the point B(12,12). The following
analytical solution is obtained from (69): wa=
0.353(3)m, ox,=60kPa.
0.353(3)m, ox=60kPa.

3.4. Cook’s Problem

Let us consider a wedge with a clamped left
edge shown in Figure 6. A uniformly distributed
load P is applied to its right edge. Following [4]
we take:

E=1Pa, v=0.3(3), A= 1m,
P =0.0625 N/m, u|x=0=0, v|x=0=0.

International Journal for Computational Civil and Structural Engineering
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Figure 6. Wedge and its design models.

Table 3. Displacements and stresses in a cantilever plate.

Mesh

Displacements wa (m)

Stresses o (kPa)

Element Mesh

Mesh

type

1x4 2x8

4x16

8x32 1x4 2x8 4x16 | 8x32

-0.3283

-0.3456|-0.3511

-0.3527)| 59.988 | 60.998 | 60.746 | 60.438

-0.3283

-0.3458|-0.3512]-0.3527

59.988 | 60.980 | 60.746 | 60.437

-0.3541-0.3583

-0.3586|-0.3572

64.969 | 61.874 | 61.028 | 60.509

-0.3480-0.3556|-0.3572[-0.3564

63.811 | 61.823 | 60.990 | 60.500

-0.27421-0.3264 |-0.3451

-0.3510| 43.205 | 54.035 | 57.923 | 59.226

-0.33421-0.3465

-0.3513

-0.3527] 61.512 | 61.304 | 60.945 | 60.501

-0.3271

-0.3462|-0.3513

-0.3528| 59.743 | 61.140 | 60.934 | 60.501

-0.3227]-0.3487|-0.3544|-0.3553

61.805 | 62.292 | 61.366 | 60.725

-0.2614-0.3216|-0.3434[-0.3504

39.607 | 52.825 | 57.497 | 59.064

-0.2471

-0.3179]-0.3427-0.3503

36.867 | 50.599 | 56.499 | 58.611

-0.2673

-0.3236[-0.3440|-0.3505

44.407 | 52.306 | 57.177 | 59.052

-0.2141

-0.2902 |-0.3297]-0.3457

35.949 | 48.270 | 55.999 | 58.521

-0.3567]-0.3522|-0.3521

-0.3525] 64.896 | 61.840 | 60.458 | 60.128

-0.3540-0.3534]-0.3533

-0.3533| 60.004 60

-0.3585

-0.35291-0.3522-0.3525

63.849 | 61.159 | 60.288 | 60.092

-0.3533

59.328 | 59.804 | 59.960 | 59.991

-0.33981-0.3488 |-0.3519]-0.3529

41.195 | 52.981 | 57.554 | 58.844

~ 0 [~~~ [0 |0 || [~ [

-0.3470-0.3523

-0.3532(-0.3533

62.438 | 60.555 | 60.090 | 60.017

A statically equivalent stress was also
considered when uniformly distributed moments
were applied at the ends of the plate and
reduced to a nodal load using the formula (8).
No analytical solution is known for this
problem. Stable numerical solution with an
accuracy of up to 6 significant digits, obtained
with various finite elements and mesh
refinement up to 1024x1024 (3149825 nodes,
220 elements):

Volume 16, Issue 1, 2020

. vertical displacement wa=—23.9677m,

. principal stresses ©15=0.203525 Pa and
03,c=0.23687 Pa.

Table 4 shows the results of experiments.

Some papers assume v=0.3. The values are

slightly different in this case:

wa=23.9119m, c18=0.20353Pa
and 03,c=0.23692Pa.
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Table 4. Displacements and principal stresses in Cook’s problem.

Meshl Ele- Displacements wa (m) Pr. stresses o158 (kPa) Pr. stresses o3¢ (kPa)
type | ment Mesh Mesh Mesh
2x2 | 4x4 | 8x8 |16x16| 2x2 | 4x4 | 8x8 |16x16| 2x2 | 4x4 | 8x8 |[16x16
b -21.66 | -23.23 | -23.78 | -23.92 | 0.1774|0.1977 | 0.2009 | 0.2032 |-0.1730|-0.2197|-0.2322|-0.2354
A c -21.56 | -23.22 | -23.78 | -23.92 | 0.1747|0.1977|0.2007 | 0.2032 |-0.1711|-0.2193|-0.2322|-0.2354
g -17.26 | -21.92 | -23.37 | -23.79 1 0.1777{0.2013 | 0.2039 | 0.2049 |-0.1760]-0.2279|-0.2388|-0.2395
k -17.55]-21.53-23.13 | -23.69 1 0.1430] 0.1769 ] 0.1953 | 0.2013 |-0.1470[-0.1982|-0.2249|-0.2338
a -17.46 | -21.51 | -23.23 | -23.75 | 0.1196 | 0.1618 | 0.1873 | 0.1970 |-0.1643|-0.2124|-0.2312|-0.2363
B d -18.49 | -22.00 | -23.34 | -23.76 | 0.1687 | 0.1693 | 0.1940| 0.2018 |-0.2011|-0.2382|-0.2485|-0.2482
i -15.36 | -18.97 | -21.60 | -23.07 | 0.1486 | 0.1547 | 0.1838 | 0.1964 |-0.1446|-0.1838|-0.2147|-0.2337
C h -23.24 1 -23.79 | -23.90 | -23.94 1 0.2051 | 0.2015 | 0.2042 | 0.2040 |-0.2629|-0.2466|-0.2399|-0.2377
/ -22.97|-23.76 | -23.90 | -23.94 1 0.2114 ] 0.2023 | 0.2041 | 0.2037 |-0.2557|-0.2430]-0.2392|-0.2375
D e -22.14 | -23.57 | -23.85 | -23.93 | 0.1911|0.1903 | 0.1988 | 0.2014 |-0.2110|-0.2301|-0.2369|-0.2376
J -21.21|-23.42 | -23.85 | -23.93 | 0.1305|0.1971 | 0.2020 | 0.2032 |-0.1931-0.2304|-0.2379|-0.2375
3.5. Bending of an Unlimited Wedge by a Radii of points in the design models in Figure 8:

Concentrated Moment Applied to Its Vertex
(Inglis Problem).

Let us consider an unlimited wedge with
thickness #=1m and moment M applied to its
vertex shown in Figure 7a: r, B — polar
coordinates of the point. This problem has an
analytical solution [22]:

2Msin(2p)
r? (2acos(20)-sin(2a)) ’
_2M( cos(2a)—cos(2))
r*(2acos(20) —sin(2a))

r

T}’ﬁ (70)

Let us consider the area R < 24m, o=22.5° and
specify the boundary conditions shown in
Figure 7b. According to the Saint-Venant's
principle these constraints will not have a
significant effect on the results, since we will
consider points A(4,-22°) and B(4,0°).
Analytical solutions according to (70):

op.a = 0.582474 kPa, tp5 = 0.120634 kPa.
We take:

E=3.0-10"kPa, v = 0.2, /=1m, M=—1kN.
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0.5, 0.625, 1, 1.75, 2.5, 3.25, 4, 4.75, 5.5, 6.5,
7.75,9.25, 11,13, 15.5, 18, 21, 24.

Table 5 shows the results of calculations only
for elements with degrees of freedom ®,, since
they are incorrect for elements with quasi-
rotational degrees of freedom.

Let us consider the area R < 24m, 0=22.5° and
specify the boundary conditions shown in
Figure 7b. According to the Saint-Venant's
principle these constraints will not have a
significant effect on the results, since we will
consider points A(4,-22°) and B(4,0°).
Analytical solutions according to (70):

op.A = 0.582474 kPa, t.,p3 = 0.120634 kPa.
We take:
E=3.0-10" kPa, v= 0.2, h=Im, M=—1kN.

Radii of points in the design models in Figure 8:
0.5, 0.625, 1, 1.75, 2.5, 3.25, 4, 4.75, 5.5, 6.5,
7.75,9.25, 11,13, 15.5, 18, 21, 24.

Table 5 shows the results of calculations only
for elements with degrees of freedom ®,, since
they are incorrect for elements with quasi-
rotational degrees of freedom.
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(a)

Figure 7. Inglis problem.

Figure 8. Wedge design models.

Table 5. Stresses in the Inglis problem.

Mesh Stresses oA (Pa) Stresses 1,8 (Pa)
type Element Mesh Mesh
A A2 A4 A8 A A2 A4 A8
A g 0.6108 | 0.5909 | 0.5851 | 0.5834 | 0.0914 | 0.1172 | 0.1216 | 0.1218
k 0.5759 1 0.5781 | 0.5801 | 0.5812 | 0.1216 | 0.1208 | 0.1208 | 0.1207
C d 0.6578 | 0.6108 | 0.5940 | 0.5875 | 0.1135]0.1121 | 0.1164 | 0.1185
i 0.5541 [ 0.5761 | 0.5811 | 0.5822 | 0.1043 | 0.1217 | 0.1232 | 0.1224
B h 0.5637 | 0.5784 | 0.5816 | 0.5823 | 0.1522 | 0.1263 | 0.1220 | 0.1210
/ 0.5737 { 0.5809 | 0.5821 | 0.5824 | 0.1414 | 0.1259 | 0.1219 | 0.1210
D e 0.6066 | 0.5892 | 0.5843 | 0.5830 | 0.1283 | 0.1244 | 0.1230 | 0.1220
j 0.5418 | 0.5706 | 0.5791 | 0.5816 | 0.1220 | 0.1213 | 0.1209 | 0.1207

Volume 16, Issue 1, 2020
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Figure 9. Deep beam and its design models.

3.6. Bending of a Rectangular Deep Beam.
Let us consider a square deep beam rigidly
suspended on the sides x=0 and x=2.4 (Figure 9)
and subjected to a uniformly distributed load p
applied to its upper edge. This problem has an
analytical solution in series, given in [23].
Displacement values are calculated with high
accuracy in [24] for a square plate with the
following characteristics: E=2.65-MPa, v=0.15,
h=0.1m, p=500N/m: wa=3.763392mm,
up=2.210055mm.

The calculation is performed only for the half of
the deep beam taking into account the axis of
symmetry CD and the following boundary
conditions: W|=0= u|x=12=0/0],=12=0. Design
models are shown in Fig. 9. Models C and D are
the same as those used for patch tests [20].
Calculation results are given in Table 6.

4. CONCLUSIONS

The conducted numerical experiments have
confirmed theoretical foundations for creating
finite elements:

. elements with quasi-rotational degrees of
freedom a,b,c and incompatible elements
df.g yield almost identical results in
displacements and stresses;

° elements a,b,c can yield incorrect results
in rotation angles;

. compatible elements ik yield slightly

worse results compared to elements
a,b,c,d.f.g;
o as expected, elements with intermediate

nodes on the sides e,h,j,/ have yielded the
best numerical results. And compatible
elements j,/ are unparalleled;

. all elements with degrees of freedom ®,
enable to calculate structures subjected to
both  concentrated and  uniformly
distributed moments.

It is now interesting to study the application of

the given approximations when creating shell

elements (especially in combined design models
with bar elements).
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Table 6. Displacements in the rigidly suspended deep beam.

Mesh type

Element

Displacements wa (mm)

Displacements ug (mm)

Mesh

Mesh

2x2

4x4 8x8

16x16 | 2x2 4x4 8x8 | 16x16

-3.4643

-3.6726|-3.7415

-3.7580| 1.9846 | 2.1234 | 2.1739 | 2.1966

-3.4603

-3.6686|-3.7414

-3.7580| 1.8881 | 2.0835 | 2.1546 | 2.1870

-3.5971

-3.6802|-3.7410

-3.7577) 2.0216 | 2.0975 | 2.1564 | 2.1875

-3.5344

-3.6762|-3.7395

-3.7573] 1.8855 | 2.0341 | 2.1258 | 2.1725

-3.3881

-3.6433|-3.7312

-3.755411/9479 | 2.0749 | 2.1505 | 2.1858

-3.2005

-3.6080-3.7249

-3.7547| 1.8805 | 2.0160 | 2.1214 | 2.1715

-3.3494

-3.6562|-3.7377

-3.7582|2.1242 | 2.1274 | 2.1736 | 2.1967

-3.0276

-3.5946|-3.7042

-3.7468| 1.9472 | 2.0158 | 2.1133 | 2.1674

-3.1204

-3.6785|-3.7518

-3.7627| 1.4033 | 1.9437 | 2.0779 | 2.1411

-3.1483

-3.6716|-3.7507

-3.7626| 1.5706 | 1.9523 | 2.0554 | 2.1257

-3.1957

-3.6065 |-3.7582

-3.7745| 1.6774 | 1.6550 | 1.8636 | 2.0106

-2.8401

-3.4950(-3.6285

-3.7053| 1.8166 | 2.0413 | 2.1162 | 2.1461

-3.0684

-3.5233|-3.6936

-3.7464| 1.7172 | 1.9280 | 2.0795 | 2.1497

-3.2120

-3.5619-3.7015

-3.7492| 2.0067 | 2.0686 | 2.1351 | 2.1736

-2.7636

-3.1829-3.3407

-3.4860| 1.8346 | 1.8803 | 1.9712 | 2.0734

-3.8112

-3.7866|-3.7752

-3.7677| 1.9724 | 2.1122 | 2.1663 | 2.1923

-3.7435

-3.75431-3.7630

-3.7635] 1.8486 | 2.0507 | 2.1359 | 2.1770

-3.8661

-3.8615|-3.8079

-3.7799| 1.6800 | 1.9761 | 2.0908 | 2.1497

-3.5164

-3.7586|-3.7651

-3.7639| 1.3827 | 1.8735|2.0504 | 2.1316

-3.8582

-3.7694 |-3.7593

-3.7621| 1.7710 | 2.0022 | 2.1109 | 2.1648

-3.4784

-3.7437|-3.7620

-3.7634| 1.6815 | 1.9797 | 2.1015 | 2.1600

H

-3.6114

-3.7890|-3.8003

-3.7818] 1.7490 | 1.9895 | 2.1021 | 2.1594

~ [ [~ [~~~ Q[0 [0S~ R[0S

-3.4959

-3.7713|-3.7742

-3.7665| 1.4127 | 1.8596 | 2.0539 | 2.1392
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TO ASSESS THE HORIZONTAL DISPLACEMENT OF PILES
CAUSED BY EXCAVATION OF THE SOIL OF THE PIT

D.S. Kolesnik, Rashid A. Mangushev
Saint-Petersburg State University of Architecture and Civil Engineering, Saint-Petersburg, RUSSIA

Abstract: The article discusses and justifies the cases of horizontal movement of the top of the piles in the case of
digging a pit of great depth. A statistical analysis of the results of executive documentation for completed pile
fields at three construction sites in St. Petersburg was carried out, which made it possible to prove the causes of
excess movements of the pile heads. A technique for assessing deformations depending on the depth of excavation
of the pit and the characteristics of the soil base is proposed. The decrease in the modulus of subgrade reaction for
calculating piles in the conditions of softened soils near the pile space is proved.

Keywords: piles, horizontal loading, excavation of the pit, deflection of the heads of piles, soft clay soils.

K OLIEHKU TOPU30OHTAJILHOI'O CMEUIEHUSA CBAM
BBI3BAHHOI'O DKCKABAIIMEN I'PYHTA KOTJIOBAHA

.C. Konecnuk, P.A. Manzywee
Cankr-IletepOyprckuii rocy1apCTBEHHBIH apXUTEKTYPHO-CTPOUTEIBHBIN YHHBEPCHUTET,
r. Cankr-IlerepOypr, POCCHUSI

AHHoTanus: B ctatee paccmarpmBaroTcs M 0OOCHOBBIBAIOTCS CIIydad TOPU3OHTAJIBHOTO MEPEMEIICHHUS BepXa
CBail B ciIydae pHIThS KOTJIOBaHA 3HAYUTEIBHON TIIyOMHBI. BBUT MPOBEACH CTAaTHCTHYECKUN aHAIN3 PEe3yIbTATOB
HCTIOJTHUTEFHON JOKYMEHTAIINH 10 3aIIOJTHCHHBIM CBAWHBIM ITOJISIM Ha TPEX CTPOUTEIBHBIX IIIoMaakax B CaHKT-
ITerepOypre, 4TO MO3BOJIWIO AOKA3aTh MPUYMHBI N30BITOYHBIX MEPEMEIICHNH CBaHBIX TOJOBOK. [IpenmokeHa
METOJIMKa OLICHKHU Jle(hopManrii B 3aBUCUMOCTH OT TTyOMHBI BBIEMKH KOTJIOBaHA W XapaKTCPUCTHK TPYHTOBOTO
ocHOBaHUs. [I0Ka3aHO YMEHBIIICHUE MOIYJISl pPEakIu CyOcTpaTa JJIs pacueTa CBail B yCIOBHSIX Pa3MSITYCHHBIX
ITOYB BOJIM3U CBAHOTO MPOCTPAHCTRA.

KiioueBble ciioBa: CBau, rOpu3oHTajIbHas 3arpy3kKa, BbICMKa KOTJIOBaHa, HpOl"I/I6I)I CBafI,
MATKUEC I'NTMHUCTBIC I1I0OYBBI

1. INTRODUCTION

In modern civil engineering, the organization of
underground volumes is increasingly used with
the placement of parking lots, used cellars,
communications, etc.

In the conditions of the spread of large strata of
weak clay soils, the arrangement of underground
premises is fraught with difficulties and risks
associated with the construction of a foundation
pit fence. The most rational construction of the
foundation in this case are piles made from the
upper surface before the excavation.

The spread of pile foundations is associated,
among other things, with a reduction in the
duration of the zero-cycle work compared to
footings on a natural foundation. The speed of the
work is achieved due to the high technical
characteristics of the equipment, as well as the
combination of the processes of performing
elements of the pile field and excavation of the
pit.

As arule, for the rational use of the underground
space, a pit is usually performed with a depth of
5 to 8 m, with one or two basement floors,
respectively. The installation of piles for
buildings with an underground volume is usually
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performed from the upper surface with the
subsequent development of the pit to the design
level. A driven or pressed-in pile can be put down
with a mark of its head below the soil surface by
3 - 5 m, respectively, when using equipment for
additional pressure to pile.

The mark of the top of piles made by drilling or
ramming technology is usually combined with
the horizon from which work is performed. The
pile shaft above the assumed grillage is made
unreinforced using the same concrete as the main
section for piles of small diameter (up to 520
mm) or made of sand for larger piles, when it is
economically viable.

Note that when performing elements of a pile
field from the bottom of the pit, additional costs
arise for the arrangement of ramps or the
operation of cranes necessary to deliver
construction equipment to the front of the work.
In addition, in order to be able to carry out
extreme piles, it is necessary to increase the
dimensions of the pit compared to the first
option. These measures are usually not
economically  feasible, and  sometimes
impossible if there is an existing dense building
on the building site.

The excavation of foundation pits of basements
in the conditions of the spread of soft soils is
carried out after the organization the fencing
under the protection of spacers or soil berm [1].
Excavation pits, spacer structures and soil berms
are calculated according to their strength and
stability to ensure mechanical safety of both the
new construction project itself and the
surrounding buildings. These calculations are
performed on the condition that the permissible
additional settlement of neighboring buildings is
not exceeded.

On the other hand, maps of soils excavation and
transport patterns during the excavation are
reflected in the project of construction
organization (PCO).

The sections of the documentation related to
PCO do not suggest the possibility of serious
errors or omissions in them, which, in turn, can
lead to accidents or additional costs. These
documents are developed from the experience of
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construction and production facilities of the
contractor. It is assumed that all the necessary
analytical calculations and, especially, modeling
in the FEM programs are carried out in the design
of load-bearing and enclosing structures. In
addition, a design organization is assigned a
technique for performing pile field and loading
on the of the pit boundaries.

Standard GOST 27751-2014 [2] prescribes to
consider design transitional situations, that is,
situations that have a short duration compared to
the service life of a construction object. In
particular, piles already completed, on which any
external influence is exerted, must be calculated
on it from the condition of limiting displacement,
deflections, and moments. An example of such
impacts is - loads on the soil caused by the
operation of pile equipment, loads from moving
or storing goods in the immediate vicinity of the
pile or, loads caused by excavation of the pit.
When excavating a pit, the difference in
elevations (from the layout to the bottom of the
pit) causes horizontal pressures acting on the
piles. If this factor is not taken into account, then
at a significant pit depth (of the order of 5 m) in
conditions of weak underlying soils, the pile
heads receive significant deviations, reaching the
order of several of their diameters and often
exceeding the permissible ones (Figure 1).

As it is known, grillages are designed so that their
contours overlap the contour of the pile field by 0.2d,
where d is the diameter or width of the pile. If the
position of the goals in the plan exceeds these
admissions, then we have to change the construction
of the foundations, which entails the loss of time and
material resources. In a number of cases, the
question arises about the possibility of incorporating
deviated piles into the work or their duplication.
Almost all federal or regional technical
documents on the organization of work do not
consider this aspect. An exception is one of the
organization’s standards [3], which limits the
depth of cut during excavation by two meters, but
this standard is based on practical experience in
the manufacture of indentation piles in St.
Petersburg, which of course cannot be extended
to all possible cases.
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Figure 2. General scheme of the structural elements of the pit, spacer system, pile foundation.

On the other hand, forecasting and calculating
such situations does not fall into the area of
responsibility of specialized organizations, even
if they carried out a geotechnical substantiation
or design of enclosing structures. Relatively
simple modeling of excavation in a two-

Volume 16, Issue 1, 2020

dimensional setting (a series of piles is presented
in the form of a wall) gives underestimated
values of forces in structures [4]. Thus, in the
general case, highly qualified engineers and
special software are required that allow three-
dimensional modeling of the soil range [5,6].
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2. EXAMPLES AND ANALYSIS
OF THE HORIZONTAL DEVIATION
OF THE UPPER PART OF THE PILES
DURING THE EXCAVATION OF PITS

As an example of horizontal deviation of piles,
we can consider the construction of a parking lot
for a residential building under construction in
one of the districts of St. Petersburg.

The foundation of the car park of one of the
buildings is a grillage slab resting on a pile field
of 216 bored piles with a diameter of d = 520 mm
and a length of L = 14.3 m (after felling) made
using the Fundex technology [7,8]. The point of
the piles is entered into moraine glacial deposits
1gIll, represented by dusty sandy loam and loam
with gravel and pebbles). The calculated load on
the pile adopted N = 1500kN.
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The arrangement of the underground space
involved the excavation of a pit to a depth of 5.4
m. At the first stage of excavation of the pit, soil
was extracted to the design level of the bottom of
the pit with the arrangement of soil berm. On the
following, a grillage slab and a strut system were
carried out, after which the final excavation of
the soil from the pit was carried out. Figure 2
shows a general diagram of the pit indicating the
marks of structural elements of the fence, piles,
grillage slabs.

Because of the first stage of work, previously
manufactured piles received  significant
deviations in plan. As can be seen from Figure 3,
measured in the process of geotechnical
monitoring, the displacement of elements in a
pile field is characterized by large values as they
approach the pit edge (soil berm).
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Figure 4. The design scheme of the simulated area.

76 International Journal for Computational Civil and Structural Engineering



To Assess the Horizontal Displacement of Piles Caused by Excavation of the Soil of the Pit

The displacement of the heads of piles is
associated with the horizontal pressure of the soil
during the complete excavation of the excavation
soil. The indicated effect is obvious from the
point of view of soil mechanics and is confirmed
by numerical calculation in the Plaxis 3D
software package (Fig. 4). The simulation results
showed that the deviation of the top of the piles
can reach 46 cm or more. The horizontal
movement of piles at an absolute mark of 1.780
(felling) reaches 25 cm.

Figures 4 and 5 show a design diagram including
a series of piles along the “P / 1" axis and a soil
mass limited by the “1” and “14/1” axes. On the
edge of the slope, the load distributed over the
area is simulated by pressure from the excavator.
The calculation was carried out in several stages
of soil excavation in the direction from the center
of the pit (axis “14/1”) to the sheet pile fence
(axis “1”). Figure 6 shows plots of horizontal
movements of piles during excavation of the
central part of the pit in the axes "7" - "22" with
the arrangement of soil berms. The
implementation of such calculations for labor
costs is comparable to the design of the capital
construction objects themselves. Thus, for the
described design case (a combination of weak
clay soils and a large excavation depth), the need
for expanding the set of design documentation
with the geotechnical substantiation section
related to the work below zero is obvious.

