MODEL OF THERMOMECHANICAL VIBRATIONS OF CURRENT-CARRYING CONDUCTORS

Main Article Content

Alexander Danilin
https://orcid.org/0000-0001-7349-0600
Egor Onuchin
Valery Feldshteyn

Abstract

In the operation practice of overhead power transmission lines (OHL), the phenomenon of "galloping" of conductors is well known – vibrations with frequencies of ~ 1 Hz and with amplitudes of the order of the static sag [1, 2]. This phenomenon is observed, as a rule, when the symmetry of the conductor section is violated due to icy deposits, which gives the conductor some aerodynamic efficiency. However, this model does not explain all the observed cases of galloping. In this regard, it is advisable to pay attention to the little-known experience of Academician Abram F. Ioffe, who experimentally discovered the self-excitation of a current-carrying conductor – a stretched string that heats up when connected to an electrical circuit. Solving this issue can significantly expand the understanding of the nature of conductor galloping and open up new ways to fend off this phenomenon, which poses a danger to the stability of the functioning of energy systems. This requires a mathematical model of the OHL conductor describing the interaction of mechanical and thermal processes. The purpose of this work is to construct the simplest version of this model, on the basis of which the condition of self-excitation of thermomechanical self-excitation of real OHL conductors can be justified.

Downloads

Download data is not yet available.

Article Details

How to Cite
Danilin, A., Onuchin, E., & Feldshteyn, V. (2022). MODEL OF THERMOMECHANICAL VIBRATIONS OF CURRENT-CARRYING CONDUCTORS. International Journal for Computational Civil and Structural Engineering, 18(4), 39–48. https://doi.org/10.22337/2587-9618-2022-18-4-39-48
Section
Articles

References

Yakovlev L.V. Plyaska provodov na vozdushnyh liniyah elektroperedachi i sposoby bor'by s neyu / Prilozhenie k zhurnalu «Energetik» [Galloping of overhead power lines conductors and ways to deal with it / Appendix to the magazine "Energetik"], Iss. 11 (47). Moscow, NTF «Energoprogress» Publ., 2002. 96 p. (in Russian).

Alexandrov G.P. (ed.) Proektirovanie linij elektroperedachi sverhvysokogo napryazheniya [Design of ultra-high voltage power transmission lines]. St. Petersburg, "Energoatomizdat" Publ., 1993. 368 p. (in Russian).

Landa P.S. Nelinejnye kolebaniya i volny [Nonlinear vibrations and waves]. Moscow, Nauka-Fizmatlit Publ., 1997. 495 p. (in Rus-sian).

Babitsky V.I., Landa P.S. Avtokolebaniya v sistemah s inercionnym vozbuzhdeniem [Self-vibrations in systems with inertial exci-tation] // Dokl. USSR Academy of Sciences, 1982, Vol. 266, No. 5. Pp. 1087–1089. (in Russian).

Penner D.I., Duboshinsky Ya.B., Duboshinsky D.B., Petrosov V.A., Porotnikov A.A. Parametricheskie termomekhanicheskie kolebaniya [Parametric thermomechanical vibrations]. In book: Nekotorye voprosy vozbuzhdeniya nezatuhayushchih kolebanij [Some issues of excitation of undamped oscillations]. Vladi-mir, VGPI Publ., 1974. Pp. 168–183 (in Rus-sian).

Galkin Yu.V., Duboshinsky D.B., Vermel A.S., Penner D.I. Vertikal'nye termomekhanicheskie kolebaniya [Vertical thermomechanical vibrations]. Ibid. Pp. 150–158. (in Russian).

Feldshteyn V.A. Termomekhanicheskie kolebaniya tokonesushchih provodnikov [Thermomechanical vibrations of current-carrying conductors] // Journal of Applied Mechanics and Technical Physics, 2017, Vol. 58, No. 6. Pp. 158–166. (in Russian). DOI: https://doi.org/10.1134/S0021894417060153

DOI: 10.15372/PMTF20170615 DOI: https://doi.org/10.15372/PMTF20170615

Lurie A.I. Teoriya uprugosti [Theory of elasticity]. Moscow, "Nauka" Publ., 1970. 940 p. (in Russian).

Lurie A.I. Analiticheskaya mekhanika [Analytical mechanics]. Moscow, GIFML Publ., 1961. 824 p. (in Russian).

Sneddon I.N., Berry D.S. Klassicheskaya teoriya uprugosti [Classical theory of elastici-ty]. Moscow, "Fizmatgiz" Publ., 1961. 219 p. (in Russian).

Klokova N.P. Tenzorezistory: teoriya, metody rascheta, razrabotki [Tensoresistors: theory, calculation methods, development]. Moscow, "Mashinostroenie" Publ., 1990. 224 p. (in Russian).

Wang H. Osnovnye formuly i dannye po teploobmenu dlya inzhenerov. Spravochnik [Basic formulas and heat exchange data for engineers. Guide]. Moscow, "Atomizdat" Publ., 1979. 216 p. (in Russian).

Metodika rascheta predel'nyh tokovyh nagruzok po usloviyam sohraneniya mekhanicheskoj prochnosti provodov i dopustimyh gabaritov vozdushnyh linij / Standart organizacii «FSK EES» 56947007-29.240.55.143-2013 [The method of calculat-ing the maximum current loads under the conditions of maintaining the mechanical strength of wires and the permissible dimen-sions of overhead lines / The standard of FGC UES 56947007-29.240.55.143-2013]. Mos-cow, "FGC UES" Publ., 2013. 67 p. (in Rus-sian).

Osokin N.I., Sosnovsky A.V., Chernov R.A. Koefficient teploprovodnosti snega i ego izmenchivost' [Coefficient of thermal con-ductivity of snow and its variability] // Cryosphere of the Earth. 2017, Vol. XXI, No. 3. – Pp. 60-68. (in Russian).

GOST 839-80. Provoda neizolirovannye dlya vozdushnyh linij elektroperedachi. Tekhnicheskie usloviya [GOST 839-80. Non-insulated wires for overhead power lines. Technical conditions]. Moscow, Branch of IPK Standards Publ., Printing House "Moskovsky Pechatnik", 2002. 21 p. (in Rus-sian).

Rukovodstvo po raschyotu rezhimov plavki gololeda na grozozashchitnom trose so vstroennym opticheskim kabelem (OKGT) i primeneniyu raspredelyonnogo kontrolya temperatury OKGT v rezhime plavki / Standart organizacii «FSK EES» 56947007-29.060.50.122-2012 [Guidelines for the calcu-lation of ice melting modes on a lightning-proof cable with a built-in optical cable (OCGT) and the use of distributed tempera-ture control of OCGT in the melting mode / The standard of FGC UES 56947007-29.060.50.122-2012]. Moscow, "FGC UES" Publ., 2012. 119 p. (in Russian).

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.