CONTROL SYSTEM OF PARAMETERS OF ELECTRICAL CURING OF CAST-IN-SITU REINFORCED CONCRETE STRUCTURES

Main Article Content

Stepan Leontev
Andrey Taleyko

Abstract

At the moment in house-building industry cases of increase of efficiency of cast-in-situ concrete structures electrical curing are insufficiently studied. Development and implementation of control systems of parameters of electrical curing can be solve of current concerns. Development sequence of this control system included: collection of initial data; development of virtual model of considered structures, using ELCUT; analysis of rate of simulation parameters, depend on ambient conditions; fixation of values of simulation parameters; development of mathematical model of correlation between transformer voltage and temperatures of concrete, ambient air and time of electrical curing; development and description of circuit diagram of proposed control system.


The control system, developed by the authors, can be the basis for creation of automated complex of electrical curing of cast-in-situ reinforced concrete structures. Application of this system will significantly allow to decrease electricity consumption and labor costs, connected with electrical curing of structures.

Downloads

Download data is not yet available.

Article Details

How to Cite
Leontev, S., & Taleyko, A. (2023). CONTROL SYSTEM OF PARAMETERS OF ELECTRICAL CURING OF CAST-IN-SITU REINFORCED CONCRETE STRUCTURES. International Journal for Computational Civil and Structural Engineering, 19(1), 85–96. https://doi.org/10.22337/2587-9618-2023-19-1-85-96
Section
Articles

References

Ryazanova G.N., Popova, D.M. Analiz sushchestvuyushchih metodov vozvedeniya konstrukcij iz monolitnogo betona i zhelezobetona v zimnih usloviyah [Analysis of existing methods of construction of monolithic concrete and reinforced concrete structures in winter conditions] // Urban construction and architecture, 2018, 30(1), pp. 16-23. (in Russian). DOI: 10.17673/Vestnik.2018.01.3 DOI: https://doi.org/10.17673/Vestnik.2018.01.3

Bofang Z. Construction of mass concrete in winter. In: thermal stresses and temperature control of mass concrete // Butterworth-Heinemann: Tshingua University Press, 2014, pp. 431-438. DOI: https://doi.org/10.1016/B978-0-12-407723-2.00021-X

Fedorova G., Mestnikov V., Matveeva O., Nikolayev, E. Features of High-Strength Concrete Creation for Concreting of Monolithic Constructions in the Far North Conditions // Procedia Engineering, 2013, No. 57, pp. 264-269. DOI: https://doi.org/10.1016/j.proeng.2013.04.036

Gnam P.A., Kiviharju R.K. Tekhnologii zimnego betonirovaniya v Rossii [Technologies of winter concreting in Russia] // Construction of Unique Buildings and Structures, 2016, 9 (48), pp. 7-25, (in Russian). DOI: 10.18720/CUBS.48.1.3.

Nassif, A.Y., Petrou, M.F.: Influence of cold weather during casting and curing on the stiffness and strength of concrete // Construction and Building Materials, 2013, Vol. 44. pp. 161–167. https://doi.org/10.1016/j.conbuildmat.2013.03.016 DOI: https://doi.org/10.1016/j.conbuildmat.2013.03.016

Zhang G., Yu H.Y., Li H.M., Yingzi Y. Experimental study of deformation of early age concrete suffering from frost damage // Construction and Building Materials, 2019, Vol. 215. pp. 410–421. https://doi.org/10.1016/j.conbuildmat.2019.04.187 DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.187

Ortiz J., Aguado A., Agulló L., García T. Influence of environmental temperatures on the concrete compressive strength: simulation of hot and cold weather conditions // Cement and Concrete Research, 2005, № 35(10), pp.1970-1979. DOI:10.1016/j.cemconres.2005.01.004. DOI: https://doi.org/10.1016/j.cemconres.2005.01.004

Zach J., Sedlmajer M., Hroudova J. Nevaril A. Technology of concrete with low generation of hydration heat // Procedia Engineering, 2013, No. 65, pp. 296-301. https://doi.org/10.1016/j.proeng.2013.09.046 DOI: https://doi.org/10.1016/j.proeng.2013.09.046

Dudin M.O., Barabanshchikov Y.G. Specifika montazha elektricheskogo provoda v tekhnologii progreva betona [Specifity of wiring into technology of heating concrete] // Construction of Unique Buildings and Structures, 2015, № 6(33), pp. 47-61, (in Russian). DOI: 10.18720/CUBS.33.4

Shishkin V.V. Covershenstvovanie metoda zimnego betonirovaniya s primeneniem nagrevatel'nyh provodov [Improvement of the method of winter concreting with the use of heating wires] // Industrial and Civil Engineering, 2019, №6, pp. 51-58, (in Russian). DOI: 10.33622/0869-7019.2019.06.51-58. DOI: https://doi.org/10.33622/0869-7019.2019.06.51-58