3. STATISTICAL ANALYSIS
OF HORIZONTAL DEVIATIONS
OF THE TOP OF THE PILES DURING
THE CONSTRUCTION OF PITS

The situation when during the excavation of the

pit piles get bent and horizontal movement is
relatively new and is little reflected in both

Volume 16, Issue 1, 2020

technical documents and scientific publications.
There is no justification of the necessary time
from the moment of completion of piles to their
excavation, which would allow the restoration of
structural bonds in the soil near the pile space.
For this case, the load on the edge of the
excavation pit, for example, from a pile-pressing
installation, the weight of which can reach up to
1200-1600kN, is also not taken into account.

As is known, Russian Building Code SP
45.13330.2017 [9] limits the horizontal
movement of the heads at the tape and cluster
piles to 0.2d (0.3d for deviations along the row).
Obviously, these deviations take into account the
geodetic error and production technology errors,
but not horizontal movements of piles caused by
excavation of the pit [10].

Based on the results of the consideration of
technical as-built documentation for the
completed work of the zero cycle, the materials
were analyzed when installing pile foundations at
sites with similar geological conditions at three
sites in St. Petersburg. On all construction sites,
factory-made piles were used, made before
excavating the pit.

During statistical processing, a section with the
number of piles of more than 150 pieces was
selected (for object No. 2, two grips were
selected that differ in the way the piles were
grouped).

For all objects, the characteristic depth of
excavation was 4.2 - 4.6 m. Clay soils underlying
the bottom of the pit belonged to a fluid or fluid
plastic consistency. The thickness of the
underlying layer is comparable to the length of
piles and amounted to 11-20 m.

Figure 7 shows the distribution of the number of
piles with one or another deviation of the heads.
The main characteristics of the considered
objects are given in Table. 1.

77



D.S. Kolesnik, Rashid A. Mangushev

*107 m]
280,00

260,00
240,00

220,00

P e,
S o

20,00

0,00

20,00

Total displacements u,

Maximum value = 0,2681 m (Element 6891 at Node 2671)
Minimum value = -8,779’*10'6 m (Element 4910 at Node 4884)

Figure 5. Horizontal movements of the soil mass during excavation.

Total displacements u, (scaled up 5,00 times)

Maximum value = 0,4633 m (Element 213 at Node 13297)
Minimum value = ('.i,02096"‘1('.r3 m (Element 28 at Node 12923)

Figure 6. The calculated horizontal movements of piles during excavation
of the central part of the pit with the device of soil berms.
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Figure 7. The distribution of the number of piles according to the deviation from the vertical.

Note that the values of deviations of piles after
excavation is quite random. Basically, there is a
deviation towards the excavation of the pit. On
the other hand, the possibility of "accidental"
movement, for example, across the slope or to
each other for two adjacent piles, is not ruled out.
Such their behavior can be caused by: excavation
of neighboring elements from different sides,
random loads along the edge of the pit, or piles
being under load for a long time (during a break
in work). In fig. 8 as an example, the value of the
deviations of piles in the direction of excavation
is presented, which amounted to: 18 25 cm
(0.45d - 0.6d), across: 1-3 cm, which fits into the
permissible error. Lines from the center of the
piles indicate the movement of their head. At the
same time, the maximum movements of piles
reached 79 cm. As can be seen from the analysis
of Figures 7, 8 and Table 1, in some cases, when
digging pits of great depth in weak soils,
horizontal deviations of the pile heads are
observed, significantly ~ exceeding  the
permissible values adopted in SP 45.13330.2017

Volume 16, Issue 1, 2020

[9], which in some cases required changes to the
design of the pile field. Obviously, such
movements should be predicted and appropriate
amendments made in the design decisions of the
zero cycle.

4. METHODOLOGY FOR ASSESSING
THE DEVIATION OF PILES DURING
EXCAVATION OF THE PIT

The method of calculating piles for horizontal
loads was first formulated in the 1930s by
Professor Urban [11], as a solution to a boundary
problem. After 40 years, on the basis of field
tests, the most generalized theory was developed,
which was included in regulatory documents
[12]. The main principles of the calculation are to
consider the pile as a beam located on an elastic
Winkler base, characterized by increasing depth
of rigidity; force and moment are applied to one
end of the beam, the other, in turn, has a
fastening, depending on the soil.
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Figure 8. Fragment of the executive scheme of the pile field (object 1).

At present, instead of solving the laborious
boundary value problem [13], displacement and
force in piles can be determined by the finite
element method [14] in a one-dimensional
formulation. The described technique can be
generalized to the case of a distributed load
applied to a pile, since this does not contradict the
formal logic.

We find linear loads on the pile from the solution
of the Flaman problem [15]. This solution allows
us to determine the horizontal stresses in the
elastic half-space of the soil from an infinite band
load applied to its face. The moment of
excavation of a pile (Figure 4) located
approximately at a distance of 1/3 of the length
of the slope is considered, counting from its
beginning. Soil located above the pile head is
divided into elementary strips of width b0
(0.2m). The slope angle is taken equal to 45
degrees. The expression for determining the
stresses in the plane of the pile face is presented
in the form:

n

2yhiby x| *x*z
= *
% Z . m (P22
i=

where oy is horizontal stress at the desired point,
kPa; i — element band number; » — the number of
elementary strips (60 pcs.); ¥ — specific gravity of
soil, kN / m3; h; — elementary strip height; by -
width of the elementary strip, m; x — distance
from the considered point to the elementary strip,
m; z — depth, m.

As you know, the basis of the Winkler model is
customary to describe through the modulus of
subgrade reaction, which depends on the depth
and type of soil. It was experimentally
established [16] that this modulus in clay soils
increases linearly with depth. To maintain
generality, we use the normative formula [14]:

_KZ

“7 Y

where ¢, — the estimated value of the coefficient
of bed soil, kN / m3; K — coefficient of
proportionality depending on the type of soil, kN
/ m4; z — depth at which the section is located, m;
ve — coefficient of working conditions (for a
separate pile yc = 3).

The problem with this approach to assessing the
movements of piles during their excavation is the
difficulty of assigning a proportionality
coefficient (K) for fluid clay and thixotropic
soils. It is also obvious that the safety factor yc
does not take into account the softening of the
near-pile soil that occurs during its unloading and
the introduction of piles [17]. We rewrite the
formula as follows:

_KZ

c, =
©oay.

where a is correction coefficient.

The basic calculation schemes for the example of

object No. 1 are shown in Figure 5.
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Figure 9. Scheme for determining horizontal stresses (object 1).

The proportionality coefficient K was taken
equal to 4000 kN / m4, the safety factor y with
equal to three, as for a single pile.

The conditional pile width for computer
calculation is taken to be equal to the physical
pile width d, and not 1.5d + 0.5m, as is required
in [14]. This conditional pile width is introduced
into the calculation to take into account the
influence of the size of the cross section of the
pile on the soil resistance of the undisturbed
structure [12]. It is likely that the soil in the near-
pile zone will have large displacements along the
slope, in comparison with the soil on which the
pile “lies” and will not impede the movement of
the pile.

The calculation of tasks for each object using the
finite element method was carried out in LIRA
SAPR 2015 software. The coefficient o was
selected so that the resulting displacement of the
column head coincided with the median value of
deviations for the object. The results are
summarized in Table 1.

The value of the correction coefficient o was 17—
34, which corresponds to the movement of the

Volume 16, Issue 1, 2020

pile head by 17-24 cm under the given ground
conditions. Thus, the value of the normative
coefficient of bed decreases by several tens of
times, which is associated with a violation of
structural bonds in the soil during the execution
and excavation of piles.

For the most problematic elements of the pile
field, non-destructive continuity control was
performed by the seismic-acoustic method. The
calculated moment exceeded the moment of
crack formation by 10-20% (Table 1), at depths
corresponding to the jump of the reflectogram (5-
10 diameters of piles).

It should be noted that the normative safety factor
(yc) is taken to be equal to three only when
calculating mono-pile foundations (support of
lampposts, etc.). On the other hand, in the
practice of domestic and foreign construction,
there are cases of sliding piles into the foundation
pit, united by grillage [4]. Thus, in these design
cases, it is necessary to take the safety factor the
same as when calculating a single pile.
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Figure 10. a) the geometric pattern of the pile; b) plot of stresses in the ground, kPa;
¢) linear loads on the beam, kN / m, d) the values of the coefficients of the bed of soil, kN / m3;
e) resulting horizontal movement of the pile, mm (object 1).

Based on the construction experience and the
provisions set forth in this article, the following
conclusions can be drawn:

1. Obviously, the displacement of the heads of
piles is associated with horizontal pressure
and the movement of the soil of the slopes
during the excavation of the pit.

2. The greatest influence on the deviation of the
pile heads is exerted by the excavation depth
of the pit and the presence of weak soils at
the base.

3. To reduce the impact from the berms and
slopes of the pit and to minimize the
horizontal deviation of the completed piles,

excavation should be carried out by
excavations with the initial excavation of the
pile field and the further development of the
soil berm

In some cases, excavation of the pit should
be carried out with captures of small depth
(of the order of 1 m), so that the piles receive
deviations in the other direction than at the
previous stage of work.

It is necessary to assign a break between the
implementation of piles and excavation of
the soil during the excavation of the pit to
restore its properties
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Table 1. The main characteristics of the considered objects.

2.1 2.2 3
Number of object . ! e ReS{de.nUal ReS{de'nUal Residential
Public building building building buildin
(building) (parking) &
A type of the pile C 110.35-9 C 160.40-10 | C150.40-10 | C200.40-HCs.6
Absolute excavation
mark, -4,200 -4,600 -4,600 -4,300
m

Recoverable soil Dusty Sands Bulk Peat Bulk

Loamy, dusty,

Plastic sandy

. ) . . loam, with
Underlying soil light Toams Loamy, fluid-plastic loams flowing streaks,
thixotropic
Characteristics I1=1.05..1.3; [1=0.91..1.21; 1.=0.93;
of the underlvine soil E=6..3MlIla; E=5.5..8 Mlla; E=9 Mlla;
underiying h=9.8m h=10.8m h=12.1m
Technologies Indentation Indentation Indentation Driving
Type of grillages band band field band
Pile pitch in grillage, 1200 1200 1200 1200
mm
Number of piles per 279 151 264 162
grip
The number of piles
with a deviation of 239 109 185 148
more than 0.2d (86%) (72%) (70%) (91%)
(% of the total)
The ms}rll;bsfn%fllglles n 159 72 132 125
0 0 1) 0
(% of the total) (57%) (48%) (50%) (77%)
Pile deviation towards
the pit (median), cm 20 18 19 2
Pile deviation towards
the pit (maximum), 39-51 37-49 29-53 50-79
cm
Safety factor o 17 71 2 34
(median value)
Deflection at accepted 19,7 17.0 17,5 233
o, cm
Maximum moment,
32,7 80,5 78,1 87,7
kNm
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USING THE CRITERION OF THE MINIMUM MATERIAL
CAPACITY OF RODS UNDER STABILITY RESTRICTIONS
FOR THE CASE OF MULTIPLE CRITICAL LOAD
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2 National Research Moscow State University of Civil Engineering, Moscow, RUSSIA
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Abstract: As it is known, special criteria are formulated to evaluate the obtained solution of some optimization
problems. In particular, we formulate a criterion that allows us to estimate the proximity of the decision on the
rod of the lowest weight and the restrictions on the resistance to the minimum material-intensive for rectilinear
rods for certain types of cross sections. The criterion is based on the analysis of stresses from bending moments
arising from the loss of stability. If the least critical force is not a multiple, then the form of loss of stability and
the corresponding diagram of moments are the only ones. At multiplicity of the least critical load there are mul-
tiple forms of loss of stability, and any of their linear combination is also its own form. To estimate the obtained
solution, it is necessary to form a combination of multiple forms of buckling and the corresponding diagram of
bending moments, which will serve as the basis for the use of the criterion. This paper proposes an approach that
allows to determine such a combination of multiple forms, which will be the basis for the application of the crite-
rion of proximity of the obtained solution to the minimum material-intensive.

Keywords: optimization, system minimal consumption of materials, stability, critical force, buckling,
bending moments, multiplicity, tension, evaluation criteria for solutions of optimal problems

NCIOJb30BAHUE KPUTEPUS MUHUMAJBHOMN
MATEPUAJIOEMKOCTH CTEPKHEM ITPU OTPAHUYEHU X
MO YCTONYUBOCTH JJISI CJIYUASI KPATHOHN
KPUTHUYECKOW HATPY3KHN

JI.C. JIaxoeuu’, II.A. Akumoe "> %3, A.Il. Manunoeckuii’

! ToMckuii TOCYIapCTBEHHBII apXUTEKTYPHO-CTPOMTENLHEIN yHUBEpcuTeT, . Tomck, POCCHU S
2 HanpoHanbHBIH HcclIenoBaTelbcKiuii MOCKOBCKUIA rocy1apcTBEHHBIH CTPOUTENbHEIA YHHBEPCUTET,
r. Mocksa, POCCU S
3 Poccuiicknii yHUBEPCHUTET pyKObI HApOI0B, T. Mocksa, POCCHU S

Annoranusi: Kak n3BecTHo, Ul OLICHKH MOJIYYEHHOTO PELICHUs] HEKOTOPBIX 3a/ad ONTHMHU3ALUU cHOpMyIIH-
pOBaHbI CHeIHaIbHbIE KpUTEpUH. B gacTHOCTH, chopMynnpoBaH KpUTEpHH, TTO3BOIAIONINI OLCHUTD AJIS M-
MOJIMHEHHBIX CTEpXKHEH TpH ONPEICICHHBIX THUMAX IIONEPEYHBIX CEUEHHH ONM30CTh PEIICHUS O CTEp)KHE
HaMMEHBIIET0 Beca U OTPAaHMYCHUSX M0 yCTOHYMBOCTH K MHHMMAJILHO MaTepuanoeMkoMy. Kpurepuii ocHoBaH
Ha aHaJIN3€¢ HANPSHKEHUH OT M3rMOAOMMX MOMEHTOB, BO3HMKAIOIIMX IIPU MHOTepe ycroiunBocTH. Ecim
HaMMEHbIIasl KPUTHUIECKas! CHila He KpaTHast, TO (opMa MOTEpPH yCTOHUMBOCTH M COOTBETCTBYIOIIAS €1 3Miopa
MOMEHTOB €AMHCTBEHHBIC. [Ipy KpaTHOCTH HaMMEHbIIEH KPUTHYECKOW HArpy3KH BO3ZHHMKAIOT KpaTHbIE (hOPMBI
HOTEPH YCTOMYMBOCTH, U JII00ast MX JIMHEeWHass KOMOMHAIMS TaK)Ke SBIsIeTCsl COOCTBEHHOM (hopmoii. J{s onenkn
MOJIyYEHHOTO PELIeHUsI He00X0 MO chopMHUPOBATh KOMOMHAIIMIO KPATHBIX ()OPM MOTEPH YCTOHYMBOCTH U CO-
OTBETCTBYIOIIYIO €if AIIOPY M3rMOAIOIIMX MOMEHTOB, KOTOpPasi U OyJIeT CIIy>KUTh OCHOBOMW JUIsl MCIIOJb30BaHMUs
Kputepusi. B naHHOI cTaThe mpeaiaraeTcs Mmojxo/l, NO3BOJISIOIINI ONpeessiTh TaKyr0 KOMOMHAIMIO KPAaTHBIX
(dbopMm, KOoTOpasi CTaHET OCHOBOMW JIJIsl IPUMEHEHHsI KPUTEpHUs OJIM30CTH MOJTYUYEHHOTO PEIleHHs K MUHUMAJIbHO
MaTepHATIOEMKOMY.

86



Using the Criterion of the Minimum Material Capacity of Rods Under Stability Restrictions for the Case

of Multiple Critical Load

KurodeBblie cjioBa: oNnTUMHU3ALUs, CUCTEMBI MUHUMAIBHOW MaTepHATIOEMKOCTH, YCTOHYNBOCTD,
KpHUTHYECKas CHIIa, (POPMBI IOTEPH YCTOMUMBOCTH, N3rNOAIOIINE MOMEHTHI, KPATHOCTh, HATIPSKCHUS,
KPUTEPUHU OLICHKU PELICHUH ONTUMAJIbHBIX 3a4a4

The theoretical foundations of the creation of
rods of the lowest weight, prone to buckling,
originate from the research works of Lagrange
[1], T. Clausen [2], EL. Nikolai [2] and later
N.G. Chentsova [4]. J.L. Nudelman [5], A.F.
Smirnov [6], A.I. Vinogradov [7], N. Olkhoff
[8] and other authors.

In the contemporary literature, the considering
problem is normally formulated in terms of non-
linear mathematical programming.

Let us consider a centrally compressed straight
line rod (for example, shown in Figure 1, alt-
hough the boundary conditions in the planes of
inertia may be different).

If F(x) is the cross-sectional area of the rod, P
is the acting force, P1,,[1] and P2, [1] are the
minimum critical forces in the main inertia
planes of the section, then we need to find an
expression F'(x) at which the rod would remain
stable and the volume of the material of the rod

V- would be minimal. Thus, the objective func-
tion can be written as

/
V:jF(x)dx, (1)
0
Besides, we have the following restrictions
P< P [1]=P2,[1]. (2)

There are a considerable number of methods for
solving this problem. Most of them use finite-
dimensional approaches. The process of optimi-
zation within the implementation of such meth-
ods most often stops at a stage when the objec-
tive function in the adjacent search steps de-
creases less than a predetermined value. Such a
criterion for stopping the process of searching
for a minimum in most cases gives an accepta-
ble result. However, it does not allow researcher
to confidently estimate the proximity of the so-

Volume 16, Issue 1, 2020

lution obtained to the solution of minimum ma-
terial consumption (minimum material-intensive
solution).

As a result of several research works [1, 2, 3]
for rectilinear centrally compressed rods with
certain types of cross sections (for example,
those in which the moment of inertia is propor-
tional to the square of the section area), a crite-
rion was formulated to estimate the proximity of
the solution to the solution of minimum material
consumption.

In [3], it was shown that in the considering case,
the rod of the smallest volume will be a bar of
equal resistance with respect to the moment di-
agram arising in the event of loss of stability.
Thus, with a loss of stability with a rod of the
smallest volume, the normal stresses in the ex-
treme fibers of the rod, found from the resulting
moment diagrams, should be the same in all sec-
tions. That is, for the case when the loss of sta-
bility occurs in the two main planes of inertia,
the criterion is written as

3)

ol(x) = const, o2(x)=const.

Under conditions (3), ol(x) and o2(x) are the
absolute values of the normal stresses in the ex-
treme fibers of the rod determined from the dia-
grams of the moments that occurred in the cor-
responding principal planes of inertia during
loss of stability.

Since the buckling modes and the corresponding
moment and stress diagrams are determined to
within a constant factor, cl(x) and c2(x) are

normalized. If the corresponding normalization
is made so that the largest values of ol(x) and

o2(x) would be equal to one, then the proximi-

ty of the obtained solution to the solution of
minimum material consumption is estimated by
the proximity of cl(x) and ¢2(x) to unity.
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Figure 1. Considering centrally compressed straight line rod.

If the first critical force is not a multiple, then
the moment diagram that occurs when stability
is lost is unique. In this case, criterion (3) can be
used on the basis of this diagram, including in
combination with some other restrictions (see,
for example, [9]).

If the first critical force is multiple, then multi-
ple buckling modes and the corresponding mo-
ment diagrams appear. It is also known that any
linear combination of multiple buckling modes
will also be proper.

The multiplicity of critical forces that occurs
when minimizing the volume of the rod for rig-
idly restrained rods was identified in [8]. How-
ever, the multiplicity of critical forces also oc-
curs in other cases, for example, when optimiz-
ing the volume under constraints on the stability
of some continuous beam schemes.

In these cases, it is necessary to establish a line-
ar combination of bending moments diagrams
corresponding to multiple buckling modes. This
combination will serve as the basis for the use
of the criterion (3).

Let us consider an approach to determination of
such combination. We represent the approach
for one main plane of inertia and threefold criti-
cal force. For the second plane and the other
multiplicity of critical forces, all actions will be
similar.

Let it be required to estimate the closeness of
the search stage for the solution of the consider-
ing optimization problem to the minimum mate-
rial-intensive one.

At the estimated stage of the search, in the con-
sidered main plane of inertia, the first critical
forces in P1_[1], P1,[2] and PI_[3] are

found, the corresponding forms of buckling and

the estimated optimal cross-section sizes and
their moments of resistance w(x).
The following steps are performed in the fol-
lowing order:
Using the three first forms of buckling found
at the estimated stage of the research, the cor-
responding diagrams of the absolute values of
the bending moments M (x), M,(x) and

M, (x) are constructed. Plots are normalized,
for example, so that

[[M o P de=1; [[M, (0  de=1;
j [M3(x)] dx =1.

2. On the basis of the assumption about the op-
timality of the found dimensions of the cross-
sections, a conditionally optimal diagram of
the absolute values of the bending moments
M, (x) is constructed, according to which re-

lation (3), that is, the condition,

O'I(x):—Mo(x) =1
w(x)
must be fulfilled. Thus, we have

M, (x) =w(x). The plot is also normalized.

3. If the considering solution is optimal, then
the combination of arising diagrams

M, (x)=a* M, (x)+Db* M, (x)+c* M,(x)
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should coincide with M (x). The equations

for finding the coefficients a, b and ¢ will
be obtained from the minimum condition of
the quadratic deviation of the diagram

M, (x) from M (x). That is, from the min-
imum condition of the integral

AM (a,b) =

= [[M, () — M, ()~ bM, () — M, (0] dx,

we get three equations

0AM (a,b,c) _0: 0AM (a,b,c) _0
oa ob
0AM (a,b,c) 0.
oc

After solution of the system, we can find the
coefficients a, b and c.
4. From the

My, (x) = aM, (x) + bM, (x) + cM;(x)

plot, we can determine

and normalize it, and by the proximity of the
stress ol(x) in sections and its average value

along the length of the rod
0
Aol = j ol(x)dx]/1
0

to one, we estimate the optimality of the so-
lution.

5. Besides, the optimality of the considering
solution can also be evaluated by the proxim-
ity of the diagrams of M (x) and M (x).

The proximity is estimated by the values of
the differences

Volume 16, Issue 1, 2020

AM ,(x) = M (x) — M, (x)

in the sections and the average value of their
absolute values along the length of the rod

AMy, = {[ sgn[ AM, (x)]AM, (x)dbx} /1

6. If the multiplicity of critical forces for the
considering system is not known in advance,
then its presence or absence is revealed in the
process of optimization. If the multiplicity is
detected, then the differences

AP ={P1, [2]— Pl [11}/ P, [1]-100%;
AP2 = {P1, [3]- P1, [11}/ P1, [1]-100%

in the limit tend to zero. Let us give an illus-
tration of the described approach with sam-
ples.

7. For a rod whose scheme is shown in Figure
1, the doubling of the critical force was con-
sidered in detail in [8]. Although the possibil-
ity of using of the criterion (3) was not con-
sidered in [8], taking into account the de-
tailed analysis in [8] of the doubly critical
load of a rigidly clamped rod, it seems ap-
propriate to illustrate the proposed approach
using other examples. Two numerical sam-
ples are considered. The first one deals with
two-time critical force, and the second one
deals with three-time critical force.

The first numerical sample. Let us consider a
rectilinear square rod, compressed by a centrally
applied longitudinal force with supporting con-
ditions in both main planes of inertia of sec-
tions, shown in Figure 2.

A preliminary analysis showed that the critical
force will be twofold.

Let /=9 meters be width of
P =3000000 N be magnitude of force;
E =206000 MPa be the modulus of elasticity of
the material. The analysis was performed on the
basis of a discrete model ([10]) of 41 fragments.

span,
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Figure 1. The first numerical sample.

For a discrete model, the objective function (1)
1s written as

V= Zn:F[i](l/n) = Z":(b[i])2 (/ny, (4

where p[i] is the size of the square section of
the rod; » is dimension of a discrete model.
Diagrams of M, (x), M,(x), M,(x), M,(x),
AM (x) are represented by M, [i], M,[i],
M;[i], M [i], AM,[i].

Since the boundary conditions in both main
planes of inertia are the same, and the critical

forces are assumed to be twofold, the stability
constraints are written as

P< Pl [1]=P1,[2]. (5)

Criterion (3) for the discrete model in this case
takes the form

oli] = const. (6)

Optimization was performed by one of the vari-
ants of the method of random search. The esti-
mation of the proximity of the solution to the
minimum material-based on criterion (6) was
carried out at several stages of the computing
(Tables 1 and 2).

Four stages were considered. The results of each
stage are presented in the corresponding col-
umns of Tables 1 and 2. Stage 0 corresponds to
the results corresponding to the first access to
the boundary of the allowable area for a rod of
constant square cross-sectional length. The re-
maining columns show the results, respectively,
at 300, 1300 and more than 40,000 tests of the

random search method. Table 1 shows the
cross-section dimensions b[i] for each stage.
The bottom five lines show the values of the
objective function — V, meters’ ; the magnitudes
of its decrease compared with stage 0 — AV, %;
the difference between the first two critical
forces — AP, %; the values of the coefficients a
and b.

