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AIMS AND SCOPE
The aim of the Journal is to advance the research and practice in structural engineering 

through the application of computational methods. The Journal will publish original papers and 
educational articles of general value to the field that will bridge the gap between high-performance 
construction materials, large-scale engineering systems and advanced methods of analysis.

The scope of the Journal includes papers on computer methods in the areas of structural 
engineering, civil engineering materials and problems concerned with multiple physical processes 
interacting at multiple spatial and temporal scales. The Journal is intended to be of interest and use to 
researches and practitioners in academic, governmental and industrial communities.
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ОБЩАЯ ИНФОРМАЦИЯ О ЖУРНАЛЕ
International Journal for Computational Civil and Structural Engineering

(Международный журнал по расчету гражданских и строительных конструкций)

Международный научный журнал “International Journal for Computational Civil and 
Structural Engineering (Международный журнал по расчету гражданских и строительных 
конструкций)” (IJCCSE) является ведущим научным периодическим изданием по направлению 
«Инженерные и технические науки», издаваемым, начиная с 1999 года (ISSN 2588-0195 (Online); 
ISSN 2587-9618 (Print) Continues ISSN 1524-5845). В журнале на высоком научно-техническом 
уровне рассматриваются проблемы численного и компьютерного моделирования в строительстве, 
актуальные вопросы разработки, исследования, развития, верификации, апробации и приложе-
ний численных, численно-аналитических методов, программно-алгоритмического обеспечения 
и выполнения автоматизированного проектирования, мониторинга и комплексного наукоемкого 
расчетно-теоретического и экспериментального обоснования напряженно-деформированного (и 
иного) состояния, прочности, устойчивости, надежности и безопасности ответственных объектов 
гражданского и промышленного строительства, энергетики, машиностроения, транспорта, био-
технологий и других высокотехнологичных отраслей.

В редакционный совет журнала входят известные российские и зарубежные деятели науки 
и техники (в том числе академики, члены-корреспонденты, иностранные члены, почетные члены 
и советники Российской академии архитектуры и строительных наук). Основной критерий от-
бора статей для публикации в журнале − их высокий научный уровень, соответствие которому 
определяется в ходе высококвалифицированного рецензирования и объективной экспертизы, 
поступающих в редакцию материалов.

Журнал входит в Перечень ВАК РФ ведущих рецензируемых научных изданий, в которых 
должны быть опубликованы основные научные результаты диссертаций на соискание ученой 
степени кандидата наук, на соискание ученой степени доктора наук по научным специаль-
ностям и соответствующим им отраслям науки: 

• 1.1.8 – Механика деформируемого твердого тела (технические науки),
• 1.2.2 – Математическое моделирование численные методы и комплексы программ
(технические науки),
• 2.1.1 – Строительные конструкции, здания и сооружения (технические науки),
• 2.1.2 – Основания и фундаменты, подземные сооружения (технические науки),
• 2.1.5 – Строительные материалы и изделия (технические науки),
• 05.23.07 – Гидротехническое строительство (технические науки),
• 2.1.9 – Строительная механика (технические науки) 
В Российской Федерации журнал индексируется Российским индексом научного цити-

рования (РИНЦ). 
Журнал входит в базу данных Russian Science Citation Index (RSCI), полностью интегри-

рованную с платформой Web of Science. Журнал имеет международный статус и высылается в 
ведущие библиотеки и научные организации мира. 

Издатели журнала – Издательство Ассоциации строительных высших учебных заве-
дений /АСВ/ (Россия, г. Москва) и до 2017 года Издательский дом Begell House Inc. (США, г. 
Нью-Йорк). Официальными партнерами издания является Российская академия архитектуры 
и строительных наук (РААСН), осуществляющая научное курирование издания, и Научно-ис-
следовательский центр СтаДиО (ЗАО НИЦ СтаДиО).

Цели журнала – демонстрировать в публикациях российскому и международному про-
фессиональному сообществу новейшие достижения науки в области вычислительных методов 
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решения фундаментальных и прикладных технических задач, прежде всего в области строи-
тельства. 