Tuo S., Chunlin D., Jiaqi Z., Pingxiang D., Zhihong F. Temperature field of concrete cured in winter conditions using thermal control measures // Advances in Materials Science and Engineering, 2022, vol. 2022, pp. 1-12. DOI: https://doi.org/10.1155/2022/7255601. DOI: https://doi.org/10.1155/2022/7255601

Barna L.A., Seman P.M., Korhonen C.J. Energy-efficient approach to cold-weather concreting // Journal of Materials in Civil Engineering, 2011, Vol. 23, №11, pp. 1544–1551. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000262

Varuna M., Raikar D., Sunil S. Studies on temperature differential for different types of overlay over cement concrete pavement // Proceedings of 5th International Conference of Transportation Research Group of India. Bhopal, 2019, pp 365-376. DOI: 10.1007/978-981-16-9921-4_27. DOI: https://doi.org/10.1007/978-981-16-9921-4_27

Kumar S.S., Ravindraraj B.J. Study of temperature differential in different concrete slabs of varying slab thickness in different regions // International journal of Civil Engineering and Technology, 2018, № 9(4), pp. 1008 – 1013.

Le Q.X., Dao V.TN., Torero J.L., Maluk C., Bisby L. Effects of temperature and temperature gradient on concrete performance at elevated temperatures // Advances in Structural Engineering, 2018, № 21(8), pp. 1223–1233. https://doi.org/10.1177/1369433217746347. DOI: https://doi.org/10.1177/1369433217746347

Marzouk H., Hussein A. Effect of curing age on high-strength concrete at low temperatures // Journal of Materials in Civil Engineering, 1995, Vol. 7, No. 3, pp. 161–167. DOI:10.1061/(ASCE)0899-1561(1995)7:3(161). DOI: https://doi.org/10.1061/(ASCE)0899-1561(1995)7:3(161)

Zhurov N.N., Komissarov S.V. Sistema temperaturno-prochnostnogo kontrolya betona v rannem vozraste [System temperature-strength concrete control at early age] // Vestnik MGSU, 2010, № 4(5), pp. 296-301. (in Russian).

Korobkov S. Gnyrya A., Kuznetsov S. Computer Simulation of Electric Heating of Concrete Column // Lecture Notes in Networks and Systems, 2022, Vol. 403, pp. 349-357. DOI: 10.1007/978-3-030-96383-5_39. DOI: https://doi.org/10.1007/978-3-030-96383-5_39

Dhananjay M., Abhilash K. Study of thermal gradient in concrete slabs through experimental approach // Global Journal of Reserches in Engineering: E Civil and Structural Engineering, 2014, №14(5), pp. 1–17.

Khoa H.N., Cong V.C. Analyzing temperature field and thermal stress in massive concrete by finite element method // Journal of Construction Science and Technology. Buildings, 2012, №14(12), pp. 17–27.

Zinevich L.V. Primenenie chislennogo modelirovaniya pri proektirovanii tekhnologii obogreva i vyderzhivaniya betona monolitnyh konstrukcij [Application of numerical modeling in the design of heating technology and concrete curing of monolithic structures] // Magazine of Civil Engineering, 2011, No. 2. pp. 24-28. (in Russian).

Dudin M.O., Vatin N.I., Barabanshchikov Yu.G. Modelirovanie nabora prochnosti betona v programme elcut pri progreve monolitnyh konstrukcij provodom [Modeling a set of concrete strength in the program ELCUT at warming of monolithic structures by wire] // Magazine of Civil Engineering, 2015, №2, pp. 33-45. (in Russian). DOI 10.5862/MCE.54.4. DOI: https://doi.org/10.5862/MCE.54.4

Gnyrya A., Korobkov S., Gaag I. Numerical solution of the thermal problem for electric heating of concrete structures in winter // Proceedings of Ural Environmental Science Forum “Sustainable Development of Industrial Region” (UESF-2021). Chelyabinsk, 2021, pp. 1-10. DOI 10.1051/e3sconf/202125809048.

Zhang G., Yang Y.Z., Li H.M. Calcium-silicate-hydrate seeds as an accelerator for saving energy in cold weather concreting // Construction and building materials, 2020, Vol. 264, pp.1-15. DOI:10.1016/j.conbuildmat.2020.120191. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120191

Alzaza A., Ohenoja K., Langas I., Arntsen B., Poikelispaa M., Illikainen M. Low-temperature (−10°C) curing of Portland cement paste – Synergetic effects of chloride-free antifreeze admixture, C–S–H seeds, and room-temperature pre-curing // Cement and Concrete Composites, 2022, Vol 125, pp. 1-13. DOI: https://doi.org/10.1016/j.cemconcomp.2021.104319

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.