Table 2 shows the values of the differences

AMo[i] = Mo[i]_Moo[i]

and stresses ofi], and in the last line the aver-
age values for each stage are the values of these
quantities AM , and Acl.

Analysis of the data in tables 1 and 2 shows that
despite the small difference in the values of the
objective function in the last two stages, the dif-
ference in cross sections between the values of
differences 4AM,[i] and stresses ofi] at these

stages of the search is more significant. At the
last stage, in almost all cross sections, the dif-
ferences AM [i] are close to zero, and the

stresses ofi] to unity.

The result obtained confirms that, even with a
double critical force, criterion (3) can estimate
the proximity of the obtained solution to the
minimum material-intensive one.

Let us consider one more example, in which,
according to preliminary calculations during
optimization, the critical force turns out to be
threefold.

Let us consider a rectilinear square rod, com-
pressed by a centrally applied longitudinal force
with supporting conditions in both main planes
of inertia of sections, shown in Figure 3.
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Table 1. Results of analysis.

b[i] by stages of search for optimum

t 0 300 1300 >40000
1 2 3 4 5

1 0.0915 0.0626 0.0420 0.0426
2 0.0915 0.0655 0.0600 0.0596
3 0.0915 0.0789 0.0696 0.0692
4 0.0915 0.0784 0.0761 0.0761
5 0.0915 0.0835 0.0806 0.0813
6 0.0915 0.0821 0.0855 0.0854
7 0.0915 0.0927 0.0878 0.0888
8 0.0915 0.0883 0.0921 0.0916
9 0.0915 0.0949 0.0943 0.0938
10 0.0915 0.0984 0.0966 0.0957
11 0.0915 0.0949 0.0960 0.0971
12 0.0915 0.0924 0.0985 0.0982
13 0.0915 0.0944 0.0982 0.0990
14 0.0915 0.1110 0.0987 0.0995
15 0.0915 0.0975 0.1000 0.0997
16 0.0915 0.1010 0.0990 0.0997
17 0.0915 0.0995 0.1000 0.0993
18 0.0915 0.0929 0.0987 0.0986
19 0.0915 0.1189 0.0988 0.0977
20 0.0915 0.1021 0.0967 0.0964
21 0.0915 0.1053 0.0944 0.0948
22 0.0915 0.0833 0.0925 0.0927
23 0.0915 0.0998 0.0905 0.0902
24 0.0915 0.0799 0.0877 0.0872
25 0.0915 0.0857 0.0829 0.0834
26 0.0915 0.0787 0.0784 0.0787
27 0.0915 0.0806 0.0724 0.0728
28 0.0915 0.0654 0.0639 0.0647
29 0.0915 0.0743 0.0522 0.0523
30 0.0915 0.0701 0.0255 0.0049
31 0.0915 0.0730 0.0524 0.0518
32 0.0915 0.0603 0.0644 0.0640
33 0.0915 0.0636 0.0731 0.0719
34 0.0915 0.0793 0.0776 0.0777
35 0.0915 0.0736 0.0828 0.0823
36 0.0915 0.0834 0.0852 0.0859
37 0.0915 0.0966 0.0899 0.0888
38 0.0915 0.1000 0.0917 0.0912
39 0.0915 0.0911 0.0924 0.0931
40 0.0915 0.0889 0.0944 0.0946
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1 2 3 4 5
41 0.0915 0.0852 0.0956 0.0957
V., meters’® 0.07539 0.06904 0.06492 0.06476
AV 0.00% 8.43% 13.89% 14.10%
AP 195.00% 130.49% 17.74% 0.03%
a 0.48987 0.83099 1.01063 1,02480
b 0.49986 0.13279 -0.01283 -0,02805
Table 2. Results of analysis.
AM [i] by stages of search for optimum o by stages of search for optimum
t 0 300 1300 | >40000 0 300 1300 | >40000
1 2 3 4 5 6 7 8 9
1 0.1396 0.0388 | 0.0008 | 0.0000 | 0.076842 | 0.135799 | 0.978754 | 0.9988
2 0.1070 0.0284 | 0.0019 | 0.0001 | 0.228466 | 0.301949 | 0.893968 | 0.9973
3 0.0757 0.0202 | 0.0024 | 0.0000 | 0.373973 | 0.476454 | 0.902065 | 0.9984
4 0.0465 0.0256 | 0.0019 | 0.0000 | 0.509501 | 0.441546 | 0.913346 | 0.9986
5 0.0202 0.0003 | 0.0010 | 0.0000 | 0.631502 | 0.597886 | 0.923345 | 0.9985
6 0.0025 0.0103 | 0.0032 | 0.0000 | 0.736850 | 0.541898 | 0.952999 | 0.9988
7 0.0210 0.0334 | 0.0064 | 0.0000 | 0.822944 | 0.718689 | 0.971152 | 0.9988
8 0.0350 0.0815 | 0.0001 | 0.0000 | 0.887779 | 0.941500 | 0.930939 | 0.9987
9 0.0441 0.0678 | 0.0041 | 0.0000 | 0.930011 | 0.827215 | 0.910997 | 0.9990
10 0.0481 0.0215 | 0.0091 | 0.0000 | 0.948989 | 0.662066 | 0.889453 | 0.9990
11 0.0472 0.0239 |0.0144 | 0.0000 | 0.944770 | 0.514969 | 1.000000 | 0.9987
12 0.0415 0.0293 | 0.0056 | 0.0000 | 0.918104 | 0.487964 | 0.907040 | 0.9989
13 0.0312 0.0782 | 0.0094 | 0.0001 | 0.870409 | 0.867698 | 0.973216 | 0.9991
14 0.0169 0.1005 | 0.0105| 0.0000 | 0.803706 | 0.381801 | 0.977651 | 0.9987
15 0.0010 0.0407 | 0.0069 | 0.0000 | 0.720548 | 0.468211 | 0.902845 | 0.9987
16 0.0218 0.0869 | 0.0025| 0.0000 | 0.623928 | 0.350193 | 0.921093 | 0.9986
17 0.0448 0.0572 | 0.0006 | 0.0001 | 0.517169 | 0.765660 | 0.929211 | 0.9991
18 0.0347 0.0903 | 0.0021 | 0.0001 | 0.564413 | 0.924885 | 0.940865 | 0.9990
19 0.0191 0.1114 |0.0039 | 0.0000 | 0.636604 | 0.402981 | 0.914728 | 0.9988
20 0.0061 0.1037 |0.0092 | 0.0001 | 0.697070 | 0.312453 | 0.888763 | 0.9984
21 0.0038 0.0158 | 0.0016 | 0.0000 | 0.743026 | 0.556928 | 0.923710 | 0.9985
22 0.0101 0.0800 | 0.0006 | 0.0001 | 0.772075 | 1.000000 | 0.928379 | 0.9992
23 0.0123 0.0377 | 0.0066 | 0.0000 | 0.782309 | 0.485707 | 0.894467 | 0.9988
24 0.0101 0.0041 | 0.0022 | 0.0001 | 0.772383 | 0.572689 | 0.918233 | 0.9982
25 0.0035 0.0387 | 0.0057 | 0.0000 | 0.741573 | 0.416936 | 0.973638 | 0.9984
26 0.0077 0.0122 | 0.0055| 0.0000 | 0.689821 | 0.669361 | 0.979892 | 0.9989
27 0.0232 0.0177 |0.0015| 0.0000 | 0.617743 | 0.497582 | 0.915495 | 0.9984
28 0.0428 0.0142 | 0.0031 | 0.0000 | 0.526627 | 0.744256 | 0.982150 | 0.9985
29 0.0661 0.0478 | 0.0002 | 0.0000 | 0.418400 | 0.256604 | 0.938477 | 0.9988
30 0.0723 0.0574 | 0.0035| 0.0000 | 0.389795 | 0.110365 | 0.055568 | -0.0546
31 0.0772 0.0454 | 0.0007 | 0.0000 | 0.366997 | 0.255342 | 0.910506 | 1.0000
32 0.0843 0.0037 |0.0032 | 0.0000 | 0.333614 | 0.644771 | 0.880962 | 0.9992
33 0.0933 0.0282 | 0.0051 | 0.0000 | 0.292105 | 0.915174 | 0.876885 | 0.9992
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1 2 3 4 5 6 7 8 9
34 0.0969 0.0431 |0.0044 | 0.0000 | 0.275390 | 0.343807 | 0.971364 | 0.9987
35 0.0660 0.0390 | 0.0017 | 0.0000 | 0.418961 | 0.881604 | 0.919258 | 0.9988
36 0.1541 0.0365 | 0.0028 | 0.0001 0.554891 | 0.412768 | 0.950408 | 0.9995
37 0.1713 0.0655 |0.0045 | 0.0000 | 0.679382 | 0.384630 | 0.905781 | 0.9986
38 0.1864 0.0676 | 0.0004 | 0.0001 0.788944 | 0.399366 | 0.929533 | 0.9985
39 0.1994 0.0502 | 0.0013 | 0.0001 0.880504 | 0.402443 | 0.938544 | 0.9992
40 0.2099 0.0156 | 0.0064 | 0.0000 | 0.951507 | 0.661024 | 0.899818 | 0.9987
41 0.2179 0.0131 | 0.0077 | 0.0001 1.000000 | 0.657937 | 0.968563 | 0.9983
X/n 0.0408 0.0435 | 0.0040 | 0.0000 0.6449 0.5461 0.9094 | 0.9731
P R

;;;;J
»la
<

"l

82m

Figure 2. The second numerical sample.

The second numerical sample. Let us consider
a rectilinear square rod, compressed by a cen-
trally applied longitudinal force with supporting
conditions in both main planes of inertia of sec-
tions, shown in Figure 3. The analysis was per-
formed on the basis of a discrete model ([10]) of
41 fragments.

Since the boundary conditions in the two main
planes of inertia are the same, and the critical
forces are assumed to be threefold, the stability
constraints are written as

P<PI =PI [21=P,3]. (7

In the same way as in the first sample, optimiza-
tion was performed by one of the variants of the
random search method. The estimation of the
proximity of the solution to the minimum mate-
rial-based on criterion (6) was carried out at
several stages of the calculation (Tables 3 and
4). Similarly to the first sample, four stages of
finding the optimal solution were considered.
The results are presented in the corresponding
columns of Tables 3 and 4. The designations in
these tables are the same as in the first sample.
In addition, Table 3 also lists the values of the
coefficient ¢ and the difference AP2.

Volume 16, Issue 1, 2020

Analysis of the data in Tables 3 and 4 shows
that in the last two stages of the search, the ob-
jective functions differ little.

However, at the same time, differences AM [i]

and reduced stresses ofi] show that, despite the
small difference in the values of the objective
function in the last two stages, the difference
between the values of differences AM [i] and

stresses ofi] at these stages of the search is
more significant. At the last stage, in almost all
cross sections, the differences AM [i] are close

to zero, and the stresses ofi] to unity. In sec-

tions 16 and 31, the stresses are far from unity.
This is due to the significantly smaller com-
pared with the other sizes of sections, which in
such cases reduces the accuracy of the selected
model.

From Table 3 it can be seen how the critical
forces approach each other in stages. So, if at
stage number 0 the difference AP1 is 102.54%,
and AP2 —236.62%, then at the last stage these
differences are 0.01% and 0.03%.

Table 4 shows how the mean values of differ-

ences AM , and stresses change Aol.
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Table 3. Results of analysis.

b[i] by stages of search for optimum
! 0 300 1300 >40000
1 2 3 4 5

0.0893 0.0500 0.0503 0.0513 0.0893
0.0893 0.0724 0.0711 0.0705 0.0893
0.0893 0.0745 0.0818 0.0808 0.0893
0.0893 0.0865 0.0882 0.0875 0.0893
0.0893 0.0972 0.0925 0.0920 0.0893
0.0893 0.0936 0.0951 0.0950 0.0893
0.0893 0.1072 0.0967 0.0968 0.0893
0.0893 0.0991 0.0987 0.0976 0.0893
0.0893 0.0968 0.0950 0.0973 0.0893
0.0893 0.0980 0.0951 0.0960 0.0893
0.0893 0.0990 0.0930 0.0936 0.0893
0.0893 0.0901 0.0913 0.0898 0.0893
0.0893 0.0779 0.0848 0.0842 0.0893
0.0893 0.0807 0.0765 0.0759 0.0893
0.0893 0.0637 0.0631 0.0623 0.0893
0.0893 0.0477 0.0260 0.0057 0.0893
0.0893 0.0557 0.0609 0.0618 0.0893
0.0893 0.0748 0.0758 0.0753 0.0893
0.0893 0.0872 0.0832 0.0834 0.0893
0.0893 0.0881 0.0894 0.0889 0.0893
0.0893 0.0908 0.0925 0.0925 0.0893
0.0893 0.0879 0.0943 0.0947 0.0893
0.0893 0.0967 0.0959 0.0958 0.0893
0.0893 0.0898 0.0947 0.0958 0.0893
0.0893 0.0869 0.0941 0.0947 0.0893
0.0893 0.0963 0.0922 0.0925 0.0893
0.0893 0.0867 0.0888 0.0888 0.0893
0.0893 0.0811 0.0831 0.0834 0.0893
0.0893 0.0798 0.0757 0.0753 0.0893
0.0893 0.0604 0.0622 0.0618 0.0893
0.0893 0.0457 0.0242 0.0057 0.0893
0.0893 0.0676 0.0611 0.0602 0.0893
0.0893 0.0785 0.0733 0.0731 0.0893
0.0893 0.0807 0.0811 0.0806 0.0893
0.0893 0.0884 0.0849 0.0854 0.0893
0.0893 0.0957 0.0880 0.0883 0.0893
V. meters’ 0.1149 0.1003 0.0978 0.0973

AV 0.00 12.69 14.90 15.35

AP1 102.54 31.20 5.72 0.01

AP2 236.62 71.35 9.42 0.03
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1 2 3 4 5
a 0.2813 0.8000 0.8283 0.5434
b 0.3571 0.1761 0.1846 0.4334
c 0.3932 0.0045 -0.0101 0.0516
Table 2. Results of analysis.
AM [i] by stages of search o by stages of search for optimum
for optimum
t 0 300 1300 | >40000 0 300 1300 >40000
1 2 3 4 5 6 7 8 9
1 0.1302 | 0.0087 | 0.0043 | 0.0000 0.1554 0.4562 0.9797 | 0.9995
2 0.0610 | 0.0332 | 0.0035| 0.0000 0.4501 04111 0.8332 | 0.9992
3 0.0029 | 0.0161 | 0.0075| 0.0000 0.6979 0.5343 0.8202 | 0.9991
4 0.0385 | 0.0139 | 0.0031 | 0.0002 0.8741 0.6878 0.8815 | 0.9974
5 0.0591 0.0696 | 0.0043 | 0.0002 0.9623 0.4408 0.8482 | 0.9998
6 0.0578 | 0.0032 | 0.0030 | 0.0000 0.9565 0.6429 0.8547 | 0.9988
7 0.0355 | 0.0852 |0.0131 | 0.0000 0.8616 0.4575 0.9148 | 0.9988
8 0.0042 | 0.0033 | 0.0048 | 0.0000 0.6924 0.6418 0.8495 | 0.9987
9 0.0319 | 0.0418 |0.0144 | 0.0001 0.5743 0.5161 0.9224 | 0.9984
10 0.0299 | 0.0824 | 0.0012 | 0.0001 0.5827 0.4106 0.8710 | 0.9992
11 0.0391 0.0502 | 0.0028 | 0.0001 0.5436 0.7646 0.8545 | 0.9995
12 0.0111 0.0683 | 0.0133 | 0.0001 0.6630 0.8699 0.8078 | 0.9984
13 0.0007 | 0.0358 | 0.0067 | 0.0000 0.7133 0.8247 0.8294 | 0.9985
14 0.0055 | 0.0431 | 0.0063 | 0.0000 0.6869 0.4253 0.8194 | 0.9989
15 0.0292 | 0.0192 | 0.0029 | 0.0000 0.5859 0.4439 0.8273 | 0.9990
16 0.0505 | 0.0094 | 0.0007 | 0.0000 0.4952 0.8522 1.0000 | 0.5329
17 0.0533 | 0.0249 | 0.0017 | 0.0000 0.4831 1.0000 0.8408 | 0.9987
18 0.0199 | 0.0160 | 0.0038 | 0.0000 0.6253 0.5361 0.8372 | 0.9989
19 0.0013 | 0.0875 | 0.0052 | 0.0002 0.7048 0.2975 0.8363 | 1.0000
20 0.0002 | 0.0171 |0.0114 | 0.0000 0.7092 0.5696 0.8127 | 0.9988
21 0.0053 | 0.0234 | 0.0053 | 0.0001 0.6877 0.5537 0.8886 | 0.9984
22 0.0104 | 0.0662 | 0.0010| 0.0000 0.7544 0.8805 0.8702 | 0.9989
23 0.0077 | 0.0523 | 0.0051 | 0.0000 0.7430 0.4862 0.8467 | 0.9988
24 0.0115 | 0.0459 | 0.0006 | 0.0000 0.6612 0.7939 0.8686 | 0.9986
25 0.0213 | 0.0236 | 0.0032 | 0.0001 0.6193 0.5421 0.8790 | 0.9983
26 0.0129 | 0.0406 | 0.0087 | 0.0000 0.7653 0.7485 0.9035 | 0.9990
27 0.0305 | 0.0474 | 0.0042 | 0.0001 0.8400 0.4487 0.8862 | 0.9996
28 0.0275 | 0.0163 | 0.0098 | 0.0001 0.8275 0.7107 0.9236 | 0.9993
29 0.0028 | 0.0230 | 0.0039 | 0.0001 0.7223 0.5182 0.8358 | 0.9979
30 0.0422 | 0.0090 | 0.0020 | 0.0000 0.5305 0.7365 0.8940 | 0.9990
31 0.0851 0.0091 | 0.0020 | 0.0000 0.3474 0.3901 0.3920 | 0.1702
32 0.0945 | 0.0139 | 0.0011 | 0.0000 0.3074 0.5187 0.8505 | 0.9981
33 0.0855 | 0.0221 | 0.0006 | 0.0000 0.3460 0.7489 0.8712 | 0.9984
34 0.0183 | 0.0742 | 0.0054 | 0.0000 0.6321 0.9912 0.8322 | 0.9989
35 0.0349 | 0.0245 | 0.0016 | 0.0001 0.8589 0.7232 0.8750 | 0.9993

Volume 16, Issue 1, 2020

95




Leonid S. Lyakhovich, Pavel A. Akimov, Anatoly P. Malinowski

1 2 3 4 5 6 7 8 9
36 0.0680 | 0.0961 | 0.0004 | 0.0000 1.0000 0.3548 0.8682 | 0.9987
Y/n 0.0339 | 0.0366 | 0.0047 | 0.0001 0.6572 0.6091 0.8535 | 0.9629
So, if in the first three stages the average value Structures]. Moscow, Transzheldorizdat,

of the differences AM, is far from zero. Be-

sides, the average stress Aol is far from one.
Thus we  have  AM, =0.0001 and

Aol =0.9993 at the last stage.

The result obtained in this sample confirms that
with a triple critical force criterion (3) can esti-
mate the closeness of the obtained solution to
the minimum material-intensive one.

The approach proposed in this paper is based on
using the criterion (3) of estimating the proximi-
ty of a solution for optimizing rods with con-
straints on resistance to the least material-
intensive. This approach can be extended to
cases of multiplicity of critical forces.
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(eccop, TOKTOp TEXHUYECKUX HAYK; BPEMEHHO HCITOJIHS-
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A PROBABLISTIC APPROACH TO EVALUATION
OF THE ULTIMATE LOAD ON FLEXURAL RC ELEMENT
ON CRACK LENGTH

Sergey A. Solovyev
Vologda State University, Vologda, Russia

Abstract: The fracture mechanics of concrete and reinforced concrete is a promising direction in the development of
methods for reinforced concrete structural elements design and inspection. At the same time, probabilistic methods of
design and behavior analysis of structural elements are of particular interest. The article describes a probabilistic
approach to load-bearing capacity and reliability analysis of flexural reinforced concrete elements based on the crack
length criterion. The functional relationship between the critical stress intensity coefficient of concrete and the design
compressive strength of concrete is given. The article presents a method for the reliability analysis of flexural reinforced
concrete elements at the operational stage with limited statistical data about the critical stress intensity coefficient of
concrete. The ultimate value of the failure probability (or reliability index) should be set for each object individually
based on the value of the acceptable risk.

Key words: reliability theory, fracture mechanics, crack length, reinforced concrete beam, reinforced concrete slab,
safety

BEPOSITHOCTHBIN MOAXO/
K ONPEJAEJEHMIO JOMMYCTUMOI HATPY3KH
HA U3TMBAEMBIi )KEJIE30BETOHHBIN DJIEMEHT
MO KPUTEPUIO JUIMHBI TPEIUHBI

C.A. Conosves
Bonorockuii rocynapcTBeHHBINH yHUBEpCUTET, T'. Bomoraa, POCCUS

AHHoOTanusi: MexaHHKa pa3pyIIcHUsT OCTOHA M KeJIe300€TOHA SIBIISICTCS MEPCIICKTUBHBIM HAIPABJICHUEM B Pa3BUTHH
METOJIOB pacueTa JKEJIe300CTOHHBIX JIIEMCHTOB KOHCTPYKIHMI. B TO ke BpeMs, 0OCOOBI HHTEpeC MpPEACTaBIISIOT
BEPOSITHOCTHBIC METOJBI pacyeTa W aHalu3a PadOThl HECYNIMX JJIEMCHTOB CTPOUTCIBLHBIX KOHCTPYKIW. B pabdote
PaccMOTpEH BEPOSTHOCTHBIN TTOAXO]] K PacyeTy HEeCyIIeH CIIOCOOHOCTH U HAJIC)KHOCTH M3THOACMBIX JKEIe300€ TOHHBIX
JJIEMCHTOB TI0 KPUTCPHUIO JJIMHBI TpeluHbl. llpuBeneHa (yHKIMOHAJIbHAS 3aBUCHMOCTh MEXKIY KPHUTHYCCKUM
K03(p(pUIIMECHTOM HHTEHCHBHOCTH HATIPSKCHUN OCTOHA M PACUCTHBIM COIPOTHBIICHHEM OcToHA. B cTaThe mpescTaBicH
METOJI pacyeTa HaJIC)KHOCTH U3rHOAECMOro JKEIe300€TOHHOTO 3JIEMEHTA Ha CTAJUH AKCIUTyaTalluy MPH OrPaHUYCHHON
CTaTUCTHYECKOH HMH(OpMAIMH O KPUTHYECKOM KOI(P(HUIMEHTe WHTCHCHBHOCTH HAIpsDKeHWH OeroHa. IIpemenpHoe
3HAaYCHHE BEPOSTHOCTH OE30TKA3HON pabOTHl (WM WHAEKCA HAIC)KHOCTH) CIEIyeT YCTaHABIMBATh I KaXKIOTO
00beKTa HHIUBH/YAIBHO, UCXO/IS U3 3HAYCHUS IOMTYCTHMOTO PUCKA.

KiroueBble c10Ba: TeOpus HaIS)KHOCTH, MEXaHHUKA Pa3pyIICHNUS, JUTMHA TPELINHBI, XKeIe300eToHHas Oallka,
kKeJ1e300eTOHHAs IJIMTa, 0€3011aCHOCTh

1. INTRODUCTION depends from the reinforced concrete

beams/slabs safety and reliability. By Eurocode
Reinforced concrete flexural elements (beams 0 “Basis of structural design”, the reliability -
and slabs) are common parts of different the ability of a structure or a structural member
structures. The safety of a whole structure to fulfill the specified requirements, including
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the design working life, for which it has been
designed. Reliability covers safety,
serviceability and durability of a structure and is
usually expressed in probabilistic terms. The
measure of reliability is the failure probability
or safety probability.

As noted in [1], for an adequate description of
structural behavior, probabilistic methods must
be resorted to. Properly speaking, an element of

probability is embodied even in the
deterministic approach, which claims to
"simplify" the structure by eliminating all

aspects of uncertainty. In practice structural
reliability (or structural probabilistic design)
increasingly is being applied, particularly for
situations where quantitative, data-based risk
assessment of non-elementary structural or other
systems required [2].