Задачи журнала:
• предоставление российским и зарубежным ученым и специалистам возможности публи-

ковать результаты своих исследований;
• привлечение внимания к наиболее актуальным, перспективным, прорывным и инте-

ресным направлениям развития и приложений численных и численно-аналитических методов 
решения фундаментальных и прикладных технических задач, совершенствования технологий 
математического, компьютерного моделирования, разработки и верификации реализующего 
программно-алгоритмического обеспечения;

• обеспечение обмена мнениями между исследователями из разных регионов и государств.
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Abstract. The process of forming new architectural solutions in the field of regular frame-rod systems 
necessitates the development of the concept of creating original spatial structures through the directed 
transformation of kinematically changeable truss-type objects. The article presents a numerical study of 
kinematic parameters during the gradual shaping of a rod system, which in its initial state is a flat hinge-rod 
network of repeating fragments in the form of equilateral triangles. The controlled kinematic effect on the object 
was modeled using actuators that were placed on the peripheral sections of the studied grids. 
The wide variability of the hinge-rod forms, the economical installation process using the principle of "self-
extension" allow us to speak about the relevance of research in this direction. 
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 INTRODUCTION 
 
The process of forming new architectural 
solutions in the field of regular frame-rod 
systems necessitates the development of the 
concept of creating original spatial structures 
through the directed transformation of 
kinematically changeable truss-type objects. 
Currently, folding in two directions have 
become widespread S Sx y  cover formed 
from hinge-rod kinematic pai  
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Figure 1. Kinematic scheme of a collapsible 

covering 
 

A separate category consists of hinge-rod 
-sized transformable 

space structures, the disclosure of which occurs 
automatically in zero gravity [1].  
Works [2, 3] are devoted to the problem of 
finite element analysis of the stress-strain state 
of hinge-rod systems taking into account large 
displacements. In particular, in [2] a two-rod 
instantaneously kinematically variable  is 
considered, the design scheme of which is 

 
behavior of the  in a geometrically 
nonlinear formulation, the authors have 
developed an algorithm based on a step-by-step 
loading scheme and the formation at each step 
of a mixed system of equations in the form of 
the displacement method and the force method. 
The configuration of this  corresponding to 

. 
In order to verify the algorithm proposed in      
[2, 3] we will perform the calculation of the 
two-rod  for the initial position , ,A  and 
configuration of the system in the position 

, ,A  
patterns of vertical displacement distribution 

Auy  and longitudinal forces N in rods, derived 
using a nonlinear solver of the software package 
ANSYS Mechanical. Comparing these data with 
the results of [2], we establish that the value of 

Auy max  corresponding to the calculation of an 

both calculations - m. when geometrically 
nonlinear calculation of  in position 

0    the results are similar 
[2]. The coincidence of the results is also 
observed when comparing the longitudinal 
forces in the rods for the two positions of the 
system. 
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Thus, it can be argued that the ANSYS software 
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The article presents a numerical study of the 
kinematic parameters of the rod system with its 
gradual formalization. In its initial state, the 
system is a flat hinge-rod network of repeating 
fragments in the form of equilateral triangles. 

The controlled kinematic effect on the object 
was modeled using actuators that were placed 
on the peripheral sections of the studied grids. 
The wide variability of hinge-rod forms, the 
economical installation process using the 
principle of "self-extension" allow us to speak 
about the relevance of research in this direction. 
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Figure 6. Hinge-rod system in the initial state 

 

with rectangles and marked with the letters S  
S1. Synchronous axial movements can be 
created on the hinges of the actuators, causing 
shortening / elongation of the links. We model 
the actuators with combined finite elements [3].  

. In the initial state, the positive direction of 
the normals n  of all fragments coincides with 
the orientation of the Z axis. 
repeating fragment, we introduce a local system 
of axes so that the axis , ,x y z  so that the 
direction of the axis z  coincided with normal 
n , and the axis x  was directed from the node 
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shortening / elongation of the links. We model 
the actuators with combined finite elements [3].  

. In the initial state, the positive direction of 
the normals n  of all fragments coincides with 
the orientation of the Z axis. 
repeating fragment, we introduce a local system 
of axes so that the axis , ,x y z  so that the 
direction of the axis z  coincided with normal 
n , and the axis x  was directed from the node 

i  to the node k  provided that the node 
numbers are arranged in this sequence 
j k i . Axle y  are pointing away from 

the center of the fragment.  
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Figure 7. A repeating fragment of the hinge-rod 
system 

 
The calculation scheme for modeling the 

 is shown 
. In this drawing, the symbols «+

« the connections prohibiting 
movement are marked, respectively, in the 
direction of the axes Z, Y, X. Letters a and b 
denote nodes, movements zu  which will be 
observed du . 
The letter  denotes an element, the kinematic 
parameters of which will also be investigated in 
the process of shaping the . 
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Figure 8. Calculation scheme for modeling the 

process of shaping HRS 

We accept the following assumptions  
- the process of transformation of the 
structure is a quasi-static sequence of steps 

nk ,...,2,1  discrete changes in the lengths of 
combined finite elements by small values s , 

1s  .  