Reinforced concrete (RC) flexural elements -
beams and slabs are common structural
elements in many buildings. Safety assessment
of these elements is an important task.
K.A.Piradov and N.V. Savickij [3] note that
there is no theoretically justified approach for
the design of reinforced concrete structural
elements with cracks at the moment (reinforced
concrete elements, especially  without
reinforcement prestressing, usually contain
cracks at design loads), and current design
method (safety factors method or limit state
method from 1955) is based on a number of
theoretically unsubstantiated empirical
coefficients. Fracture mechanics [4, 5, 6] can be
successfully applied for design of reinforced
concrete elements with cracks. The relationship
between fracture mechanics and reliability
theory can be a powerful tool for evaluating the

structural safety of reinforced concrete
elements.
2. METHODS

There are different approaches to limiting the
normal crack length in reinforced concrete
beams. Some approaches limit the crack length
to a percentage of the element's cross-section

Volume 16, Issue 1, 2020

height. The research [7] notes that the crack
length must not exceed 0.3h9, where ho —
distance from extreme compression fiber to
centroid of longitudinal tension reinforcement.
Gvozdev A.A. [8] proposed to limit crack length
by value 0.5, where # — beam cross-section
height. The research [9] offers next critical
values: 0,74, if there is a crack in the middle of
the beam span; 0,654, if in a third of the span
and 0,3/ if at the support points (shear area).
More objective provisions for limiting the crack
length can be obtained from the fracture
mechanics equations for concrete and reinforced
concrete. Thus, the following dependence is
proposed in [10]:

) (r-1)2)

I
(kL + k3. Foh

crc

. (D

where M — bending moment in the beam cross-

section; K}’C critical ~ stress  intensity

coefficient of concrete; K, — critical stress

intensity coefficient which characterizes the
restraining effect of reinforcement on crack
growth; b — width of the beam cross-section; 4 —
height of the beam cross-section.

Function ¥, (g, ) have the form
Y (a1)=\/;_a1 -1,

where a, =a/h; a — distance from extreme

tensile fiber to centroid of longitudinal tension
reinforcement.

The parameter K,  have the form (for normal
crack):

604, | 093 1
b\/ﬂ"a \/l_al \/1—012

K. = ~0,93[.(2)

If we limit the crack length to a critical value
liye i» then the following equation can be

derived from equation (1) to evaluate the
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bearing capacity (ultimate bending moment
M ;) of beam:

M. = ]crc,ult (K?C +K[SC)2b2h
ult — .
a _
\/;_7_1 ‘(272' lj
h 2

In accordance with the recommendations [10]
and SP 63.13330.2018 "Concrete and reinforced
concrete structures", the relationship between
the critical stress intensity coefficient in
concrete and the design compressive strength of
concrete can be represented graphically (see
Figure 1).

€)

MIla-m'?
0.

0.6)

0.1
0 10 20 30 4

0
Ry Ry Mlla
Figure 1. Functional relationship between
the critical stress intensity coefficient
in concrete and the design compressive strength

of concrete.

This dependence also can be approximated as a
linear function (in MPa):

K. (R,)=0.084+0.016-R, .

Thus, having the functional relationship
between the critical stress intensity coefficient
in concrete and the design compressive strength
of concrete it is possible to calculate critical
stress intensity coefficient for the existing
concrete by determining the compressive
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strength  (for
testing).

The problem of assigning the ultimate crack
length for a reinforced concrete beam also can
be solved. If we take

example, by non-destructive

Mu/t = Rbbx(ho - O,SX) 5

then the ultimate crack length can be expressed
as:

3 [Rbbx(ho —0.5)()]2 -[\/;—al —1]2 y

[ =
cre,ult (K?C N KISC )2 bzh

x([27-1]/27)
(4)

where

R, and R; — compressive strength of concrete
and tensile strength of reinforcement; 4, — area

of  nonprestressed tension

reinforcement.

longitudinal

3. RESULTS AND DISCUSSION

Example 1. The reinforced concrete beam
(without prestressed reinforcement) with cross-
section dimensions #=500 mm and /=250 mm.
Reinforcement: 5 bars with ¢12 mm

(4, =1231-10" m?), with distance from

extreme tensile fiber to centroid of longitudinal
tension reinforcement =40 mm. Then by eq.

(2): K;- =0,543 MPa'm?. Beam span /=6 m. If
beam simply supported, then:

M=-—.
8

Figure 2 shows graph of the dependence of the
ultimate load ¢ on the required height 4 of cross

section (with K. =0,32 MPa-m?) for different
approaches to limiting the crack length in
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concrete — 0.34, 0.54 and 0.7k according to
example 1 data.

0.055

0.05] | | | | -1

0.045] T T T -

-
0.04 _oT P
- L
-

qo3() 0035 T B et |

s Jtide o~
as® g . L e
qg.7(h) A e -
iy 0.025 T = - -

P
P
0.015) 4 /
P

Se107 )
02 0.3 04 0.5 0.6 0.7 0.8 0.9 1

h

Figure 2. Graphs of dependence of the required
height of beam cross-section h and the ultimate
load q.

Figure 3 presents the dependence of the ultimate
crack length in concrete /.. and design
compressive strength of concrete Rp.

Locotd Ry} 003

L 20 a0 40 0
By

Figure 3. “Ultimate crack length — concrete
resistance” diagram.

Figure 3 shows that with a small compressive
strength of concrete (10 MPa), the ultimate
crack length is 320 mm or ~0.64h with an
increasing of compressive strength, the ultimate
crack length increases to the value ~0.744 at 20
MPa and ~0.764 at 30 MPa. The ultimate crack
length is stabilized to a value of ~0.78% next.

Critical stress intensity coefficient determined
by experimental methods for existing reinforced
concrete structural elements. These methods are

Volume 16, Issue 1, 2020

often based on the correlation between critical
stress intensity coefficient in concrete and the
design compressive strength. Let’s consider the
problem of estimation the ultimate load g with a
given confidence level if critical stress intensity
coefficient is random variable with normal
distribution. The problem is the simplest
problem of the reliability theory [2] with a
single random variable, so we present it without
additional layouts.

Figure 4 shows the dependence of ultimate load ¢
and Kjc variation coefficient C; at the different
significance levels. Data is taken from example 1.

0.025

0.0 -t
s \
R
o

qo_gole] . ~ b [

0015 : ~
0.5(Cx) ., .

9059(Cy) LR “a

as(C:) oo ", LY

k1073 .

0
0 02 04 06 08

Figure 4. Dependence of ultimate load q and
Kjc variation coefficient at the different
significance levels.

Figure 4 shows that with the increase in the
variability of the critical stress intensity
coefficient, it is necessary to limit the ultimate
load on the RC element to a greater extent in
order to ensure the given level of reliability.

The inverse problem can also be solved —the
reliability analysis of a reinforced concrete
beam by the crack length criterion at the
operation stage. A limit state mathematical
model for reinforced concrete beam can be
presented as:

Leve air ’(Elbc +K;c)zb2h 8

(@_;_I)(z;ly‘”

g <
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Fy (x)
Py (x) fr}.{?}ﬁ)\lf""\ P (x)=my(x)
] =
Py(x)=1-my(x)
0,5
0 x

Figure 5. Probability density function of random variable X and distribution function of fuzzy
variable Y graphs.

where the wavy line denotes random variables.

~ 2
lcrc,ult (K?C +K;C) bzh i:
a _1) />
Jr—— -1 (2”1]
h 2

Describing the load on the beam ¢ and the

Letg=X,

critical stress intensity coefficient IZ;’C by the

normal distribution, the probability of non-
failure can be found as:

m, —m,
1.0
VS: +S,

where m, and m, — expected values of X and

Y; S, and S, - standard deviations of X and Y;
@() — value of the Laplace integral function; S
- reliability index [11-13].

The function parameters are calculated by the
follows equations: m, =m,, S, =S,

P=Pi(X<Y)=0(f)=

102

2
lcrc,ult .(mK?C +K;C) bzh 8

my = —2,
a - /
\/;_7_1 .(272' IJ
h 27
2
l ,,(S ) ) b*h
S _ cre,u KIC E

y [J;_ah_l}.(z;r;j 3

If the reliability (probability of non-failure)
requirements are not met, the design load value
is reduced to the new value m, =m, and the

reliability value is recalculated.
However, it is not always possible to get a large
amount of statistical data about the parameter

I?;’C . An approach based on a combination of

probability theory and fuzzy set theory can be
used in this case. Fuzzy set theory allows to
model the variability of a random (fuzzy)
variable with a small amount of statistical data.
Figure 5 shows the probability density function
of random variable X and the distribution
function of fuzzy variable Y graphs

International Journal for Computational Civil and Structural Engineering
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The reliability interval can be calculated using
the following equations:

(Jy

F:I—I Oclx —
0

—m. P r-a.
—Jexp _(x m2X) | 1—exp| - : dx
b 28 )

where
Ymax+Ymin
Cly = 2

— “mean” value;

h = Ymax +Ymin
y 2-4-lna

— measure of variability; a - cut (risk) level

[14-15]; Yiux > Ymin — minimum and maximum

values based on test results and calculations.
The reliability is described by the interval

[P; P].

For the above-described problem:

lcrc,ult : (K;)C,max/ min + K;C)szh E
a - >
\/; e 27[ 1
h 2

The optimal level of non-failure probability (or
reliability index) should be set taking into
account the acceptable risk [16-18].

Y.

max/ min —
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4. CONCLUSIONS

1. The article presents probabilistic approach
to evaluation the ultimate load on flexural
reinforced concrete elements on crack
length  criterion based of fracture
mechanics;

2. The functional relationship between the
critical stress intensity coefficient of
concrete and the design concrete resistance
is given. It can be used in inspections and
maintenances of RC elements;

3. An ultimate crack length should be set for
reinforced concrete elements individually;

4. The article describes the reliability analysis
method for reinforced concrete flexural
elements on crack length with limited
statistical data.
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A.A. ILYUSHIN'S FINAL RELATION, ALTERNATIVE
EQUIVALENT RELATIONS AND VERSIONS OF ITS
APPROXIMATION IN PROBLEMS OF PLASTIC
DEFORMATION OF PLATES AND SHELLS
PART 1: A.A. ILYUSHIN'S FINAL RELATION

Aleksandr V. Starov, Sergei .JU. Kalashnikov
Volgograd state technical university, Volgograd, RUSSIA

Abstract: The finite relationship between the forces and moments of plates and shells in the parametric form of
the theory of small elastoplastic deformations is investigated of A.A. Ilyushin, to determine the load-bearing ca-
pacity of structures from a material without hardening. A geometric image of the exact yield surface in the space
of generalized stresses is obtained. In the first part of the article the conclusion of the final relation is given. In
the second and third parts, by introducing other parameters, alternative equivalent dependences of the final rela-
tionship have been developed and variants of its approximation for application in computational practice are
considered. In the fourth part, additional properties of the final relationship are considered, the possibility and
necessity of its use in problems of plastic deformation of plates and shells is shown.

Keywords: the plasticity theory, plastic deformation of plates and shells, surface of fluidity,
plasticity condition

KOHEYHOE COOTHOHIEHHUE A.A. WIBIOIINHA,
AJIBTEPHATHUBHBIE DKBUBAJIEHTHBIE 3ABUCUMOCTH
N BAPUAHTDBI EI'O AIIITPOKCUMALIUUA B 3ATAYAX
HJIACTUYECKOI'O JE®@OPMUPOBAHUA ITVTACTUH
N OBOJIOYEK
YACTbD 1: KOHEYHOE COOTHOIEHHUE
A.A. WIIBIOININHA

A.B. Cmapos, C.IO. Karawnuxoe

Bouarorpaackuil rocyjapcTBEHHbIN TEXHUUECKUI YHUBEPCUTET, I'. Bonrorpan, POCCUSA

AHHoOTanus: BrIMomHEHO McclenoBaHWE KOHEYHOTO COOTHONICHHS MEXAY CHIIAMH U MOMCHTaMH ITUIACTHH U
000JI0YCK B MAapaMETPUICCKOM BHIC TCOPHH MAaJBIX YIpyrolacTuieckux nedopmarmii A.A. WisrommHa, s
ompejieNieHus] Hecylel CocOOHOCTH KOHCTPYKIMKA M3 MaTepuana 0e3 ynpouHeHus. [lomydeH reomeTpuieckuit
00pa3 TOYHOW TMOBEPXHOCTH TEKYyYeCTH B MPOCTPAHCTBE 0OOOIIEHHBIX HANpPsHKCHWN. B mepBoil 4actu ctathu
MIPUBOJUTCS BBIBOJ KOHEYHOI'O COOTHONICHMS. BO BTOpOH M TpeTheil 4yacTsX BBEJCHHEM JPYTHX MapaMeTpoB
paspaboTaHbl albTepHATUBHBIC YKBUBAJICHTHBIC 3aBUCIMOCTH KOHEYHOT'O COOTHOIIEHUS U PACCMOTPEHBI BapH-
AHTBI €T0 aNMPOKCUMAIINH ISl TPUMEHEHHsI B PaCUETHOW MpakTHKe. B 4eTBepToil yacTH pacCMOTPEHBI JTOTOJ-
HUTEJIbHBIE CBOMICTBA KOHEYHOT'O COOTHOIIIEHUS, TOKa3aHa BO3MOYKHOCTh M HEOOXOIMMOCTh €TI0 MCIIOIb30BAHHMSI
B 3aj]a4aX IUIACTHYECKOTO e OpMUPOBAHNUS TIIACTHH M 000JIOUCK.

KiaroueBbie ciioBa: TCOPUs INIACTUIHOCTH, IIIACTUYCCKOC He(l)OpMI/IPOBaHI/IG IIAaCTHUH U O60J'IO‘I€K, MMOBECPXHOCTDH
TCKYYCCTH, YCIOBUA INTACTUIHOCTU
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Plastic Deformation of Plates and Shells. Part 1: A.A. Ilyushin’s Final Relation

INTRODUCTION

Theory of small elastoplastic deformations II-
yushin was created in connection with the prob-
lem of the strength of the projectile while mov-
ing in the barrel of the gun. All calculations
were carried out by the methods of the theory of
elasticity, although a small residual plastic de-
formation was allowed by normative docu-
ments. Together with theorems on simple load-
ing, unloading, and the method of elastic solu-
tions, the theory of A.A. Ilyushin was a power-
ful apparatus for investigating the strength, de-
formability and stability of structural elements,
structures and machine parts beyond the elastic
limit. [1-8]

The theory of elastoplastic deformations of
plates and shells is presented by A.A. Ilyushin
in [9-14], where on the basis of the methods of
the theory of plasticity a finite relationship be-
tween forces and moments was obtained to de-
termine the load-bearing capacity of structures
from a material without hardening and the limit-
ing state is characterized by the propagation of
fluidity throughout the volume.

Since the equations of the theory of plates and
shells are formulated in generalized forces and
generalized displacements, the conditions of
strength and plasticity must also be represented
in generalized forces. The transformation of the
condition of strength and plasticity from the
stress space into the space of generalized stress-
es is one of the most important and complex
problems of the theory of limiting equilibrium
of plates and shells [15-16].

The parametric equation of the limiting hyper-
surface in generalized stresses for thin plates
and shells on the basis of the Mizes condition of
plasticity and the relations of the theory of small
elastoplastic deformations was first obtained by
A.A. llyushin [9,13]. The traditional Kirchhoff-
Love hypotheses and the incompressibility of
the material are used. Received A.A. Ilyushin’s
relations are not expressed in explicit form and
are complex for solving practical problems. The
geometrical image of the exact yield surface in
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the literature is absent.

Similar relations with the introduction of other
parameters were obtained in the works of V.V.
Rozhdestvensky [17], G.S. Shapiro [18], P.G.
Hodge [19-22], D.C. Drucker, H.G. Hopkins
[23], D.C. Drucker [24], D.C. Drucker, R.T.
Shield [25], E.T. Onat [26,28], E.T. Onat, W.
Prager [27] and other authors. Detailed reviews
of literature on this topic can be found in [15-
16], as well as in the works of N. Jones [29-30]
and Yu.V. Nemirovsky, TP Romanova [31].

In the works of M.I. Erhov [32-33], on the basis
of the two-layer cross section model and the
flow conditions of R. Mizes, a finite relationship
between the internal forces and the moments of
ideally plastic plates and shells is obtained on
the assumption that the strain intensity within
the layer is constant in the plastic region. Here
is a schematic model of the exact yield surface
and the proposed version of its approximation.
A similar model of the approximation of the
cross-section of a homogeneous shell by a two-
layered cross section was used by V.I. Rosen-
blum [34-37], Yu.N. Rabotnov [38]. This ap-
proach and its various variants were used by
other authors.

If the shell material is ideally plastic and satis-
fies to a condition of fluidity of Mizes, for a
plastic condition &, =c, =const. In this case in

purely plastic areas of a shell the right parts of
determining relations for the generalised pres-
sure will be uniform functions of a zero order
concerning six parametres €;, ;.

From this necessity of existence of a final rela-
tion which plays a role of a condition of fluidity
follows and connects values of efforts and the
moments in purely plastic areas of a shell
[9,39]. Owing to noted property of uniformity of
the equations in purely plastic areas €,, ¥, it 1S

possible to replace deformation components
€,, ¥, in the corresponding speeds €., ¥;.

The definition of the ultimate load reduces to
the construction of internal stress fields, mo-
ments, displacements, and velocities of dis-

107



placements of the middle surface that satisty
equilibrium equations in the plastic regions, the
final relationship, the dependencies between the
velocities of displacements of the middle sur-
face and the deformation rates that determine
the relations for generalized stresses. In rigid
regions, the velocities must vanish or corre-
spond with the rigid displacement with joints,
and the forces and moments must satisfy the
equilibrium conditions and do not contradict the
final relation. The specified static and kinematic
boundary conditions must also be satisfied [9,
39].

The final relation corresponding to the defining
equations [9] has a very complex structure and
is not explicitly expressed. For an approximate
analysis, it is approximated by a quadratic de-
pendence [9-10,32-37], which corresponds to
the particular case [9], while the bilinear form

1 1
B, =gy +&X, +581X2 +582X1 +&%, =0

1

N?

(N; =N, N, +N; +3N}, )+

For the axisymmetric problem, the following
approximations are also used.

1. A semilinear final relation [19, 32-37], which
corresponds to the linearization of the previous
relation

n+m? =1, n:max{ﬂ, ﬁ, u},
S NY NY
m=maX{M1| M2| MI_MZ|}
M|\ M| | M,

2. The final relationship with a limited interac-
tion of forces and moments [19, 32-37], which
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does not take into account the interaction of
membrane and bending force factors, and oth-
ers. The degree of approximation of these rela-
tions to the exact one [9] depends on the ratio

0< Pj( <P, -P,. Meanwhile, elementary analy-

sis shows that in the center of a flexible circular
plate or a slender axisymmetric shell is always

satisfied P2 =P, -P, #0.

In the works of V.I. Korolev [40] and P.M.
Ogibalov [41] deduces the derivation of the fi-
nite relation AA. Ilyushin and solve the problem
for the simplest complex stress state of shells at
P #0, B#0, P, =0.

The purpose of this article is to investigate the
final relationship of AA. Ilyushin, obtaining a
geometric image of the exact yield surface, al-
ternative dependencies and variants of its ap-
proximation.

In the first part of the paper, with some abbrevi-
ations, the derivation of the final relation pre-
sented in §24-26 [9] is given. In contrast to [9],
the designations of stresses, forces and shear
forces in the shell sections have been changed
G,6,,0, T, T., 7T

xy? zx 2 zy

Nl’ N2’ NIZ’ nl’ n2’ an’ Ql’ QZ’ the

numbering of formulas, tables, graphs and ref-
erences to formulas are completely preserved. In
the second and third parts, alternative equivalent
dependencies of the final relationship are devel-
oped and variants of its approximation are con-
sidered for application in computational prac-
tice. In the fourth part, additional properties of
the final relationship are considered, the possi-
bility and necessity of its use in problems of
plastic deformation of plates and shells is
shown.

while

1.1. The connection between internal forces,
moments and deformations of the shell on the
basis of the theory of small elastoplastic de-
formations

Intensity of deformations, according to (4.7):
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2 2
3 _ﬁ\/g—zngﬁz P,
F, =812 +8182+8§+8122, P, :X12+X1X2+X§+X122’

1 1
I)sx =& TEX, +581X2 +582X1 +&1 X2

(4.19)
The stresses according to (4.2):
g - | o
x Gx _Ecy _e_i(gl _ZXI)’
1 c,
Syzcy—zcx =—L(g,—2x,), (4.20)
ei
20,
Sxy = Txy = 3€ (812 _ZXIZ)’

i

And o, there is a certain function e,, the volt-

age t_ t_ o_ is small in comparison with the

w, Uz, O
main ones. If the shell is thin enough and the
ratio of its thickness to the characteristic radius
of curvature can be neglected, we obtain the fol-
lowing five expressions for the forces:

h h h
2 2 2
N =|odz, Ny=|o,dz, N,= |1, dz,
1 _[l 2 J;l y 12 ,[l y
2 2 2
h h
2 2
O = J. 1,.dz, O, = I T,,dz
h h
2 2
(4.21)

The shearing forces O,, O,, despite the small

T_ , are not equal to zero, and are

zx? zy 2

stresses T

determined from the equilibrium equations.
Similarly, one can write formulas for bending
and twisting moments
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h

2
c.zdz, M, = Icyzdz, M,=\r,zdz.
h

Xy

e VS
s LA

M, =

N | =

N =

2

(4.22)

For simplification of calculations instead of
forces N,, N,, N,, it is convenient to enter

their linear combinations

h h
2 2
S =N —Ln, - [ 8.z, s, =N, Ly - [ 5,dz,
h h
2 2
h
2 2
350 =N = [ 8,dz,
h
2
(4.23)

And instead of the moments M,, M,, M,, of

their combination

h
! p
Hy=M,~=M, = [ Sz,
2 h
-
h
) P
Hy =M, =M, = jh S, zdz, (4.24)
-
h
5 p
SHi =M = [ 8,2
h
-
From (4.23) and (4.20) we have:
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h h
2 2
S, =¢, j 2dz—x1 I szz,
h e: h el
2 2
h h
io PR
S, =¢, I —Ldz—y, I —L zdz, (4.23"
h ez h ei
2 2
h I
2 2
c c
S =& I —dz -y, I —* zdz,
n € n €
2 2
And from (4.24) we have:
h h
2 G 2 G
H, =81J‘—’zdz—xlj.—’zzdz,
n € h €
2 2
h h
io io
H,=¢, I —Lzdz -, I —L7°dz, (4.24"
h ez h ei
2 2
h h
25 i
H,=¢, j —zdz =, _[ —+z'dz.
n € h €
2 2

In formulas (4.23") and (4.24'), there are three
types of integrals that are common in shell
thickness:

&dz, J, =

1

G, »
—Lz°dz.

0 |

()

o |
0 |

J, = zdz, J, =

i
e.

1

(4.25)

i
ei

N | =
[SEE
(S

Through them the forces and moments are ex-
pressed:
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3 1 1
ZNI :(81 +582JJ1 _LXA +EX2JJ29

3
R

3
Ele =&,J, Ay

3 1 1
ZMI :(81 +582JJ2 _[Xl +§X2JJ3’

3 1 1
—M2 :(82 +58]j.]2 _(XZ +EX]JJ3,(427)

1 1
2(82 +58]jJ1 _(Xz +EX1]J2,(4.26)

4

3
EMIZ =&,J, A5

Since in (4.25) o, there is a given function of
e,, and its form for each material becomes

known in particular problems, it is natural to get
rid of integration with respect to z and proceed
from (4.19) to integrate over e, .

Multiplying J, by P, J, by =2F,, J; byJ,
P, and by adding the results, we get:

JP—-2J,P +J,P =" [cedz.  (4.28)

AW
o [

SRS

Differentiating (4.19) with respect to z, we
find:

%eidei = (pr - £, )dz. (4.29)

Multiply no J; by —2F, and J, on P, and add

the results, then we get:

~J\B, +J,P, = %J.Gidei. (4.30)

We find the expression z° by e,, for this it is
necessary to solve the quadratic equation (4.19)
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z°P —2zP_+P :ge?,
% ey € 4 i

Which root which is not contradicting a relation
(4.29), is

_P, NE) 4PP—P,

e

(4.31)

And it is always necessary to take a positive
value of the square root. Differentiating (4.31),
we obtain:

B e, de, -signde, . (4.32)
2J_ 4PP e
B

The value sign zP, —F,

ey

according to (4.29),

. . . de, .
coincides with a sign e and as in intervals
yA

interesting us dz always it is positive at change
z

h
from ——to +—
2 2
integration on de, should be executed so that
de, too increased, i.e. it is necessary to inte-
grate on de, -signde, .

Let's consider values of intensity of defor-
mations in three points on an axis z :

by (4.33)
z=+— =L (4.
P

, Z=2y, Z,

Let's designate them accordingly:
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sign (28, - 1, ),

e, = \/_\/P +hF,, + P, (Z:_Ej’
2 et
2 b

e == \[B P+ P,
lozﬁﬁm (Z:ZO)'

f

(4.34)

Apparently from (4.29), the point z=z, is a

minimum point e,. Hence, inequalities always

take place

e,=>e,.

e e, e,

05 (4.34")
We shall say that the deformations of the
stretching and the shift of the middle surface
€, &, €, are commensurable or small in com-

parison with deformations of the bending of the
shell

h h

X1 iEXza iEXn

[+
N |

or that the latter are dominant if the point z,
does not exceed the thickness of the shell

E,
L <2 (4.35)

Deformations of the middle surface will be
called large or dominant as compared with de-
formation of the bend if the point is located out-
side the thickness of the shell, that is, if one of
the inequalities holds

(4.36)

=

In case of commensurable tensile deformations
and a bending, the integral from any positive
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value R on a thickness of a shell is necessary
for calculating under the formula:

Rdz

e—e

1

[l % T

N\&'—.N‘:‘

o

(4.35"

In case of incommensurable or large tensile de-
formations such integral should be calculated
under the formula:

h
_h 2\/]73(« €1 eiz _eiZ() |
2
(4.36")

We introduce the notation of the principal quan-
tities in the theory of shells:

A=4, B=B, C=C, (_ﬁgzosﬁj,
, (4.37)
A=A, B=B,C=C, (|Z°|>§j’

Where the values 4,, B,, C, refer to the case

of the dominant deformation of the bending and
are equal to:

J.Gde +J0de —che

c,de, c,de,

JA\/e —e I\/e —e
_ 2 2 2 2

C, = J‘Gi«/ei —eiodei+jci e’ —e;,de
%io €io

(4.37)

And 4,, B,, C, concern to a case of a dominat-
ing stretching of a median surface and are equal:
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A, =4 = che B = st1gn ),
C = T G,\¢ —ede,sign(e, e, ).

(4.37")

J, Jy, Jy (423", (4.24), (4.26) and (4.27), it
is possible to express the integrals J,, J,, J,

entering in the formulas through the basic val-
ues A, B, C depending on the basic quadratic

forms P, P P

., » according to formulas (4.37).
For this purpose we notice that the integral J,

on the basis of formulas (4.25) and (4.35")-
(4.36") is directly expressed through function B
then from (4.30) it is found J, through 4 and

B, after from (4.28) is received J,
A, B, C. Thus we find following formulas:

through

J3 3R, L3

Jy=——B, J,=—LB+—4,
2P? 2P? 5 438)
. :
J3:3\/-:_’ IS"B 2};’; A
81:;5 szz x

Values 4, B, C need to attribute an index «0»

and to calculate them under formulas (4.37') if
bending strain dominates or to attribute an index
«1» and to calculate according to (4.37 ") if the
stretching-compression of a middle surface
dominates.

The formula (4.32) and all subsequent calcula-
tions lose their meaning when the momentless
state is stressful, when the quantities e, and o,

are constant in thickness. In this case

2
B=F,=0.¢="7|P.

(4.39)
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And the integrals J,, J,, J,can be calculated
directly. From the formulas (4.25) we have:

(4.40)

is possible only at
Xi =X =% =0

all bending moments are equal to zero.

The relations (4.23"), (4.24") or (4.26), (4.27)
give the expressions for the forces and moments
acting on the shell element through three quad-
ratic forms P, P, P, :

2 2, .2 2 2, .2
F =g +eg,+e,+€,, P =0+ +%2+ Xizs

1 1
P, =& +&%, +551X2 +582X1 TEpXn

(4.43)

And six components of deformations and distor-
tions €, €,, €,, A;» A2» X, hence through

the three components of the displacement vector
of the point of the middle surface, since defor-
mations and curvatures have differential expres-
sions through u, v, w.

We show that all deformations and curvatures
can be expressed in terms of forces and mo-
ments. To do this, we find the expressions for
the quadratic forms (4.43) in terms of analogous
quadratic forms of forces and moments. Accord-
ing to the expressions S, H, through 7, M

(4.23)-(4.24) we have the identities:
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P, =S+5,8,+8>+3S% =
3 2 2 2
=2(N?=N,N, +N?+3N2),
4( 1 14V2 2 12)

P,=H!+H H,+H,+3H}, =

3
:Z(Mf—M1M2+M22+3M122),

P, =S H +S,H, +%S1H2 +%SZH1 +
+38,H,, =
=§ N, M, +N,M, —%NI M, —%NZMl + .
4 +3N,,M,,
(4.44)

We form the quadratic forms F;, P,, P, ac-
cording to relations (4.23") and (4.24"), replacing

the integrals entering them by the notation
(4.25) by J,, J,, J;.
From the group of equations (4.23") we have:

P, =J{R -2J,J,P, +J;P, (4.45")

Similarly, from the group of equations (4.24")
we find:

B, =J;P.—2J,J,F +J;P, (4.45")

Constructing from both groups of equations
(4.23"), (4.24") a bilinear form £, and collect-
ing the coefficients of the products J,, J,
andJ,, J,, we obtain:

Py =J,J,P.~(J,J, +J1 )P, +J,J,P,.(4.45")

As the left parts of relation (4.45) are known
functions (4.44) forces and the moments, and

right depend only from P, P, F, as J,, J,, J;

)
are expressed under formulas (4.38), (4.37),
(4.34) relation (4.45) represent three algebraic

113



equations from which it is possible to express
forms B, P,, P, through P, P, Py, :

Ps:fl(Rw Py, RS‘H)’ szfz(Pw Py, RSH)’

ng :fs(B?a Py, PSH)
(4.46)

Actually it can be executed after the particular
characteristic of a material of a shell is given,

i.e. the function kind is set o, = ®(e,).
Assuming that expressions (4.46) are found, we
can find expressions of deformations g,y
through forces 7, M or S, H . For this purpose
it is necessary to substitute (4.46) in (4.38), to
express J,, J,, J; through P, P,, P, and to
decide the equations (4.23"), (4.24") rather ¢, .
Thus, we receive definitive formulas:

€ :i(S1J3 _Hl']z)o X :i(SlJZ —-H,J, )a
€, :i(S2J3 _Hsz)a X2 :i(Ssz —H,J, )’

€ :i(S12J3 _le']z)a X2 :i(Squ —H,,J, )a
A=(J,J,=J3).
(4.47)

1.2. The final relationship between forces and
moments and the formulation of the problem
of the load-carrying capacity of shells

If intensity of deformations e, (4.19) any lay-
ers of a shell is great enough in comparison with
yield strength e, i.e.

%\/PS ~2zP +2°P =¢;>>e,  (4.56)

and its material does not possess hardening the
law o, = CD(ei)coincides with a condition of
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plasticity of Mizes:

G, =G, =const., (4.57)

Or can be approximately replaced by a condi-
tion of plasticity of Sen-Venan-Kulon:

S

(o)
= = const.

B

We show that in this case there exists a finite
(not differential) relation between the forces and
the moments. Using formulas (4.37), taking the
integral sign as a constant c,, we can calculate
the values of the functions 4, B, C.

In the case of dominant bending deformations,
the formulas (4.37") take the form:

(4.58)

max

4,=0, (ei2 _eil)’
2 2 2 2
(eil €1~ € )(ei2 T4/€1 € )
B,=0c In > ,
€o
(O 2 2 2 2 1,
— S

G = 7(91'1\/@11 ~Co +ei2'\/ei2 ~Co _EeiOBO’

(4.59"

and in case of dominating lengthening of a mid-
dle surface from formulas (4.37 ") it is found:

/ 2 2

(eiZ T4/€, — € )
/ 2 2

(eil €1~ € )

2 2
€2\€r ~ €0 ~€1\€1 ~ €

4 :Gs(eiZ _en)a B =0 |In

b

)

2
Cl_ s _e’_OBl
2 2

(4.59")

In both cases of value ¢,, e,, e, are expressed
by formulas (4.34). Considering the last as the
equations concerning three quadratic forms
P, P, , P, wecopy them in akind:

ey’
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S n

Foahby+— B =7¢ ¢

B—hby+ b=

i1
PP f)2 —_ 2f)
e.o 1

Solving them with respect to quadratic forms
leads to the following results:

hF,, zg(eizl ~¢y). P :g(ele +e"22)_%zp°"
£ -2 Ve
(4.60)

To determine the sign in the last formula, we
use inequalities (4.35) and (4.36). In the case of
the dominant bending strain from (4.35), we
have:

W W
2P <hR, 2P,

This inequality will take place, if in the formula
(4.60) for P, in brackets to take a sign (+) The

inequality (4.36) will take place, if for P, in
brackets to take a sign (—) .

Below, in all formulas with two signs, the upper
sign will refer to the case of the dominant bend-
ing of the shell, and the lower sign to the case of
the dominant extension-compression.

We introduce two basic parameters A and p:

(4.61)

These parameters satisfy the following condi-
tions:

0<iA>p<l, (4.61"

Since e,, - is the minimum value of the strain
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intensity at a given point of the shell. Then the
formulas (4.60) can be rewritten in the form:

2 2 2
36 2 p 23 an =3 (4 e aY),
s 16

P 1> Ty
(4.62)

L 4R

where A, and A designate following functions:

1-A°

A =NI-7 1] A= 463)

1

The kind of the formula (4.62) for P, becomes
clear if to take into consideration identity:

4% + A =1+x2+2u2¢2\/(1—u2)(x2 ).

Using the notation A, u and the established rule

for applying two-valued formulas, we can re-
write the expressions for the functions 4, B, C

(4.59) in the form:

A=0c.e,0(A, n), B=oy (A, n),

(4.64)
C= %eﬁ [ n) -1y (h p)],

Functions ¢, y also y are determined so:

1n1+«/1—u2 ih}?wr«/kz—uz
B H

(P=}\’_17 \V:

2

x=‘\/l—u2 ik\/Xz—uzl

(4.65)

Using formulas (4.62) and (4.64), we can be
convinced that quadratic forms P, P,, P,

according to formulas (4.45) and (4.38), do not
depend on value e, and are functions only par-

ametres A, L.
In this connection it is natural to introduce the
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notation for the characteristic value of forces
N,, N,, N,, and moments M,, M,, M,:

(4.66)

The quantities N, M,
momentless deformations of shells and prob-
lems of purely moment deformations play the
same role as the yield stress o, in the plane

in the problems of

stress problem. Therefore, it is useful to intro-
duce the notation for dimensionless forces and
moments:

N, N, Ny,
(S R
: : ’ (4.67)
M, M, M,
m=—, m,= > My, = 5
MS MS MS

and instead of quadratic forms (4.44), consider
quadratic forms of dimensionless forces and
moments:
2 2 2
Qn =ny =y + 1, + 30,
_ 2 2 2
Q,=m; —mm,+m, +3m,,
B 1 1
Qnm =nmm +n,m, _Enl m, _5n2ml +3”12m12-

(4.68)

The last are connected with 7, P,, P, obvi-
ous relation:

— 41)5 _ 4PH _ 41)SH
Qn 3N3 s Qm 3M3 > Qnm 3NSMS °
(4.69)

Performing rather cumbersome transformations
of the right-hand sides of equations (4.45),
namely squaring polynomials and multiplying,
and then collecting the coefficients for

v, 05, oy, YV, @Y, ¥, we obtain the follow-
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ing equations:

0, = Ailz(uz\v2 +97),
0,, = %(HZAWZ +AQ’ + oy + o),
1

0 _i uz(u2+A2)W2+(4u2+A2)(p2+
AT 20 Apy - 2uPyy + 280y +

(4.70"

Since the right-hand sides of equations (4.70"),
according to (4.63) and (4.65), are functions of
two parameters A, p, in a three-dimensional

space with variables O, O , O, they repre-
sent a surface

F(Q,, 0, 0,,)=0, (4.70)

and (4.70") is the parametric equation of this sur-
face. The relation between the quadratic forms
(4.68) obtained in this way is called the final
relation between the forces and moments acting
in the shells. The final relationship was obtained
from the Mizes hypothesis 6, =c, and there-

fore it is a generalization of the Mizes condition.
The final relation derived from the equations of
the theory of small elastic-plastic deformations
will have the same form, according to the theory
of flow the Sen-Venan- Mizes.

Existence of a final relation between forces N

and the moments M in case of ideal plasticity,
i.e. under condition of Mizes and at small elastic
deformations, follows and is direct from formu-
las (4.23") and (4.24") as thus they are uniform

zero  degree  concerning  six  values
€ €35 €55 A Xas Az -
The surface (4.70) represents a three-

dimensional image of the indicated surface of
the six-measurement space.

We pass to more in-depth study of a final rela-
tion (4.70"). We note three special cases of a fi-
nal relation.
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1. The momentless state of stress takes place at
X1 =%2 =%, =0, with P, =0 (4.68).

The final relation is obtained from (4.70") if we
assume that the deformations of the fibers along
the thickness of the shell are the same

€ =€, =€y, h=p=1
In formulas (4.63), (4.65), one should take the
lower sign and then uncover the uncertainties in
formulas (4.70"). Then we find, obviously, the
Mizes condition:

Qm = an = 0’ Qn :1’ (471')
Or in expanded form:
N} =N,N, + N; +3N} = N_. (4.71)

2. Purely moments the tension takes place in
the absence of lengthening of a middle surface.
The quadratic form

P =0,

that is why

P =0.

€%

As appears from the formula (4.19), intensity of
deformations e, is even function z and, accord-

ing to (4.34), we have

e

i1 =€

s €,=0, A=1, n=0.
In formulas (4.63), (4.65) it is necessary to take

the upper sign as from (4.33) it is had z, =0,
thus we receive

A =2, A=0, =0, ny =0, ¢ =2.

Volume 16, Issue 1, 2020

The final relation (4.70") becomes:

0,=90,=0, 0,=1 (4.72")
Or in expanded form:
M} =M M, +M; +3M =M. (4.72)

3. The elementary difficult tension of shells at

P #0, P,#0

takes place, if the bilinear form P, addresses

in zero:

1 1
Rsx =% (81 +582J+X2 (82 +§81J+X12812 =0.
(4.73)

It can take place in cases

1
a) %, #0, %, =%, =0, 81"'582:05

b) € #0, g,=¢,=0, xl+%x2:0

And many other things. From (4.60) it is thus
had ¢, =¢, > ¢,, A=1, n<1, ie. dominating
bending strain is available. We find:

A=¢=0, A =y=21-1°,
—21nlJr “I_HZ

V= E—
1)

and after simple transformations the final rela-
tion becomes:
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: 1+«/1—u2
Qn_ u b Qnm:()a

= 2ln2
b " (4.74)
2 .
0 - u’ 1n1+‘/1_“2— 1
SRR u J-w )

It gives a line of interception of a surface (4.70)
withaplane O =0.As O, O, are essentially
positive, all surface is disposed between planes
0,=0and 0, =0,

and a line (4.74) between positive directions of
axes Q,, O, ,1.e.in the first quadrant of a plane

Qnm :0

The point
0,=0, 0,=1

corresponding to a non-propulsive condition of
a shell, is received from (4.74) at u=1, and the

point
Qn = 0’ Qm = 1

corresponding purely moment to a condition of
a shell, is received at

p=0,as plnu=0 at p=0.

The curve Q,, O, can be constructed on the
points which coordinates are introduced in table
4 [9] (the expanded version of the table it is re-
sulted in 2 parts of the article). On Figure 53 [9]
coordinates (it is resulted in 2 parts of the arti-
cle) the curve (4.74) and a straight line is repre-
sented

0,+0,=1 (4.75)

which well enough approximates it. The maxi-
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mum deviation of a straight line makes about 9
%. The surface (4.70) is symmetric concerning a
plane

Qnm :O

Thus, it is enough to know about a surface
(4.70), only in the first octant of co-ordinate
system O, O, , O . It is possible to be con-

vinced that on a line A=1 in a value plane
(0, 0,) O,, O, have a maximum. If to use

Schwarz's inequality concerning quadratic
forms Q,, 0, O, 0. <0, -Q,, it is possi-
ble to conclude that the value O  on the module

also is limited.

Table 5 [9] (the expanded version of the table is
resulted in 2 parts of the article) gives coordi-
nates of some points of a surface on lines
A = const, and against each value A are given:
in the first line - Q, in the second - O, and in

the third-Q

nm *

The greatest values @, ~ will be, when
Schwarz's inequality is transformed into equali-
ty

and it is possible only when values » and m
are proportional:

Aol Mo (4.77)

mm, Iy,

Let's show that the hyperbolic paraboloid (4.77)
is crossed with a surface (4.70) on a line p=0.

From (4.65) at u=0 it s had:

Qo=A—1, x=1%1% py=0,

2
A =140, A=A
e

4.77")
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Introducing these values to the equations (4.70),
we receive:

2
0=

2¢
==2(A
A12’ Qnm Al3( (P+X)7 Qm

-
(4.78)

From here in case of a dominating stretching of
a shell at the lower sign in (4.77 ") it is had:

Qn = 1’ Qnm :Qm = 0’
Le. the line p=0 degenerates in a point.

In case of a dominating bending of a shell it is
received:

C(1=AY R NS (7%
Q”_(H?J $ 0" (1+2) Q’"_(1+x)“’
(4.79)

whence follows (4.77). Besides, from last equa-
tions it is found other relation

0,=(1-9,), (4.79)
Combining it with (4.77), we find:
0,.|=(1-0,)J0,. (4.80)

From here we conclude that the line u=0 de-
termining greatest on the module of value of the
bilinear form @, , represents a line of intercep-

tion of two parabolic cylinders from which the
cylinder (4.79) passes through points:

0,=19,=0,90,=0,
0,=0,0,=1 0,,=0,

Having forming, parallel to co-ordinate Q, , the

cylinder (4.80) has forming, parallel to co-
ordinate (, , and passes through the same

Volume 16, Issue 1, 2020

4
——(A(p+x)2.

points. The line u=0 limiting a piece of a sur-
face (4.70) for dominating bending on which
values O, O, ., O, have mechanical sense, is

shown on fig. 54 (it is resulted in 2 parts of the
article).

The maximum value of ordinate O, on the
module will be at

4
s Qm_§

W | —

and

2
Q"mmax_}\/g'

The final relation between forces and the mo-
ments in case of a dominating bending matters

Qnm

2
max 3\/?'
can be approximately presented, as pair of the

planes passing through a line (4.75) and through
points

They have the equation:

g+%+%

Qnm -

(4.81)

As six components of deformations and bend-
ings are expressed by means of differential op-
erations on curvilinear coordinates through three
components of a displacement vector u, v, w
of a middle surface, they should satisfy to the
equations of compatibility of deformations.

Generally it is possible to express the compati-
bility equations through forces N and the mo-
ments M , but they will contain one more func-
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tion of coordinates e,. The differential equa-

tions of equilibrium and conditions of compati-
bility of deformations will be insufficiently for
definition of forces N,, N,, N,,, the moments

M,, M,, M, and unknown function e, .

The final relation (4.70") between forces and the
moments will be the missing equation also. In a
kind of that this relation not differential and
from it follows that forces and the moments and

their quadratic forms Q,, O, O, are limited

on value, at any external forces equilibrium of a
shell is impossible.

As lift capability of a shell is called limiting
value of external forces at which internal forces
N and the moments M satisfy to a final rela-
tion (4.70"), to the equilibrium equations, condi-
tions of compatibility of deformations and
boundary conditions.

In special cases thanks to a final relation the
problem about equilibrium becomes statically
definable and does not demand conditions of
compatibility of deformations. Then the ques-
tion on lift capability of a shell is decided rather
simply.

It more becomes simpler, if forces and the mo-
ments can be expressed through external forces
only by means of the equilibrium equations that
takes place, for example, in the non-propulsive
theory of shells, in that case the final relation
(4.70") determines lift capability.

Conditions of compatibility of deformations do
a problem about definition of lift capability ra-
ther difficult and consequently the approximate
methods of its solution have great value.

The energy method of the solution consists in
the following: are set by the suitable form of the
deformed surface of shells and, making expres-
sions of a variation of activity of internal forces
and activity of external forces on variations of
movings, compare them. Approximate limiting
value of external forces can be received, if ma-
terial hardening to put equal to zero, and defor-
mations beyond all bounds to increase or saving
constants yield strength
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c, =3Ge,,

G to aim to infinity, and e, - to zero.
On Figures 2.1-2.4 the fluidity surface

F(Q,. 0, 0,,)=0

in three-dimensional space with variables is pre-
sented O, O,, O, . A black line — section of a

surface a plane
0,,=0,

formulas (4.74), a red line - a line of a maxi-
mum |Q,,|(4.79)-4.80).

1.3. The relationship between internal forces,
moments and deformations of the shell on the
basis of flow theory for an ideal plastic mate-
rial

We show that the relations (4.26-4.27) remain
valid also in the framework of the flow theory.
Specific power dissipation of energy per unit
volume:

D=c ¢, +0,€,+0.€ +T ¥V, +T V., 7,7,
(1.3.1)

The plasticity condition of R. Mizes:

(1.3.2)

On the basis of the associate law of flow and a
postulate of Druker for true fields of speeds of
movings power of a dissipation of energy re-
ceives the maximum value, speeds of defor-
mations are determined from a condition of a
maximum of function
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MO
AAOOOANANN
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Figure 2.1. A fluidity surface F(Qn,
with variables

Qn9 m?o Qnm'

Figure 2.2. A fluidity surface F (Qn, 0., Qnm) =0in three-dimensional space
with variables Q,, O,, O, .
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0 in three-dimensional space

. O)

Figure 2.3. A fluidity surface F(Qn, 0

Qn9 Q > Qnm'

with variables
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Figure 2.4. A fluidity surface F
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DO=D-\F,
where D and F according to (1.3.1)-(1.3.2):

&, =6M(c, ~0,), &, =6h(c, ~0,),

X

. 1. 1.
¢, =6M(0.—0,), ST = 6AT,,., ST = 6AT .,
G,+G,+0,

1.
Eyzy =6AT,,, G, = 3

(1.3.3)

Excluding A by means of (1.3.2), we receive
relation of flow of Sen-Venan-Mizes-Levi-

Ishlinsky
. 26, .
G, —GC,= , ‘€, 0 —0)= 3 o
0—60220‘ , ,220‘ 1 -
: 3¢, TV 3e 27
26, 1 26, 1

T c— , T_. -— s
= 3¢, 27 ¥ 3e'l. 2 Vo
(1.3.4)

where intensity of speeds of deformations

5 (6, -¢,) +(&, —e.) +(5,~&.) +
e =—— .
g i)
(13.5)

For a flat tension and problems of a bending of
plates and shells it agree hypotheses of Kirhgof-
fa-Ljava

and a condition of an incompressibility of a ma-
terial

e, +€,+¢,=0:
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€, =8 =12, €, =8, = X,%, nyy =8, ~ %1%,
) 1.
o B2 _Eyw

)
z=0

(1.3.6)

zgy

The equations (1.3.4) and (1.3.5) taking into ac-
count (1.3.5) become

4o (. 1.
o, =—>|& +—¢ |=
36(' 2 yJ

1

4o |(. 1. S
= 3¢, 81"'582 - X1+§X2 zZ,

4o 1
— 3éi(y2xj (13.7)
4o |(. 1. o1
:¥ 82+§81 - Xz+2X1 z|,
20, 1. ) .

Ty = 3 'nyy:(glz_Xlzz)s

. 2 . L., 1,

ei:ﬁ 8x+8x8y+8y+zyxy. (1.3.8)

Longitudinal and shearing forces, bending and
twisting moments according to (4.21)-(4.22)

3 . 1. N
ZNI :(81 +582]J1 _[Xl +5X2JJ2’

3 ) 1. . 1.
—N, 2[82 +581jJ] _(Xz +5xljJ2,(1.3.9)

3 . ;
EMIZ =€,J, =

3
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where integrals J,, J,, J;:

()
—.—SdZ, Jz =
ei

J, =

0 |
—o [ >
0 |

c o, ,
—zdz, J,= | —z7dz,
é, é,

SRS

N

SR

(1.3.11)

and intensity of speeds of deformations:

2

el.:ﬁ\/Pa—2zPsx+Z P,

E2é12+é1é2+é§+é122, Q:X12+X1X2+X§+X1223

: S I, . .. ..