- in the process of transformation of the 
structure, the achieved level of stress state of the 
rods is inherited.  
We emphasize that the transition from the 
current position of the rod k  to the subsequent 
provision 1k  it is accompanied by small 
increments of the values of the nodal 
coordinates. Based on this, the calculation of the 
stress-strain state at each step of the 
transformation of the is carried out within 
the framework of the linear theory of elasticity.  

of the proposed 
concept of the transformation of the , we use 

ANSYS Mechanical software package An 
application macro created on the basis of this 
language is entered into the command window, 
after which each line of the macro is processed by 
the APDL interpreter and, in case of a positive 
result, it is immediately launched for execution. 
Thus, the macro allows you to automatically create 
the geometry of the structure, build a finite element 
grid, set boundary conditions and load, run the 
solver to perform calculations, as well as perform 
intermediate operations related to extracting 
information from the ANSYS database at the 
current loading step and forming working arrays by 
performing the necessary algebraic procedures. In 
addition to the listed actions, the macro contains 
commands to delete and rebuild the finite element 
model at each step of the calculation. 
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scheme of the  
changeable. Therefore, the process of 
transformation of the  from the position 
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when the coordinates of all nodes iz = 0, it will 
not lead to the expected rise of repeating 
fragments, i.e. it is 

-prepared dome-
shaped geometry of the   
 

f

 
Figure 9. Pre - launch domed shape HRS 

 
In this connection, the question arises: at what 
minimum value of the lifting boom f the arch 
effect occurs and how to make the transition 
from a flat configuration of the  f  to a 
domed shape f with the preservation of the 
original lengths of the rods?  
To transition from the initial flat shape of the 

-shaped 
configuration, we use kinematic boundary 
conditions, which are reduced to setting 
displacements in the direction of the axis Z in 
the non-support nodes of the grid: 
 

*
z i iu f , 

 
marked: 2 2 2 2

i  – 
approximating polyquadratic polynomial  

21
ix

iy  – 

normalized coordinates that take into account 
the dimensions ix , iy  – coordinates of 
nodes truss finite element in global axes.  
Based on the accepted kinematic boundary 
conditions, the stiffness matrix is adjusted 
according to standard technology and the 
corresponding vector of the right part of the 
resulting system of equations is formed. To 
solve the corrected system of equations, we use 
the nonlinear solver of the ANSYS complex, i.e. 
we perform the calculation taking into account 

on the new geometry of the nodes and the 
corresponding topology of the model are 
recorded in intermediate files. 

In order to test the proposed approach to obtaining 
the domed shape of the , a computational 
experiment was conducted for the values of the 
parameter f equals 0,1m

. The calculations were carried out taking 
into account geometric nonline

used control over the immutability of the lengths 
of the rods of the model during the transition from 

. It was found that the iterative process in the 
investigated range of the parameter f converges 
and the lengths of the rods before and after the 
calculation coincide.  
The next step was to study the obtained dome-
shaped shapes of the  for the presence of an 
arched effect under the boundary conditions shown 

the rods. As a result, it was found that the iterative 
process does not diverge, starting with f = 1 m. 
Visualization of the picture of the deformed state of 
the SSS and the distribution of the corresponding 
displacements zu  . 

 

 
zu  

 
Figure 10. The picture of the distribution of 

movements in HRS zu  when f = 1m 
 

Next, a simulation of the process of kinematic 
shaping of the  was performed using a 

shows the results of modeling this process for the 
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Next, a simulation of the process of kinematic 
shaping of the  was performed using a 

shows the results of modeling this process for the 

 
 f = 0,1 m, with the same movements s  in all 
actuators. The following parameters were taken 
into account in the calculation: the course at each 
step of the transformation s =0,01 m number 
of transformation steps n Visualization of 
vertical movements zu  at points a and b, the 

 . As can be seen for the 
accepted parameter value s  there is a rise of 
peripheral repeating fragments and a deflection 
of the central part . 
 

 

 

 
Figure 11. The result of modeling the shape 
change HRS when f = 0,1 m; s  =0,01 m; 

n = 80 
 
To achieve the lifting of the rods in the center of the 

, it was necessary to double the 
parameter s . 

 in the transformed state obtained for the 
variant with s =0,02 m  n Graphs of 
vertical movements in nodes a and b of the grid are 

be seen that the dependencies ~zu s  at points a 
and b have clearly defined three sections. Moreover, 
in the last section, the displacement at point a 
continues to monotonically increase, and the 
displacement at point b monotonically decreases. 
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Figure 12. Charts ~zu s  at point a and b   
when f = 0,1 m; s =0,01 m; n = 80 

 

 

 

 
 

Figure 13. The result of modeling the shape 
change HRS when f = 0,1 m; s =0,02 m; 

 n = 40 
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Figure 14. Charts ~zu s  at point a and b when 

 f = 0,1 m; s =0,02 m; n = 40 
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Based on the simulation data of the 
transformation process with variable stroke of 
the actuators 1 1,2S S  it is established that 
the final form of the  in this case differs 
little from the result of the previous calculation 

1S S . 
Important for the practical implementation of 
the concept of the shape of the  is the 
information about the kinematics of angular 
displacements of rods. In this regard, a study of 
the behavior of the rod was carried out , 
adjacent to the node  in the process of 
transformation . 
of changes in the guiding cosines cos yx , 
cos zx , cos xx  the observed rod 
depending on the stroke S actuators. 
Visualization of plume projections of rod 
positions  during the transformation, the  

 . 
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Figure 15. Charts cos xx , cos yx , cos zx  
of rod  to option f = 0,1 m; s = 0,02 m; 

n = 40 
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Figure 16. Visualization of plume projections of 
rod positions  

 

It follows from the presented data that the 
design of the hinge assembly should provide 
rotations relative to global axes. Naturally, this 
circumstance complicates the design of the 

design of a universal node providing the 
transformation of the  is proposed. 
Let's consider a variant of the modified design 
scheme of the , which differs from the 
previous scheme in that its rods located along the 
extreme rectilinear sides are replaced with 

allows for comprehensive compression of the 
structure. The boundary conditions are similar to 
those introduced earlier. 
Visualization of a finite element model of a 
modified  circuit having an initial bend f = 
0,1 m,  . 
The values of the stroke at each step of the 
transformation in all actuators were assumed to be 
the same 1S S . The result of the 
corresponding calculation in the form of graphs of 
the dependence of vertical movements at points  
and b from the stroke of the actuators for the 
parameters, s =0,02 m n = 30 presented in fig. . 
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Figure 17. A modified calculation scheme for 
modeling the process of shaping HRS 
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Figure 17. A modified calculation scheme for 
modeling the process of shaping HRS 

 

 

 
Figure 18. The result of modeling the shape 

change HRS 
when f = 0,1 m; s =0,02 m; n = 30 

 

the greatest rise z maxu  observed in a 
section of a repeating fragment adjacent to the 
node b. 
Visualization of the modified  circuit after 
transformation in the case of variable stroke 
values 1 1,2S S  is presented in  

 ~zu s  
shown in ig. 21. 
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Figure 19. Charts ~zu s  at point a and b 

when f = 0,1 m; s =0,02 m; n = 30 
 
 

 

 

 
 

Figure 20. The result of modeling the shape 
change HRS when f = 0,1 m; s = 0,02 m; 

1 1,2S S ; n = 30 
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Figure 21. Charts ~zu s  at point a and b 
when f = 0,1 m; s =0,02 m; 1 1,2S S ; 

n = 30 
 

Analyzing displacement curves zu  
we conclude that starting from S > 0,3m there is 
a zone of unstable transformation .  