F;x =& % TEX +§81X2 +582X1 TE€1 %12
(1.3.12)

Thus the final relation remains fair and within
the limits of the flow theory if in all formulas of
sections 1.1-1.2  to replace deformations

€, &, €, and changes of curvature of a medi-
an surface y,, X,, X, With speeds of defor-
mations €,, €,, €, and speed of change of cur-

vature of a median surface %, %,, %;,. For the

hardening account in formulas it is necessary to
consider (1.3.11) yield strength as function of
intensity of deformations and intensity of speeds

of deformations o, =o,(e,,¢,).

CONCLUSIONS

The geometrical image of an exact surface of
fluidity in space of the generalised pressure
which A.A. Ilyushin in the works and in refer-
ences is absent that allows to execute its approx-
imation for the solution of practical problems is
received. It is shown that a final relation remain
fair and within the limits of the theory of flow
for ideally plastic material.
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BENDING OF RING PLATES, PERFORMED
FROM AN ORTHOTROPIC NONLINEAR DIFFERENTLY
RESISTANT MATERIAL

Alexandr A. Treschev, Evgeniy A. Zhurin
Tula State University, Tula, RUSSIA

Abstract. This article proposes a mathematical model of axisymmetric transverse bending of an annular plate of
average thickness, the loading of which is assumed to be on the upper surface of a transverse uniformly
distributed load. An orthotropic plate made of a material whose mechanical characteristics nonlinearly depend on
the type of stress state is considered. The most universal, built in the normalized tensor space of stresses
associated with the main axes of anisotropy of the material are taken as defining relations. The loads were taken
in such a way that the deflections of the middle surface of the plate could be considered small compared to its
thickness. Fastening plates are presented in two versions: 1) rigid fastening on the outer and inner contours; 2)
hinge bearing on the outer and inner contours. As a result of the formulation of the boundary value problem, a
mathematical model was developed for the class of problems in question, implemented as a numerical algorithm
integrated into the application package of the MatLAB environment. To solve the system of resolving
differential equations of plate bending, the method of variable parameters of elasticity was used with a finite-
difference approximation of the second order of accuracy.

Key words: transverse bending, axisymmetric deformation, ring plate, orthotropic material,
nonlinear dissociation, small deflections

N3I'b KOJIBHEBBIX IIJIACTHUH,
BBINNOJIHEHHBIX U3 OPTOTPOIIHOI'O
HEJUHENHO PABHOCOMNPOTUBJIAIOIIETIOCS
MATEPHAJIA

A.A. Tpewes, E.A. ZKypun

Tynbckuii rocynapcTBeHHBIH yHUBepeuTeT, T. Tymna, POCCUSA

AnHoTanusi. B rmpeincTaBieHHON cTaThe NpeAsaraeTcs MaTeMaTHdecKas MOJENb OCECHMMETPHUYHOIO
TIOTIEPEYHOTr0 M3ruba KOJIBIEBOM IUIACTUHBI CPEIHEH TOJIIMHBI, HAarpyXKEHHEe KOTOPOH IPEZroJaracTcsi Io
BEPXHEH MOBEPXHOCTU MOMEPEYHON PaBHOMEPHOH paclpenenéHHoN Harpy3Kkoi. PaccMarpuBaeTcs opToTponHast
IJIaCTUHA, BBIMOIHEHHAs U3 MaTepHasa, MEXaHUYECKHE XapaKTEPUCTUKNA KOTOPOr0 HEIMHEWHO 3aBUCAT OT BUJA
HaINpsDKEHHOT'O COCTOSIHMS. B KadecTBe OMpenernsiomx COOTHOIICHUH NMPUHATH HauOojee yHUBEpCAIbHBIC,
MIOCTPOEHHbIE B HOPMHUPOBAHHOM TEH30PHOM IIPOCTPAHCTBE HAMpPSDKEHUH, CBS3aHHOM C TJIABHBIMH OCSIMH
AQHM30TPOIHMU MaTepHaia. BeanduHbl Harpy30K NPUHAMAJIKCh C TAKMM PacyeToOM, YTOObI MPOrHObl CPEIUHHON
MOBEPXHOCTH IUIACTHHBI MOTJIM CUHTATHCA MAJbIMHM 110 CPABHEHHUIO C €€ TOJIIUHON. 3aKkperuieHus IUIacTHH
NpEeCTaBICHbl B JABYX BapHaHTax: 1) kKECTKOE 3aKperyieHHe MO BHEIIHEMY U BHYTPEHHEMY KOHTypam; 2)
HIApHUPHOE OMMPAaHKE 1O BHEIIHEMY M BHYTPEHHEMY KOHTypaM. B pe3ynbTaTe mMOCTaHOBKM KpaeBOW 3aaadu
Obuta pazpaboTaHa MaTeMaTHdeckas MOJENb Ul paccMaTpUBAaEMOro Kiacca 3ajad, peald30BaHHAas B BHJE
YHCJICHHOTO alrOpPUTMa WHTEIPUTUPOBAHHOTO B MAKeT MPHUKJIAAHBIX mporpamm cpeasl MatLAB. Jlng pemenus
CHCTeMBI pa3pemaromux JuddQepeHInantbHbIX YpaBHEHNH U3rn0a MIaCTHH UCIIONB30BAJICS METOJL IIEPEMEHHBIX
MapaMeTPOB YIPYTOCTH ¢ KOHEYHO-PA3HOCTHON allpOKCUMAIMEN BTOPOTo MOpsiKa TOUHOCTH.

KaroueBblie ciioBa: HOHGpe‘IHLIfI I/ISFI/IG, OCCCUMMCTPUYIHOC ,I[e(l)OpMI/IpOBaHI/Ie, KOJIbIICBas IJIaCTHHA,
OpTOTPOHHBIﬁ Matepuall, HeJIMHEHHAs Pa3HOCONPOTUBIIAEMOCTD, MAJIbIC HpOFI/I6LI
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Bending of Ring Plates, Performed from an Orthotropic Nonlinear Differently Resistant Material

1. INTRODUCTION

Currently, more and more often designed and
built buildings, manufactured parts of machines
and devices, which until recently had no
analogues. These objects require deformation-
strength calculation of high accuracy, as the
slightest error at the initial stage of design can
lead to serious accidents.

Over time, more and more technological
materials are created for which the theory of
calculation of traditional (classical) materials is
not acceptable. That is why the development of
new and modernization of old models is an
urgent task of modern construction and
engineering.

It is obvious that researchers need not only to
develop a mathematical model, but also to test it
experimentally, and compare it with other
models for similar designs. With a deeper study
of the materials it will be possible to calculate
the components and structural elements with
minimal errors. This will allow you to develop a
design without waste of material.

In this paper we consider the axisymmetric
deformation of the annular plate of medium
thickness. The plate material is adopted
orthotropic. The nonlinear properties of the
material appear already in the early stages of
deformation and strongly affect the subsequent
stress distribution. It is not possible to reliably
describe the deformation of such a plate by
conventional linear functions.

The development of the theory of calculation of
plates of resistive anisotropic materials have
been studied by many scholars such as S.A.
Ambartsumyan, R.M. Jones, C.W. Bert, A.V.
Berezin, A.A. Zolochevsky, N.M. Matchenko,
A.A. Treshchev and others [1-33].

S.A. Ambartsumyan in his works [1, 2, 3]
proposed the simplest variants of defining
relations in the form of equations of state. In the
framework of the theory of small elastic
deformations, piecewise linear relations
between the principal stresses and strains were
established, and the question of the relations
between shear stresses and shear was not

Volume 16, Issue 1, 2020

discussed. In S. A. Ambartsumyan's model [1,
2, 3] the field of principal stresses is divided
into regions of the first and second genera [3, 4,
5]. This model is similar in form to the classical
generalized Hooke's law of orthotropic matter,
but the elastic moduli and the coefficients of
transverse deformation in the directions of the
principal axes are determined separately from
the experiments on axial tension (Ex’, vim*) and
compression (Ex", vikm ). The direct application
of the proposed relations is possible only in
cases when the distribution of the principal
stresses by their signs at different points of the
body is known in advance, and also if the model
constraints on the constants arising from the
symmetry condition of the compliance tensor
are observed.

Model R.M. Jones [6, 7, 8, 9] it is based on the
construction of a matrix of weighted
malleability, the symmetry of which in areas
with different signs of the main stresses is
achieved by introducing weight coefficients into
the non-diagonal components. The weights
represent the pairwise correlation of modules in
the principal stresses

k, = |0'1|/(|0'1| +|<72

), k2=|62|/(|0'1|+|0'2|).

The simplest model of equations of state for
anisotropic multimodule bodies is proposed by
C.W. Bert [10, 11, 12, 13]. This model is
applicable to fibrous materials when it is
considered that the components of the
compliance matrix depend on the sign of normal
stresses arising in the direction of the fibers, that
is, when stretching along the fibers, one
symmetric matrix of compliance is used, when
compressing — another. The rigor of this model
is violated when the normal stresses along the
fibers are equal to zero.

A more complex, but no less controversial
model is proposed by A.A. Zolochevsky [14,
15,16, 17, 18, 19, 20, 21], which introduced an
equivalent stress, the second degree of which is
determined by the potential of deformation.
Potential constants are "hidden" in expressions
that make up the equivalent voltage. The
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equivalent stress is determined by the sum of
the linear and quadratic joint in-stress variants.
Due to the presence of irrationality in the stress-
strain coupling equations, it is not possible to
distinguish the compliance matrix in General.
The obtained nonlinear relations are sufficiently
complex and contain a large number of
constants to be experimentally determined. In
particular, for an orthotropic material in a quasi-
linear approximation, it 1is necessary to
determine thirty-two constants, and only 18 of
the simplest reference experiments (uniaxial
tension and contraction in the direction of the
main axes of orthotropy and at an angle of 45°
to them) can be established.

2. METHODS

It is obvious that even a detailed analysis of the
most well-known models of determining ratios
of anisotropic materials of different resistances
indicates that these models are not free from
serious shortcomings and are based on separate
hypotheses, often unfounded by experimental
facts. In particular, E.V. Lomakin in [22, 23]
formulates the strain potential for anisotropic
materials in the form of an energy function from
the ratio of the mean stress to the stress intensity

E=0/0,
(where
0c=0,6,/3

— average stress,

o, =, /1,SSgSy

— stress intensity;

S; =0, =00
— stress deviator components; 0; — Kronecker
symbol) multiplied by the convolution of the
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fourth rank compliance tensor with the second
rank stress tensors in the principal axes of the
anisotropy of the material. A serious drawback
of the introduced relations is the discontinuity of
the functional parameter &, which leads to un-

certainties of an infinite nature, which has been
repeatedly pointed out in [24, 25].

In the works of Matchenko N.M. and Treschev
A.A. [25, 26] are the deformation potentials for
anisotropic dissolving materials allowing the
quasilinear approximation, normalized vector in
nine-dimensional space of stresses. In these
works the equations of state of two levels of ac-
curacy are obtained. Despite the rationality of
this approach, the obtained relations are also not
free from significant drawbacks, which for the
equations of the first level of accuracy are com-
plex functional dependencies between uncorre-
lated constants of materials, and for the equa-
tions of the second level — an excessively large
number of constants to be experimentally de-
termined, which requires the involvement of
experiments on complex stress States.

In subsequent works [27, 28, 29] Treschev A.A.
carried out a corrective formulation of the
equations of state for different classes of
anisotropic materials, both in quasi-linear and in
non-linear formulations. The nonlinear model
[31] uses equations of state represented by the
type of generalized Hooke's law for anisotropic
materials by type:

(0.a,) 0, Hypy=H

rq’ kmpg —

k,m,q, p,s,t,=1,23,...

ekm = Hkmpq qum;

In particular, for orthotropic material, these de-
pendences are presented as follows:

ery =(4y111+Byyy1-apy)-oq) +
+[A1122 +B1122 '(0511 +0522)]'0'22 +
+[A1133 +By133-(ay +0‘33)]'U333
€2 :[A1122 +By127 '(0511 +0522)]'011 +
+(A2222 +By2) '0522)‘0'22 +
+[A2233 + B33 (@ +0‘33)]'0335
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€33 I[A1133 +Byi33-(ay +0‘33)]'511 +
+[142233 + B3 -(an +a3; )]'0'22 +
+(A3333 +By333-33)- 033
262 = Cin (U ) Tia
763 = Chans (O-i) ) z-23-

2e)3 =Cy313(0; 1713
a, mk’ ”ks fm > :Bkma Iukm’ 8im>

(1)

where
a;,=0;/5;

—normalized stresses in the principal anisotropy
axes of the material;

_ S 2 2 2 2 2 2
S—(Gl.j -O'ij) —\/O'” + 05, + 035 +2(z’l2 + 1755 +z'31)

— module full voltage (norm of the space of

stresses);  Ajums Bjkm:Cjm» — nonlinear functions

that determine the mechanical properties of a
material.

For orthotropic bodies the number of independ-
ent material functions reaches fifteen [29, 30,
31]. The presentation of these functions, which
determine the properties of the material, is car-
ried out by approximating the experimental dia-
grams of deformation under uniaxial tension
and compression along the main axes of anisot-
ropy and diagrams obtained for shear in the
three main planes of orthotropies by processing
them in the program Microcal Origin Pro 8.0
(Microcal Software Inc.). In this case, for struc-
tural orthotropic nonlinearly resistive composite
material AVCO Mod 3a [29, 30] are presented
as follows:

Ay (0,)=0.5-[1/ Ef (0,)+1/ E; (o)}

B (0,)=05-[1/E (c,)-1/E; (5,)}

Vi) vil(o)].

Aumn1) =03 {E;(af Em<o—i)J’

05| Vinle) vi(e))|
By (0,)=—0.5 |‘E;(O'l) Em(O'i)J’ o
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Conn(0,)=1/Gy, (0, )

ki( 1) ag +my -0, 007
:(O-):ﬁ“;m_'_ﬁkm G +1lem. 1’2’

Gion(0:)=Etom + Plon i + Qm O -

km’ ﬂkm’ ﬂkm’ gkm’ pkm’ qkm
— the constants of nonlinear material

+ + +
where a,, m,, n_,

Pion> Qiom
functions determined by processing of experi-
mental diagrams of deformation by the method
of least squares and presented in table 1.

This model of nonlinear orthotropic resistive
material [29, 30, 31] is currently the least con-
troversial, gives the results as close as possible
to the experimental data and therefore is the ba-
sis for the construction of the method of calcu-
lating the plates.

Consider the stress-strain state of the annular
plate under loading by a transverse uniformly
distributed load of intensity “q” (MPa). Material
of plates taken with non- llnear characteristic
having cylindrical orthotropy and properties of
resistivity. In this case, we focus on two options
for the support of the object of study:

a) plate with rigidly clamped contours according
to Figure 1a;

b) the plate is hinged on the contours in accord-
ance with Figure 1b.

Due to the axial symmetry, the problems are
considered taking into account the cylindrical
coordinate system (r, 0, z). In this case, the tra-
ditional model assumptions [30] are considered
to be valid in the following form: 1) the normal
to the median plane after deformation is rotated
by an angle y, relative to the circumferential

coordinate axis 0; 2) when determining the pa-
rameters of the stress state, the influence of
normal stresses o, is neglected due to their

smallness.
Based on the above assumptions, for
deformations at the points of the plate we have:

er :u,r+Z'l//0,r;
e, =ulr+z-y,/r;
yrz :W,r+l//9

)
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Figure 1. Design scheme of the ring plate with two types of support:
a) rigidly clamped circuits; b) pivotally supported circuits.

where u# — radial movements in the middle sur- For the convenience of further presentation, we
face; w, — rotation angle of the plate section introduce the following designations:

relative to the axis; 0; w — deflection of the

middle surface of the plate. Cin = Allll(o-z )+ Bllll(o-z) a,,
Taking into account the accepted hypotheses of C\1ys = Ay122(0, )+ B, 1po(0,)- (@, + 0!5)
equation (1) we transform to the form: Cis A1133(O'z )+ Bll33( 1)
e, —(Allll( )"’Bllll( ) ar).ar_l_ 2222:‘42222(0-1)"'82222( 1) Xy, (5)
+[4y125(0,)+ Byipa(o;)-(a, + ay)]-04; Coons = Ayos(0,) + Boss(0,)- 25
eg =[41122(07)+ Bi12a(0)- (@, +ap)]- 0, +(4) Cisis = Cusnlor }
+(42222(07)+ B 03)- @) 0 Having expressed stresses through deformations
€, = [A1133( ')+ B, 133( ) @ ] o)+ taking into account the simplifying equations
+ [A2233( )+ 32233( ) a 9] og; (3)-(5), after simple mathematical manipulations
. . we come to the following dependences:
erz C1313(O-1 ) z-rz’
where O, = Allll(u,r _Z"//a,r)"" A1122(14/7'_2"//9 /V);
Oy =A1122(u,r _Z"//e,r)+ Ayl r =2y, /)
a. =o,/S; (1//9+w1)
s 7, =t (6)
Ao =09 /0> Ay
a :O- /S A11]I :C2222/(Cllll 'C2222_C12122l
S: VO- +09 +Trz’ A1122:CVIIZZ/(CWIIII.C12222_Cw]2122) (7)
o, :\/o-r2 -0, -0, +Gg +3z-r22. Asyyy = Clll]/(Cllll 'C2222_C12122

Aq313 = Cyz13;
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Table 1. AVCO Mod 3a composite material constants [29, 30].

) The first element The second The third element
Type of prototype Technical of a nonlinear clement of the nonlinear
test parameter function of the nonlinear function
U function U
1 2 3 4 5
o a m, n’
? 1.058-10°1° 62.829 1.535-10°°
£ E;(c,), Pa % i 7
E AR 2.864-1071° -105.476 5.893-1077
o m; "
% 2.301-10°1° 88.349 3.711-10°
‘% /11+2 1+2 /v‘1+2
E 0.158 -3.106-10° 2.192-107"
i p9 B £,
8 0.103 ~1.79-10° 9.106-10°'8
= 1 ﬂ+ u+
e v (o 13 13 13
é inle) 0.203 215107 6.148-10"7
Ec; 153 18;3 /U2+3
= 0.104 0.87-10710 6.741-107"7
g /1;1 ﬂ3+1 /J3+1
0.146 —0.146-1071° 6.971-107"7
a; m; n
9.988-10° -12.943 6.71-1077
E;(0,). Pa @, m "
= 2.326-10'° —436.81 —6.077-1077
g a; my n
& 5.14-10° ~129.15 T7831-10°°
on _ - -
g § AL B My
7; g 0.118 —-1.457-107° 2.136-107"7
= - - -
'% g A o Hoi
%“5 0.06 1.77-107° 2.947-107"7
g v (O_) A B My
= A 0.264 ~1.118:10° 3.01-10"7
:% Az B Hys
5 0.189 2.156-107° 2.104-107Y
A5 o My,
0.134 —0.457-1071° 5.819-107"7
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1 2 3 4 5

% g 147 qi,
£58 4.07-10° ~1,6 -8.38:10°
g & &
= '8 823 P23 q>3
= = Ginlo;), Pa
ZE% on(c7) 1.723-10° 16.899 11107
< i% 831 P31 qs

2.43-10° —54.455 ~1.97-10°°

Deformations e, are not explicitly included
here, but they are easily computed from the
third equation of the system (4).

Taking as a basis the new physical equations,
we thus do not make changes in the dependence
of the static-geometric nature, and therefore the
static conditions for the annular plates in a cy-
lindrical coordinate system will be presented in
the traditional form [29, 30]

N,, +(N, =N,)/r=0;

0., +0. /r=-q; (8)
M, +(M,-M,)r-0, =0

where N,, N,, Q,, M, , M, — forces and

moments in cross sections of plate.
Forces and moments are determined by integrat-

ing expressions for stresses (6) over the plate
thickness:

hi2 hi2

N, = J.ardz; N, = Iagdz;

~h/2 ~h/2

hl2
Qr = J.T}”Zdz; (9)

~h/2

hi/2 hi/2

M, = Iar-zdz; M, = Iag-zdz;
~h/2 ~h/2

From the joint consideration of dependences (6)
— (9), the resolving equations of axisymmetric
bending of plates of average thickness having
cylindrical orthotropy and nonlinear dependence
of mechanical characteristics of the material on
the type of stress state follow:
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Dll,r 'u,rr+K11,r 'l/lﬁ,rr+D12,r U, /r+
+Kpp, Wo, [ r+(Dyy-u, +Kyyp e, +
+D12'U/]"+K12'l//9/r—D12'l/[’r+
+K121//97r+D22'U/F+K22'l//9/r)/r:0;
DI3,r .(W,rr +l//6,r)+Dl3(w,r +lr//0 )/r:_% (10)

Kyp-u, + Ry yo, +Kyp-ulr+
Ry Wy lr—=Kpu, + Ry ye, + |-
6K22M/F+R22'(//9/V
= Dy3-(w, +yy)=0.

where D11, D12, D2, D13, Ki1, Ki2, K22, Ri1, Ri2,
R>> — the integral of the function on the plate
thickness, resulting after integration by formulas
(9); Dit,r, D12,r, D33,ry Kityr, Ki2,r, Rty Ri2, —
derivatives of integral functions on the radial
coordinate.

To solve the obtained equations (10) we use the
finite-difference method with the second-order
approximation of accuracy [32, 33].

3. RESULTS AND DISCUSSION

To solve this class of problems the program is
developed in MatLAB. Considered 2 options for
fixing the plate: hinge and rigid clamping at the
edges. Also, 3 variants of the decision were con-
sidered. For clarity, each of the solutions is indi-
cated by its own, different from the other line:

— considered model [27, 28, 29];

= == — solutions without taking into account
the properties of resistivity taking into account
the stiffness of the material only in axial
tension;
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Deflections of the plate from the value of the load

(hard sealing)

Load , *10A5Pa

0
o™ 1| 2|3 |4 |5 6|7 8|9 10n
-0,00005
-0,0001
£ -0,00015
2
3
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-0,00025
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-0,00035
Figure 2. Deflections of the plate from the load.
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Figure 3. Deflection of the plate along the coordinate r.
1.27*1 0"7 2 21*10"6 -5.61*10"6 -7.15*10"5 1.02*%10"7
0.05] <
I ? \\
I é % N
071 Ry
N\
£
-0.05 _1.23*10~7 2.15%10%6 5.24%10"6 7.3*10"5 -0.93*10"7
0 ) 05b ) b

Figure 4. Stress distribution o, over the thickness of the annular plate in typical cross-sections, PA.
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Figure 6. Distribution of M, moments on the annular plate.
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Figure 7. Distribution of moments My on the annular plate.
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Deflections of the plate from the value of the load
(hinged support)
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Figure 8. Deflections of the plate from the load.
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Figure 9. Deflection of the plate along the coordinate r.
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Figure 10. Stress distribution o, over the thickness of the annular plate in typical cross-sections, PA
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Figure 11. Stress distribution oy over the thickness of the annular plate in typical cross-sections, PA
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Figure 12. Distribution of M, moments on the annular plate.
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Figure 13. Distribution of moments My on the annular plate.
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------- — solutions without taking into account
the properties of resistivity, taking into account
the stiffness of the material only in axial
compression.
After processing the calculation results, the fol-
lowing graphs and charts were obtained:
e deflections from the load value;
e deflections on the coordinate "r";
e distribution of stresses in the plate in dif-
ferent sections;
e horizontal movement and rotation angles
of the middle surface of the plate;
e distribution of moments in the plate.
The main results are given on the graphs for the
section of the ring plate "R-a". From 2 to 11
figure shows the results of the calculation of the
plate with a rigid clamping, and from 14 to 21
figure — with a hinge support.

4. SUMMARY

During the implementation of the model of
deformation of ring plates under the action of
uniformly distributed loads, the basic values of
the parameters characterizing their stress-strain
states are obtained.
As a result of comparison of the solutions of the
considered problems on the presented
deformation model with the data of the
traditional nonlinear theory without taking into
account the properties of the resistivity, the
following features characterizing the differences
in the stress-strain state parameters are noted:
1) A rigidly fixed plate:
e the difference in deflections is 1.3%;
e the difference in the values of forces in
different sections of the annular plate var-
ies in the range of 1.5-3% for or; 13-17%
for orz; 5-7% for c0;
e c. the difference in horizontal displace-
ment values is 6%;
e d. the difference in the values of the an-
gles of rotation is 4%;
e c. the difference in the values of the mo-
ment of Mr 1s 0.5-1%; and M6 — 10-15%.
2) Hinged plate:

Volume 16, Issue 1, 2020

a. the difference in deflections is 1.5-2%;
b. the difference in the stress values in dif-
ferent sections of the annular plate varies
in the range of 7-15% for or; 5-19% for
orz; 10-14% for o0;
e c. the difference in the values of horizon-
tal displacements is 2-4%;
e d. the difference in the values of the an-
gles of rotation is 15-17%;
e ¢. the difference in the moment Mr is
15%; and M0 - 25%.
Thus, it is established that the non-linear
material resistivity is not taken into account
when considering the deformation parameters of
various structures made of such materials,
which leads to noticeable errors.

5. CONCLUSIONS

As a result of the study, a model of deformation
of orthotropic materials was concretized and
applied, which most accurately and adequately
describes most of the currently known nonlinear
materials. The model is based on the processed
results of experiments on deformation of
materials with different resistance, material
nonlinear functions and constants [30].

To solve the problem of deformation of a ring
plate from a nonlinear orthotropic material
according to the developed model, the method
of variable parameters of elasticity with a finite-
difference approximation of the second order of
accuracy was used. Developed the algorithm of
decision of task "calculation of axisymmetric
deformation of circular plates, the average
thickness of the non-linear orthotropic resistive
materials with small deflections". Practical
application of the algorithm and evaluation of
iterative methods of the solution were
implemented with the help of "MatLAB"
software package.

As a result of the work done, a number of test
problems on the topic of deformation of plates
of average thickness from nonlinear orthotropic
materials were solved, the parameters of the
state of the plates at different stages of loading
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by a transverse uniformly distributed load were
determined, two options for fixing the ring
plates were considered, the results of comparing
three.
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INVESTIGATIONS OF HISTORICAL CITIES OF UZBEKISTAN
AND KAZAKHSTAN AS OBJECTS OF THE SILK WAY
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Abstract: Since ancient times, the cities of Uzbekistan and Kazakstan have gained worldwide fame, like pearls
scattered along the Great Silk Road, they sparkle under the bright sun. Cities of modern Uzbekistan have existed
for thousands of years - Tashkent (2200 years), Termez, Bukhara, Khiva (2500 years), Shakhrisabz and Karshi
(2700 years), Samarkand (2750 years), Margilan (2000 years), Almaty (1000 years), Turkestan (2000 years),
Chimkent (2200 years) and Taraz (2000 years). In Uzbekistan and Kazakhstan, numerous collections,
repositories, archives and libraries preserve the richest collections of manuscripts collected over many centuries.
And all thanks to its favorable location in a picturesque oasis, almost in the center of the network of roads of the
Great Silk Road.

Keywords: Central Asia, historical monuments, Hodge Ahmed Yassavi, Arystan-Bab, Palace Ak-Sarai

NCCIEJOBAHUSA UHCTOPUYECKHUX I'OPOAOB
Y3BEKNCTAHA U KABAXCTAHA
KAK OBPBEKTOB HIEJKOBOI'O IIYTHU

A.JK. JKycynoexos!, ®@.C. Temupoea ’, A.A. Puckynoe >, A.P. Omapoéa '
! EBpasuiicknii HatmonanbHbi yausepcuter um. JIL.H. T'ymunesa, ropog Hyp-Cynran, KABAXCTAH
2 KapIIMHCKHI HWHKEHEPHO-3KOHOMHYECKUI MHCTHUTYT, I. Kapmm, Y3BEKMCTAH

3 TamKeHTCKUIT HHCTUTYT 110 TPOEKTUPOBAHMIO, CTPOUTENBCTBY M SKCILTYaTalluy aBTOMOOUIIBHBIX JI0POT,
Tamkent, Y3BEKMCTAH

AnHotanusi: C 1peBHHX BpeMeH ropoaa Y3Oekucrana n KazaxcraHa mpuoOpeny BCEMHPHYHO H3BECTHOCTD:
JKEMUYXKHHBI, pa3OpocaHHble 1O BelMkoMy IIEIKOBOMY NYTH, CBEPKalOT II0J SIPKMM COJHLEM. [opona
COBPEMEHHOT0 Y30eKHCTaHa CylIecTBYIOT Thicsiuu JieT — TamkeHT (2200 snet), Tepmes, byxapa, Xusa (2500 ner),
Hlaxpuca6z n Kapmm (2700 ner), Camapkann (2750 ner), Mapruman (2000 ner), Asnmarsr (1000 ner),
Typkecran (2000 ner), Yumkent (2200 ner) m Tapaz (2000 ner). B VY3bekucrane u Kaszaxcrane
MHOTOYHCIICHHBIE KOJUICKI[MH, XPaHHUJIHIIA, aDXUBBI M OMOIMOTEKN XpaHsT caMble Oorarsie COOpaHus PyKOTIHCEH,
(dopmupoBaBmecs: MHorue crosietusi. M Bce 310 Graromapsi ero BBITOJHOMY PAacIOIOKEHHIO B XKMBOIIMCHOM
oasuce, MPaKTUIECKH B [IEHTPE CETH JOPOT BEMMKOro memKoBoro myTH.

KiroueBsble cioBa: L{enTpansHas A3us, HCTOpHUECKAE TAMATHUKA, XOmK Axmena SlccaBu, Aprictan-bao,
JBopen Ax-Capait

1. INTRODUCTION

The history of our ancient land leaves deep into
the millennia. Holding an advantageous
geographical position, the connecting North
with the South, the East with the West, Central
Asia was the important center on the road of a
caravan which became history under the name

of the Great Silk Way. On branches of this
ancient transcontinental highway not only trade
developed — there was an active process of
mutual enrichment of ideas, cultures, traditions,
religions, crafts and technologies.

One of the types of the works directly
concerning cultural heritage, demanding greater
financial influences, but which aren't receiving
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the due amount of financing is carrying out
engineering-geological and geotechnological
researches of historical monuments of
architecture of Central Asia.

Environmental problems are connected with
changes of historically developed geological and
hydrogeological mode. In particular is a raising
of ground waters and increase in their structure
of concentration of salts, increase in moisture
content and salt in the soil. These phenomena
started promoting actively deformation of
designs and an intensive erosion of walls and
bases of monuments of architecture. Especially
strongly historical buildings of the cities located
in low territories of Central Asia (Bukhara,
Khiva) suffer. Now the listed above negative
facts negatively influence and the architecture
monuments which are in rather favorable foothill
territories of Central Asia: in such as Samarkand,
Shakhrisabz, Shymkent, etc. however here
increase in humidity in soil and raising of ground
waters is generally connected with a human
factor: urbanization and development of
communication systems. For this reason studying
of this problem needs to be conducted in two
directions: in the global - change of a
geoecological situation of Central Asia, in local
scale - to look for evidence-based ways of
decrease in level of its influence for the purpose
of preservation of masterpieces of world famous
monuments of architecture. We will begin with
the main thing: a geoecological situation in the
region. Central Asia is located between two large
rivers: Amu Darya and Syr-Darya which rivers
use Uzbekistan, Kazakhstan, Turkmenistan,
Tajikistan and Kyrgyzstan (Figure 1).

The territory has a various and difficult relief:
from the East ridges of Gissar — Scarlet and
Tien Shan, from the West extensive desert
plains of Kizilkum and Kara Kum. Both rivers
in the northwest flow into the Aral Sea
adjoining from the North and the West of a
plateau Ustyurt and from Kyzylkumami's
southeast. The Aral Sea on a map appears as a
third largest inland reservoir of the planet and is
after the North American lake Top and the
Caspian Sea.
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Figure 1. Map ofthe Central Asian Republics
(Kazakhstan, Uzbekistan, Turkmenistan,
Tajikistan and Kyrgyzstan).

The questions of geotechnical researches and
also the reasons resulting in need of
strengthening of the foundations of monuments
of architecture were considered in the works by
B.I. Dalmatov, R.A. Mangushev, V.M. Ulitsky,
Y. Iwasaki, E.M. Pashkin, V.A. Vasenin, A.L
Polishchuk, A.Z. Khasanov, LL
Usmankhodzhayev, C.Viggiani, C. Tsatsanifos,
T.0. Zhunissov, A.G. Shashkin, M.B. Lisyuk,
R.E. Dashko and other scientists. Considerable
interest in questions of restoration of
monuments of architecture of Central Asia was
shown by K. Tuyakbayev, S. S. Agitayev, A. B.
Seydaliyeva. Materials on memorial architecture
of Kazakhstan and Central Asia were
considered in various aspects in works of
A.Kh.Margulan, K. A. Akishev, T.N. Senigova,
A. G. Maximova , K. M. Baypakov |,

V.Olkhovskiy, V. L. Voronina, G. A.
Pugachenkova, M. M. Mendikulov, E.M.
Baitenov, G.G. Gerasimova, V. V.

Konstantinova, T.D. Dzhanysbekov, M. B.
Hodzhayev, S. S. Dzhambulatov, B. T.
Tuyakbayeva, S. 1. Adzhigaliyeva, B. A.
Glaudinov, K. S. Abdurashidov, etc.

We will provide some statistical data.
Development of droughty lands began from 30"
years of the XX century. In 10 years only in the
territory of Uzbekistan, more than 250 km of
channels with a total area of irrigation of 420
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thousand hectares were laid. Since 1960, the
irrigating network increased by 874 km, and the
area — by 690 thousand hectares. Now the total
length of irrigation canals makes over 160
thousand km only across Uzbekistan, which
select from sources more than 50 km® waters in
a year, and across Central Asia in general to 100
km®/year. For this period, the area of the
irrigated lands increased by four times and made
more than 3.5 million hectares. Since this
period, inflow of water to the Aral Sea is
reduced: 1970 - to 36 km?, 1980 - to 10
km?®/year, and in 1990 practically to zero.

As aresult of it Aral's level decreased more than
15 m, the volume of water was reduced more
than 70% (600 km?), and the area — more than a
third. In deep Arale it was possible to catch to
1.5 million centners of fish a year. Since 1960
salinity of water reached 30% that led to death
of fresh-water fishes, such as a sazan, the
bream, the zherekh. From a bottom of the
drained Aral annually norths rise in the
atmosphere of 15-75 million t of dust. In
Priaralye on each hectare settles to 520 kg of
dust, sand and salts.

In the course of accumulation of drainage and
washing waters in lowlands of deserts lakes
which sizes increase since 1960 were formed.
For example, borders of Arnosay (Syr-Darya)
reached the menacing sizes. Such new growth
leads to local change of a climatic situation. In
particular to flooding of natural pastures,
bogging of territories and a sharp raising of the
horizon of ground waters. The same situation
arose in lower reaches of Amu Darya (the lake
Sarikamysh).

If to consider that the average consumption of
water on watering of the irrigated lands makes
9-10 thousand m3 on hectare (optimum 6-7
thousand m3 on hectare the rest on
evaporation), the remained 5-6 thousand
m3/hectare resupply ground waters. For this
reason the level and a mineralization of ground
waters in Central Asia increases practically
everywhere.

It should be noted especially that the developed
hydrogeological situation causes extensive
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damage to the geoecological environment of the
historical cities of Central Asia. It is known that
in the course of a raising of ground waters there
is a deformation of a surface of the earth. It
leads to uneven rainfall of civil and industrial
buildings, constructions, and also historical
monuments of architecture.

For the last decade there were serious problems
connected with preservation of world famous
masterpieces of architecture. In particular, the
salted ground waters owing to the aggression in
relation to construction materials as a result of
difficult physical and chemical processes start
erodirovat intensively underground and elevated
designs of monuments therefore often there are
deformations, and in certain cases and their final
fracture. As an example, it is possible to bring
catastrophic destruction of one of minarets of
the Chor-Minor complex, strong deformations
of a complex Tim Abdulkhana, a complex ARC
and an inclination of minarets in Bukhara

(Figure 2) or deformations of some monuments
in Samarkand, the Ichang-Kala complex in
Khiva.

Figure 2. The Chor-Minor Complex in Bukhara.

Influence of the mineralized ground waters on
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the historic centers located in low territories of
an oasis, such as Bukhara and Khiva is most
notable. Both of these cities are located in the
valley of Amu Darya. The large-scale
irrigational works described above led to sharp
increase of ground waters that respectively
worsened historically developed geological
situation in the region. For example, the
construction of the Tashauzsky branch of the
channel 180 km long begun 1982 with a
capacity of 400 m>/sec. (the channel is laid in 12
km from the city of Khiva) worsened a
condition of 175 thousand hectares of the old
irrigated arable lands of Kharezm and led to an
aggravation of the hydrogeological mode of the
ancient city of Khiva. Process of bogging and
secondary salinization affected fauna and flora.
So as a result of change of habitat aggression of
termites which started destroying intensively
structures and especially materials of elements
of designs of historical monuments increased.
At construction of monuments of architecture in
the IX-X centuries it was applied (a ceramic
square brick Muslim) to construction of walls, a
flooring of floors of rooms and the yards by the
sizes: 23x23x3 cm; 12x12x3 cm; 60x63x6,5 cm.
In the X-XI centuries also applied a brick of
21x21x2,5 cm; 24x24x4 cm; in the XII-XVI
centuries also applied a brick the sizes of the
parties of 24-28 cm and 4,5-7 cm thick. Water
absorption of wall ceramics fluctuates ranging
from 18 to 30% depending on material. The
compressive strength of 50-300 kg / cm (5-30
MPa). Frost over 50 cycles (Voronina V.L.
1953).

2. THE SHORT DESCRIPTION
OF HISTORICAL MONUMENTS
OF ARCHITECTURE
OF CENTRAL ASIA

2.1 The mausoleum of Hodge Ahmed Yassavi
(XIV-XYV cen.).

Architectural complex of Hodge Ahmed
Yassavi in Turkestan - the bright example of
architecture of timurids time which united
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different rooms, various on function, in the
walls: dzhamaatkhana, gurkhana (tomb), big
and small aksara, kitapkhana, askhana,
kudukhana and numerous hudzhra. Because of
such variety of functions of the building
scientists can't come to a consensus concerning
its name in any way, and therefore call it
differently: mausoleum, mosque, memorial
complex, hanaka. Each of names characterizes
only one of functions of this grandiose complex
and doesn't reflect all services and rituals
provided in it. Recently in a circle of experts it
most often call "hanaka" - the term which it is
accepted to call hospices (monasteries) of
dervishes (Akishev K.A., Ageyeva Ye.l. 1958).

The Hanaka was built according to instructions
of the emir Timur in 1399 on a place of burial of
Hodge Ahmed Yassavi who died in the XII
century. The official history of Timur "The
book of victories" ("Zafar-name") connects a
narration about a laying of the building with
events of the end of 1397 when Timur solemnly
made ziarat (worship) on Ahmed Yasavi's
grave. According to "The book of victories",
during stay in the Yassy city Timur instructed in
creation here, on the suburb of its possession, a
grandiose construction, worthy to Hodge
Ahmed Yassavi's memory. It had to glorify
Islam, promote its further distribution, facilitate
government of extensive edge.

Timur's instructions on construction were
executed strictly. According to the legend when
erected the mausoleum, from a humdan (b
rick-works) which was in Sauran sity workers
who handed over a brick for construction were
placed. In 1405 Timur died, and works on
Ahmed  Yassavi's  mausoleum  stopped.
Remained incomplete portal part (peshtak) and
finishing of interiors of some rooms of the
building.

As it was told earlier, Ahmed Yassavi's hanaka -
the multipurpose construction including a
number of rooms: to a dzhamaatkhana - the hall
for meetings, a tomb - a place of burial of
Ahmed Yassavi, a mosque, big and small
aksarai - rooms for meetings, debates; to a
kitabkhana - the room for census of papers,
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storage of books and documents; to an askhana -
the room where ritual food prepared; to a
kudukhana- the room with a well; hudzhra -
rooms for attendants of a hanaka and pilgrims.
All rooms of a hanaka are grouped in

composition in a rectangle about 50 in size (60
m and 15 m high. Domes and arches of a portal
tower to 38 m (Figure 3).

Figure 3. Schematical plaﬁ and general view
of the mausoleum of Hodge Ahmed of Yassavi.

The connecting link of all rooms - a
dzhamaatkhana is a smart room of a complex,
square in the plan with the parties, equal 18,2
meters, is covered by the largest of remained in
Central Asia a sphere and conic dome with an
unary cover. Here passed meetings and group
meeting (zikra) of dervishes. In the center of the
hall there is a ritual cauldron (from here another,
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more used name of the hall - Kazanlyk) cast
according to the legend, from an alloy of seven
metals. A cauldron is a symbol of a unification
and hospitality. Diameter its 2.2 meters, weight is
two tons. The exaggerated sizes of a cauldron are
dictated by ancient beliefs of Turkic tribes: the
edge of a cauldron has to be at height of a mouth
of the person which to it goes. The surface of a
cauldron is decorated with three belts of relief
inscriptions against a vegetable ornament.

Top says that this cauldron for water - Timur's
gift to the construction erected in memory of
Hodge Ahmed Yassavi. In average of the
word:"Be blessed", year of production of a
cauldron - 1399 and a name of the master -
Abdulgazizibn Sharafutdin from Tabriz. In the
lower it is told: "Kingdom to Allah". Handles of
a copper have an appearance of flowers of a
lotus and alternate with round ledges
(Tuyakbayeva B., Proskurin A. 1989).

The Hanaka of Ahmed Yassavi played a
significant role in formation of the Turkestan
necropolis, which developed on a place of the
early medieval cemetery presented by several
over sepulchral constructions and mausoleums
with traditional orientation of their entrances to
the southwest - in the direction to Mecca
(Figure 4).

Typuceraws.—Tourkestan, N &
Sronrs mowers ehmern-Rocans.

&—- : ,: ," s Tas _ e ’*ﬂ
Figure 4. .Old photos of the mausoleum

of Hodge Ahmed Yassav.

2.2 The mausoleum of Arystan-Bab (XIV-XV
cen.).

The mausoleum was built over a grave of the
famous religious mystic ArystanBab, living in
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the XII century in the Southern Kazakhstan
region. The first construction of the mausoleum
belongs to the XIV-XV centuries. From it
carved wooden columns of an ayvan remained.
In the XVIII century on a place of the ancient
mazar destroyed by an earthquake two dome
construction with ayvan, leaning on two carved
wooden columns was constructed. The building
of the XVIII century collapsed and in 1909 was
built up a new about what the inscription on one
of frieze cartouches says. Now above

Arystan-Bab's grave there is a mausoleum of 3
0x13 m (Figure 5).

c -

0 10 M

Figure 5. .Schematic plan of the mausoleum
Arystan-Bab.

In 1971 because of the high level of the ground
waters which led it to a critical condition, the
mosque was taken down and built up anew. The
building i s built of a zhzheny brick on alabaster
solution, in a front laying of walls (Figure 6).
The building behind little change in an azimuth
is focused from the East to the west. Two square
rooms of tombs adjoin to each other and form
the extended rectangle. From the West the
square of the room of a mosque with hotel and
taratkhany for ablution adjoins. Tombs and a
mosque connect the ayvan.

The main facade is solved simply and at the
same time impressively. It consists of a portal,
two walls and angular towers. Instead of
massive medieval portals, here the easy portal
which is decoratively processed with a lancet
arch, leaning on walls of an ayvan. The arch has
from two parties of a frame in the form of
columns buttresses with sockets on the center of
the planes of buttresses.
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Figure 6. The modern view of the mausoleum
Arystan-Bab and two remained columns
of the XIV-XV century.

The lancet arch is executed by a wedge-shaped
laying where the strelchatost is reached by
wedge-shaped wedgeshaped bricks (Margulan
A.KH., Basenov T.K., Mendikulov M.M. 1959).
Tombs have dome overlapping. Domes are
based upon low deaf drums. Transition from a
plan square to domes is carried out by means of
angular tromp without stalactite decorative
fillings.
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2.3. The Palace Ak-Sarai (XV cen.).

At Amir Timur time in northwest part of
Shakhrisabz the huge palace Ak-Sarai
surpassing in scale even the government
residence Kuk-Sarai in Samarkand (“Ak” in
translation - white, majestic, noble was built;
“sarai” - the palace). The main construction
works were carried out in 1380-1396. Along
with local masters, masters were involved in
construction and finishing of the palace from
Khwarezm and other subdued countries. The
building of the palace was destro yed already in
the second half of the XVI century. At
Sheybanids, seeking to rub memory of greatness
Timurids.

On a legend a cause of destruction was rage
Abdullah khan IT who, come nearer to the city,
saw in the distance high structures of Ak-Sarai.
Having considered that it it is already close to
the city, the khan rushed off at a gallop, but,
having tired out a horse to death, didn't reach to
Shakhrisabz. Up to now only ruins of a
grandiose portal remained (Figure 7).

wett

Test time was passed by its lateral tower
foundations. Long ago the arch between lateral
towers which had flight in 22 m collapsed.
Modern height of towers about 38 m, and in the
past it reached 50 m. In them there were spiral
staircases conducting on the top part of a portal
which according to messages of contemporaries
was trimmed by a gear parapet. Descriptions of
Palace Ak-Sarai are available in the diary of the
Spanish ambassador Klavikho who visited here
in 1404 and also in work "Baburnam" of the
beginning of the XVI century. All grandiose
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construction of the Palace Ak-Sarai differed in
skillful decorative finishing. On a portal of the
Palace Ak-Sarai heraldic images of a lion and
the sun, and also Amir Temur's sign in the form
of three rings were laid out by a mosaic. One of
texts of palace inscriptions says: “If you doubt
our greatness — look at our constructions”. On a
mosaic plait of a portal the name of the Iranian
master of facing Mahomed Yusuf Tebrizi
remained.

In the past behind a huge portal of the palace
there was an extensive yard with the pool from
which the set of mosaic tiles remained. From the
South the palace was adjoined by a garden in
which the pavilion for receptions and feasts
which vaulted portal was on the main axis
opposite to an entrance was built. As Klavikho
reports, the reception halls "were painted with
gold and an azure, and are revetted with tiles,
and the ceiling all is gilded". On a cross axis
from two parties also there were small portals
rooms for which served for work of "divan" -
the State Council. The yard was covered by
two-storeyed building (Zasypkin B.N. 1931).

2.4. The complex Poi-Kalyan (XII-XVI cen.).
Minaret Kalyan (Great) is the main symbol of
sacred Bukhara. The minaret served not only to
convoke Muslims to a prayer, but was a symbol
of the power and power of spiritual governors.
The bottom of a minaret had the central
ensemble of Bukhara — Poi-Kalyan — literally
"The bottom great". A minaret — one of the
highest buildings of Bukhara, its height of 46,5
meters with the lower diameter of 9 meters, a
construction of a conic form with a lamp above
(Figure 8). The minaret is ornated —the
cylindrical body is laid out by strips of a f lat
and relief laying, revealing rotundity of a
construction at any lighting. The lamp dome,
unfortunately, didn't remain. It is possible to get
to a minaret from a roof of a cathedral mosque
to which it is connected by transition. In a tower
there is a helicoid ladder with 140 steps. On
eaves there is an inscription about its
construction in 1127. Also the name of the
architect — Bako is mentioned.
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F igur 8. View O}d minaret and a mosq
Kalyan in Bukhara.

The mosque Kalyan in a modern look was
constructed at the beginning of the XVI century.
At the first Sheybanids time. Since then five
centuries, excepting decades of Soviet period, it
acts as the main cathedral mosque of Bukhara.
The mosque replaced with itself the old
karakhanids mosque of the XII century built
along with a minaret Kalyan. The scale of this
sheybanids mosque is comparable to temurids
cathedral mosques in Samarkand and Herat. It
concedes to Bibi-Hanym mosque in Smarkanda
on the volume of structures, but, having
dimensions of 130x80 m, surpasses it in the
area.

3. CONCLUSION

For the last decade there were serious problems
connected with preservation of world famous
masterpieces of architecture. In particular, the
salted ground waters owing to the aggression in
relation to construction materials as a result of
difficult physical and chemical processes start
erodirovat intensively underground and elevated
designs of monuments therefore often there are
deformations, and in certain cases and their final
fracture.

Ancient technologies of construction of the
bases are studied. According to tests follows
that during the summer period of time process
of natural drying of clay takes place rather
intensively and makes about 10% in days.
During t his period the average size of density
of soil reached pd=16,5 g/cm3 that is rather
high. As showed laboratory researches, at such
density soil becomes almost not collapsible.
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Thus, ancient masters easily reached the high
density of soil which in modern conditions is
reached thanks to use of heavy machinery.

At the construction time of monuments of
architecture in the IX-X centuries the ceramic
square brick (Muslim) was applied to
construction of walls, a flooring of floors of
rooms and the yards by the sizes: 23x23x3 cm;
12x12x3 cm; 60x63x6,5 cm.

In the X-XI centuries also applied a brick of
21x21x2,5 cm; 24x24x4 cm; in the XIIXVI
centuries also applied a brick the sizes of the
parties of 24-28 cm and 4,5-7 cm thick. Water
absorption of wall ceramics fluctuates ranging
from 18 to 30% depending on material. Strength
at compression is  50-300 kg/cm2 (5-30 MPa).
Frost resistance is over 50 cycles.

The mosques, the madrasah, mausoleums and
other monumental buildings which remained up
to now give a complete idea of engineering,
constructive and planning and decorative
features of construction and architecture of an
era of Amir Timur and Timuridov. Century
achievements of the past were enriched with
new receptions and perfect system.
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OPTIMIZATION PROBLEMS OF MATHEMATICAL
MODELLING OF A BUILDING AS A UNIFIED HEAT AND
POWER SYSTEM

Yuri A. Tabunshchikov, Marianna M. Brodach
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Abstract: The mathematical model of a building as a single heat energy system by the decomposition method is
represented by three interconnected mathematical models: the first is a mathematical model of the energy
interaction of a building’s shell with an outdoor climate; the second is a mathematical model of energy flows
through the shell of a building; the third is a mathematical model of optimal control of energy consumption to
ensure the required microclimate. Optimization problems for three mathematical models with objective functions
are formulated. Methods for solving these problems are determined on the basis of the calculus of variations and
the Pontryagin maximum principle. A method for assessing the skill of an architect and engineer in the design of
a building as a single heat energy system is proposed.

Keywords: building as a single heat power system, mathematical model, heat consumption optimization,
outdoor climate, building envelope, maximum principle

OIITUMU3IAIIMOHHBIE 3ATAYH
MATEMATHUYECKOI'O MOJAEJIMPOBAHUS 3TAHUAA
KAK EIUHOU TEHVIOODHEPTETUYECKOU CUCTEMBbI

10.A. Taoynujuxos, M.M. bpooau

MOCKOBCKHH apXUTEKTypHBII HHCTUTYT (TOCyAapcTBeHHAs akaaemust), . Mocksa, POCCU

AHHoOTanmsA: MaremaTuueckass MOJENb 3JaHUS KaK E€JUHOM TEeIIOPHEPreTUYeCKOW CHUCTEMbl METOJ0M
JCKOMITO3MIIMK  TIPECTaBlIEHA TPEeMs B3aUMOCBSA3aHHBIMH MAaTEeMAaTHUYECKUMH MOJCISIMU: TIepBas —
MaTeMaTH4YeCKasi MO YPHEPTETHUECKOT0 B3aUMOICHCTBHS 000JI0UKN 3aHHSI C HAPYKHBIM KINMAaTOM; BTOPas
— MaTeMaTH4ecKas MOAEIb YHEPTeTHIECKUX TIOTOKOB Yepe3 000I0UKY 3/1aHuUs; TPEThS — MaTeMaTu4ecKas MOACTb
ONITUMAJIILHOTO YIPABICHUS PacXo0M dHEpPTUU Ha obecriedeHus Tpedyemoro Mukpokinmara. ChopMynupoBaHbI
ONITUMU3AIMOHHBIC 3a]a9H IS TPeX MaTeMaTHYeCKUX MOJAETCH ¢ IeneBbIMU GyHKIUAMHU. OnpeneneHsl METOIbI
PEIICHUS ATHX 3a/1a4 Ha OCHOBE BaPHAIMOHHOTO MCYUCIICHHS U MpUHIUIAa MakcumyMa [Tontpsruna. [Ipemioxen
METOJ OIICHKM MAaCTepCTBA AapXUTCKTOpa M HMHXCHEpPa TMPH IMPOCKTUPOBAHMM 3JaHUs KaK CIHHON
TEIUIOIHEPTETUICCKON CUCTEMBI.

KiroueBble c10Ba: 31aH1e Kak eMHAs TEIUIO3HEpreThyeckasl CUCTeMa, MaTeMaTH4eckast MOJIelb,
ONTHMHU3AIMS TEIUIONOTPEOICHNUS, HAPYKHBIH KIMMat, 000J109Ka 3aHus, TPUHIIUI MaKCHMyMa

Thermal engineering design of the building is
based on the tasks of determining the consump-
tion of thermal energy required to maintain opti-
mal or permissible thermal conditions in the
room. This problem can be considered as optimi-
zation, if we take as the objective function the
minimization of the energy expenditure spent on
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ensuring the optimal or permissible thermal re-
gime, i.e. as finding a minimum of the following
equation:

T2 Ty
Q= f Cy Qudt + j Cy Q,dt =» min, (1)
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where O, Oy are the consumption of thermal en-
ergy for heating and cooling buildings, W; C,, Cx
are the cost of a unit of heat and a unit of cold,
rubles/W; (12 — 11), (14 — 13) are building heating
and cooling periods, hours.

When minimizing energy costs, it is necessary to
understand that these costs are part of the reduced
costs related to the operational component of the
reduced costs. The criterion for choosing one or
another technical solution can be only a mini-
mum of the costs presented.

At the same time, minimizing operating costs is
a critical energy challenge. A typical situation is
this: organizing heating or cooling of a building
and considering the building as a single energy
system, we get that the required energy consump-
tion will vary greatly depending on the shape of
the building, the indicators of heat and sun pro-
tection, the type of heating or cooling system, etc.
Each option has some advantages and some dis-
advantages, and, due to the complexity of the sit-
uation, it is not immediately obvious which of
them is preferable finally and why. In order to
clarify the situation and help the decision maker,
a series of mass calculations is carried out, which
can be replaced by the solution of optimization
problems.

The mathematical model of the building as a sin-
gle heat energy system was considered in detail
in [1]. In accordance with the principles of sys-
tem analysis and decomposition, we will present
the mathematical model of the building as a sin-
gle heat energy system with the following three
mathematical models.

The first is a mathematical model of the energy
interaction of the building envelope with the di-
rected energy impact of the outdoor climate. The
heat and power characteristics of an external cli-
mate acting on a building can be expressed by the
following equations:

Qt = vam(te - tH); w
Qv = cp(t, — t,) Z Fv;,

Q=) JiFi, W

w,

(2)
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where Oy, O, Or are energy exposure to outside
air, wind and solar radiation; cp is volumetric
heat capacity of outdoor air, kJ / (m>-°C); V is
building volume, m>; F; is area of i-th outer sur-
face, m?; ts, t, are temperatures of the internal and
external air, °C; m is air exchange rate, 1/hour; v;
is air speed, m/s; J; is the intensity of the solar
radiation incident on the surface of the i-th fence,
W/m?,

The second mathematical model is a mathemati-
cal model that describes heat flows through the
shell of a building.

The third mathematical model is a mathematical
model that describes the energy contained in the
volume of a building.

In accordance with the presentation of the math-
ematical model of the building as a single energy
system and its presentation by three intercon-
nected mathematical models, we formulate the
following three optimization problems.

Here we dwell in more detail on the solution of
the first optimization problem; the solution of the
second and third optimization problems can be
found in [1].

The first task of optimally taking into account the
energy impact of the external climate on the
building envelope can be formulated as follows:
to determine the shape of the building envelope
so that the positive impact of the outdoor climate
on it can be maximized and its negative impact
can be neutralized as much as possible.

The objective function is to optimize the account-
ing for the heat and energy impact of the external
climate in the heat balance of the building.
Optimization of the shape of the building can be
performed for various climatic periods of the
year: for the coldest five-day period in order to
reduce the estimated capacity of the heating sys-
tem; for the heating period in order to reduce en-
ergy costs for heating; for the hottest month in
order to reduce the installation capacity of the air
conditioning system; for the cooling period of the
building in order to reduce energy costs for cool-
ing; for the accounting year in order to reduce en-
ergy costs for heating and cooling the building.
There may be other climatic periods, depending
on the problem being solved.
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The obtained optimization problem, which re-
duces to finding the equation of the directrix and
the height of a curved cylindrical surface, relates
to isoparametric problems of the calculus of var-
iations [2, 3]. In accordance with the methodol-
ogy of isoparametric problems [2], we need to
determine the extremum of a function that de-
scribes the heat balance of a building with a
curved surface:

Q:

21

= ZHJ [qEnc(q))(l - PW)
0

+ qw(w)Pw]Jr2(¢) +7%(p)dg

1
+ +E [Qroof(]- - Proof)

2T
l
+ qrgoofproof]J TZ(QD)dq)
0

2T

1

+ +EQflJ r2(p)de
2T 0

—7H f 0 (¢)Jr2(¢) +7%(p)de

0
2T

+q; J r?(p)de, (3)

0

where we have

q1(®) = qenc(@)(1 — Py) + qu (@) Py;

1
92 =5 [quOf(l - PrOOf) + qrgéofpmof + qﬂ];
4)

0 is the amount of heat required to maintain a
given room temperature, W; qen(@), gw(e) are
specific heat fluxes passing respectively through
the external vertical glazed and glazed enclosing
structures, calculated taking into account the di-
rected influence of solar radiation and wind (air
filtration) in polar coordinates, W/m?; Groof, ¢%roof
are specific heat fluxes, respectively, through the
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unglazed and glazed parts of the coating, calcu-
lated taking into account the effect of solar radi-
ation, W/m?; qn is specific heat flow through the
building envelope of the first floor, W/m?*; Py is
glazing coefficient of the vertical building enve-
lope; Proor 1s glazing coefficient; Fy is total floor
area of the building, m?; H is floor height, m; Z is
the number of floors; r(¢) is radius (directrix
equation), mz; ¢ is angle.

We determine the extremum of function (3) from
the equation:

2

1 2
F, =§Zf r<(@)de.
0

(5)

Here Fo, H, q1(9), g are given values; (), Z are
unknown variables that need to be determined.
In order to determine the necessary initial condi-
tion in the isoparametric problem by finding the
extremum of the function from the equation, we
present an additional function [2]:

2T 2T
J Of (1 +2Q,)dg = Of Qdgz,  (6)

where we have
Q =Q.+ 10,

1
Q1 = ZHa () [r(@) + 7(0) + 5 021 (0)
Q2 =Zr*(¢p)

(7

A is some constant to be defined.
For the additional function (6), we write the Eu-
ler equation for the variable 7():

Q0 d (6Q> —0 ®)

ar de\or’

and differential equation (6) through Z:

aj”

7 =0 9)
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As a result, we get the system of equations:

LA

1Ir2+r'2
r”(rz +r'2)—r'2 (r+r") , r
+ ZH
= q,(®) ﬁ

(q, + 2AZ)r = 0 (10)

27T

J [qu(go) r2 41 +Arzl dp =0

0
(11)

ZHq(p)

+

Therefore, to determine r (¢), Z, and A, we have
equations (10) and (11) and the isoparametric
condition (5), and to determine the unknown var-
iables C; and C; in the general solution of the Eu-
ler equation, we have boundary conditions:
r0)=r(2m), r’(0)=r'2m)
Let us take a special case of solving the optimi-
zation problem for q1(¢) = const. Then

r(¢) = const, r’(¢) = 0.

Equation (10) will be as follows:

ZHq: + (g2202)r = 0. (12)
Equations (5) and (11) lead to
Fo=nZr*; Hqr+A?=0. (13)

The solution of system (12) and (13) gives

3 |HFyqq

nq;

r =

Now we pass to the second optimization prob-
lem. Note that the second, as well as the third op-
timization task, can have different objective
functions depending on the goal set by the re-
searcher - architect or engineer.

Volume 16, Issue 1, 2020

The peculiarity of the second optimization prob-
lem of energy flows through the building enve-
lope is due to the fact that heat transfer in winter
is determined by the stationary mode, and in the
summer there is a significantly unsteady mode.
One of our frequent decisions showed [4] that in
this case the fencing material should have a min-
imum coefficient of thermal conductivity and the
highest possible value of volumetric heat capac-
ity.

It seems that to some extent this condition is sat-
isfied by wood structures. However, here there is
an interesting technical problem of creating a ma-
terial with low thermal conductivity and high
volumetric heat capacity. An optimization prob-
lem can also be posed on the optimal arrange-
ment of layers in a multilayer structure.

You can also consider the optimization problem
associated with the fact that in summer in a warm
climate the temperature of the indoor air due to
heat from solar radiation through the windows
exceeds the temperature of the outdoor air. In this
case, the heat flux is directed from the room and
the excess of the role of thermal protection of the
fence will increase the temperature of the indoor
air. Here, the goal function is to minimize the
temperature difference between the outdoor and
indoor air and consists in finding such a ratio be-
tween the heat and sun protection of the building
envelope and the air exchange rate at which the
contribution of solar radiation to the room’s ther-
mal regime is minimized. It was found that the
value of the heat transfer resistance of the exter-
nal building envelope does not affect the thermal

regime of the room, if the following equation is
fulfilled:

Fw Pwi p Pwi
R ( L - B + ClevR W -
o,w \Xoutwl Xout,w out,wl
BFW = 0’

(14)

where Row, Fw, pw, Oou,w are the resistance to
heat transfer of the window, m?-°C/W; window
area, m?; the absorption coefficient of solar radi-
ation and the heat transfer coefficient of the outer
surface of the window, W/(m?-°C); pwl, Oloutwl are
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the absorption coefficient of solar radiation and
the heat-transfer coefficient of the outer surface
of the wall, W/(m*-°C); Cy, v, Vg are the volu-
metric heat capacity of the air (kJ / (m*-°C)), air
exchange rate (4'!), volume of the room (17°); B
is the coefficient of penetration of solar radiation
through a permeable fence, taking into account
its shadowing by a sun-protection device; J is the
average daily value of the intensity of the total
solar radiation, W/m?.

Equation (14) corresponds to such an energy
state at which the temperature inside the room is
equal to the conditional temperature of the out-
door air. And consequently, the building enve-
lope separates two media with the same temper-
ature conditions.

We now formulate the third optimization prob-
lem as follows: find such a control of energy con-
sumption Q(f) when heating or cooling a room
from temperature # to temperature #; and such a
solution to the system of equations of thermal
balance of a given building’s building as a single
energy system that satisfies the initial conditions
for t=0 T = ty, for which the functional takes the
smallest possible value.

The solution to this problem was obtained by the
method of Academician Pontryagin as a problem
of optimal control and presented in [3, 5]. Based
on the results of solving the problem of optimal
control of the energy expenditure spent on heat-
ing or cooling the room, it was concluded: the
minimization of energy costs for heating or cool-
ing the premises is achieved if the transition time
from the initial room temperature to the desired
end the room temperature is minimal (the princi-
ple of “maximum performance”).

As a result of solving optimization problems, it
becomes possible to evaluate the skill of the ar-
chitect and engineer when designing a building
as a single heat and power system using the fol-
lowing equation (for example, when choosing the
shape and orientation of a building envelope):
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N = Qefr/ Qace,

where Q. is building energy consumption with
optimal consideration of the directed action of
the outdoor climate; Qucc is energy consumption
of the building accepted for design.

If, for example, the value of n is 0.5, then we can
assume that the architect did not choose the shape
of the building well enough and did not use the
positive directional energy impact of the outdoor
climate. In the other case, if, for example, n=0.8,
then things are much better.

A similar estimate is possible for the second and
third optimization problems.
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I'oponenxnii A. C. 3akonuns1 KueBckuii HHXEHEPHO-CTPOUTENBHBIN HHCTUTYT B 1955 rony no cne-
abHOCTH «IIpOMBIIITIEHHOE U TPaKJaHCKOE CTPOUTEIIECTBOY.

Pabotass B mpoeKTHBIX W Hay4dHO—MCCIEAOBaTENbCKUX MHCTUTyTax YkpHUMnpoekrcranbpekoH-
crpykmus (1955 — 1960, unxenep, rinaBubiil nHxeHep npoekra), KuesSBHUNUIIT (1960 — 1969, 3aB.
nabopatopueit), YkpHUHUnpoext (1969 — 1971, 3aBeayrommuii nabopatopueit), ['mmpoxummarn
(1971 — 1976, 3aBeayrommii otaeinom), HUMACC 1976-2009, 3amecTuTensb TUpEeKTOpa M0 HAYIHOU
pa6ore), HUMCII (2009 — 2012, rnaBHbII Hay4YHbIN COTPYIHUK), KHeBCKMil HallMOHAIBHBIN YHU-
BEPCUTET CTPOUTENIBCTBA U apXUTEKTYphI (2012 — 2016, mpodeccop kadeapsr), 3aMeCTUTETH THUPE-
kropa OOO JIMPA CAIIP (2011 — mo nactosimiee Bpemsi) I'oponenkuii A. C. Bcerja coBMeman
HAyYHO—UCCIIEJIOBATENbCKYIO IEATENbHOCTh C MHKEHEepHOU npakTukoi. [IpuHuman yyactue B mpo-
EKTUPOBAHUHU CIIOKHBIX CTPOUTEIBHBIX 00BEKTOB, OOJIBIIETIPOIETHOTO TOKPHITHS BopuCIonbeKoro
a’poBok3aia (B Hauaie 60—x rofoB 3TO ObUIO caMoe OOJBIIOE MOKPHITHE B BUAE TOHKOCTEHHOM
MoJIOTOi 000JI0ukH — mpoJieT 5648 M), kKoHCTpykiuii Pecrybnukanckoro craamoHa B r. Kuese
(KOHCTPYKIMK Yalll BTOPOTO sipyca), OONBIICTPOIETHBIX BUCSYUX MOKPBHITUN KPBITHIX PHIHKOB U
KMHOKOHIIEPTHBIX 3aJI0B, CJIOKHBIX KOHCTPYKIMI OOBEKTOB METAJUIyprU4eCcKOW, XUMUYECKOW M
YTOJIbHOM MPOMBIIIUIEHHOCTH.

162



To the Anniversary of Prof. Alexander Gorodetsky

[Ipu mpoextupoBanuu 3Tux 006bekToB ['opoaenxuii A.C. HemocpeICTBEHHO NPUHUMAJ y4acTHE WIH
PYKOBOJIMIJI KaK TEOPETUYECKUM OOOCHOBAaHHEM IMPOYHOCTH W HANIEKHOCTH KOHCTPYKIHMHA, TaK U
UH)XCHEPHOI pa3paboTKOM.

B 1969 rony non pykoBoactsoM u npu ydactuu A.C. ['oponernkoro pa3zpaboTaHbl IporpaMMHBbIE
KOMIUIEKCBI, B KOTOPBIX BIIEPBBIC B CTPaHE /ISl KOMIUIEKCOB MAacCCOBOTO IIPUMEHEHHSI ObUT pean3o-
BaH METOJ] KOHEYHBIX 3JIEMEHTOB, a B 1970 rogy — 1 MeTO1 CynepaIeMEHTOB.

B 70-x rogax HayuHas aesTenbHOCTh Altekcanapa CepreeBuda ['opoienkoro cBsi3aHa ¢ TeOpeTHye-
CKUM O00OCHOBaHHMEM METOJ]a KOHEUHBIX AJIEMEHTOB M €r0 MPUMEHEHUEM B MPAKTHYECKOW HHIKE-
HepHOﬁ OCATCIIBHOCTH. Pa3pa60TaHf,1 METOIbI KOHCprHpOBaHI/ISI HOBBIX BBICOKOTOYHBIX KOHCYHBIX
9JIEMEHTOB, 00OOCHOBAaHO MPHMEHEHHE METOJa KOHEYHBIX SJIEMEHTOB MpPU PEUICHUH HEIMHEHHBIX
3a/1a4 MEXaHUKU. DTU paboThl 0000IIEHBI B JOKTOpCKOM nuccepranuu [opoxaernkoro A. C., KoTo-
pyIO OH ycrmemHo 3amuTui B 1978 romy. 3a co3nanue HayyHOW IIKOJBI B 00JaCTU MH>KEHEPHBIX

MeTo10B pacyeTa KoHCTpyKimid A.C. ['opoaenkomy B 1984 roay npucBoeHo 3BaHue npodeccopa.

B 80-x nayunsie pa6otsl A.C. 'oposenkoro HampasiieHbl Ha pa3pabOTKy HMHKEHEPHBIX METOJOB
uH(bOpMaTU3alUK TPOEKTUPOBAHUSI CTPOUTEIBHBIX 00BEKTOB. [10]1 €ro pyKoBOJCTBOM M IpU HEIO-
CPEICTBEHHOM YYacTHM pa3paboTaHbl MPOTrpaMMHBIE KOMIUIEKChI, KOTOPbIE MO3BOJISIOT B aBTOMa-
TU3UPOBAHHOM DPEKMME BBIMOJIHATH BECh KOMIUIEKC NMPOEKTHBIX padoT, BKIIOYAs MOJyYEeHHE KOM-
wiekta pabouynx ueprexeid. 3a 3tu pabotel A.C. I'oponenxuit B 1986 rogy ynoctoen I'ocynap-
CTBEHHOI NpeMHuu YKpauHbl B 00JIACTH HAYKU U TEXHHUKH.

B 2007 rony otmeuen bnarogapaoctsio [IpeMbep-MuHuCTpa YKpauHbl «3a 3HAYUTEIIbHBIN JTUYHBIN
BKJIaJ] B 0OecrieueHre pa3BUTHS CTPOUTEIBHON OTpaciiv, 32 MHOTOJIETHUI TOOPOCOBECTHBIN TPy U
BBICOKHI MTpodeccroHaNIn3M».

B nacrosmee Bpems ['oponenkuii A.C. MHTEHCHBHO BeJET pa3pabOTKy MHIKEHEPHBIX METOJIOB pac-
YyeTa U MPOEKTUPOBAHUS KOHCTPYKLIUNA Ha COBPEMEHHBIX KOMIIBIOTEPaX.

bonwsmoe Baumanue 'opomenkuit A.C. ynenser MeTogaM KOMITBIOTEPHOTO MOJEIHUPOBAHMS KOH-
CTPYKILHUH, pa3pabOTKe W peanu3aliil HEIWHEHHBIX METOJOB CTPOUTEIHHOW MEXaHHKH B IPO-
IrPaMMHBIX KOMILJIEKCaX, pa3paboTKe METO0B pacueTa KOHCTPYKIUI MaKCUMaIbHO NPUOIHKEHHON
K MX peallbHOW paboTe, pacuIMpEeHUI0 BO3MOXKHOCTEH Tpaduueckux MHTepPEHcoB, KOTOPHIE AA0T
BO3MOXKHOCTh HIMPOKOMY KPYT'y HH)KEHEPOB MCIIOJIb30BaTh B CBOEH MOBCEIHEBHOH AESITEILHOCTU
COBPCMCHHBIC MCTO/1bI CTpOHTeHBHOﬁ MCXaHUKHU.

lopopenkuit A.C. mpuHUMaeT akTHMBHOE y4yacThe B OOIIECTBEHHOM HaydHOW nesTenbHOCTH. OH
ABIIAETCSL PYKOBOAUTENEM OTAeNeHUS «KOMIBIOTEpHBIE TEXHOJIIOTHH B CTPOUTEIBCTBE» AKaJleMHUH
CrpourenscTBa YKpauHbl, IBISETCSI MHOCTPAHHBIM WieHOM Poccuiickoil akageMuu apXuTeKTyphl U
ctpoutenbHbIX Hayk» (PAACH).

A.C. Toponenkuii sIBASETCS OCHOBATEIEM IIKOJIBI KOMIIBIOTEPHBIX TEXHOJIOTMI IMPOEKTUPOBAHUS
KOHCTPYKIMI M HAYYHBIM PYKOBOJMTEIEM MHOTIMX IpEACTaBUTENEH 3TOW WKOJbl. [loa HaydyHBIM
pyxoBoacTBoM A.C. ['opoenkoro moAroToBJICHO /1Ba JOKTOpa HayK U Oojee IBaaaTH KaHAuaTOB
Hayk. Pa3zpaboTaHHbIe 1O/ €r0 PYKOBOJCTBOM M MPHU HEMOCPEACTBEHHOM YYacTHH TPOTpPaMMHBIC
komruiekeol JIMPA, JIMPA-CAITP, MOHOMAX u apyrue mHUpPOKO M3BECTHBI U HMCIOIB3YIOTCA
MPaKTUYECKH BCEMH MPOEKTHBIMHU UM HaYyYHBIMU opraHuzanusmu Poccun, Ykpaunsl, ctpan bantuu,
HEKOTOpBIX cTpaH EBponbl u A3um.
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To the Anniversary of Prof. Alexander Gorodetsky

Penaxnms xypHana cepaedno nosnapasisier Anekcanapa Cepreesuua ['opojenkoro ¢ 3aMevaTesb-
HBIM IOOMJICEM, JKETaeT €My 3[I0POBbs, MHOTOJICTHEI'O TBOPYECTBA HA 0JIar0 COBPEMEHHOW HAYKH,
0J1aromoJTy4ust U C4acThs!

Peoakyuonnwiii Cosem mesncoynapooHo2o HayuHo2o HeypHana
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