 
 

CONCLUSIONS 
 
1. A method of step-by-step modeling of the 
transformation process of a regular hinge-rod 
system formed by flat equilateral triangular 
fragments of the truss type has been developed 
and tested on test examples.  
2. The range of geometric and kinematic 
parameters providing vertical lifting of the rods 
of the structure is established. 
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Abstract. The problems of stability of some beam -shaped frames and cylindrical shells with the elasto-
plastic material are considered. The possibility of modeling bars using finite elements of various types is studied. 
Plate elements and even one-dimensional beam finite elements can be used for modelling compressed rods with 
geometric and physical nonlinearity. For the problem of stability of a circular cylindrical shell is given the 
comparison of the authors' results obtained using the FEM with the experimental results of V.G. Sazonov and the 
calculations of A.V. Karmishin. 
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1. ANALYSIS OF DIFFERENT TYPES OF 
FINITE ELEMENTS IN THE STABILITY 
PROBLEMS WITH GEOMETRIC AND 
PHYSICAL NONLINEARITIES 

 
Let us investigate the possibilities of various 
finite element models concerning the 
geometrically and physically nonlinear problem 
of stability of a cantilever beam. The beam had 
a length l=100 cm and a square cross section 
10×10 cm, beam flexibility 
 

 = =  69. 
 

This value is less than the limiting flexibility for 
a beam with such geometrical parameters made 
of steel 10HSND ( = 72). The study used the 
model of an ideal Prandtl elasto-plastic material 
( yeiled=400 MPa). Four types of finite element 
models are considered: 
1. Using solid finite elements (FE) in the 
NASTRAN complex (Hex8); 
2. Using plate FE with loss of stability in the 
element plane; 
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3. Using plate FE with loss of stability out of the 
element plane; 

4. Using beam FE. 
 

 

 
Figure 1. Curves of deformation development of an axially compressed cantilever beam 

 
 
It was found that when using a three-
dimensional model (5x5x60 cubic elements) of 
the above-described axially compressed beam, a 
model of 60 one-dimensional beam elements, as 
well as flat square four-node FE (5 plate 
elements along the height of the section, located 
in the plane of loss of stability), the critical loss 
of stability loads at limiting points and post-
critical curves of unstable equilibrium states, 
almost coincided (Fig. 1). 
A slightly higher compression load ( cr 
had the model of a plate elements, bending at loss 
of stability "out of its plane". It follows from this 
that to solve physically and geometrically nonlinear 
stability problems it is not necessary to use models 
of beams from three-dimensional finite elements. 
Two-dimensional plate elements (and even one-
dimensional beam elements) make it possible to 
obtain acceptable results in majority of loss of 
stability  problems taking with elasto-plastic 
material behavior. The use of such elements 
significantly reduces the dimension of stability 
problems (in comparison with solid FE), and, as a 
consequence, reduces the time for their solution. 

2. ECCENTRICALLY COMPRESSED 
CANTILEVER BEAM 
 
In this paragraph, on the model (1200 flat four-
node FE) of the cantilever beam (lenght  
l = 1,2 m) which has a nonlinear material 
diagram with hardening (Fig. 2, =

3 , = 2,1 10  / ) and unloading 
according to a linear law, the influence of the 
initial imperfections in the application of a 
compressive force (offset) to the end section by 
the value of the loss of stability critical load. 
 

 
Figure 2. Stress-strain diagram for the material 

of the cantilever beam 
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3. Using plate FE with loss of stability out of the 
element plane; 

4. Using beam FE. 
 

 

 
Figure 1. Curves of deformation development of an axially compressed cantilever beam 
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3 , = 2,1 10  / ) and unloading 
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initial imperfections in the application of a 
compressive force (offset) to the end section by 
the value of the loss of stability critical load. 
 

 
Figure 2. Stress-strain diagram for the material 

of the cantilever beam 

 
Figure 3. Elasto-plastic buckling of a cantilever axially compressed beam: a) deformed form of the 
beam; b) a graph of reduction of the values of critical loads; c) curves of displacement of the end of 

the beam 
 
Imperfections in this problem were set in the 
form of different values of the offset of the point 
of the force application with respect to the 
center line of the beam (Fig. 3). A series of 
curves of equilibrium states was obtained for a 
beam made of an linear elastic material and for 
an elastoplastic rod made of a material with the 
above mentioned deformation law (Fig. 2). For 
a beam with a linear elastic material model, the 
curves of equilibrium states increase smoothly 
with increasing load, since the loss of stability 
of a linear elastic axially compressed beam 
occurs at the point of symmetric stable 
bifurcation [1,2].  
When the material of the beam obeys the 
diagram of elasto-plastic deformation, the 
bifurcation point becomes unstable (in the 
formulation of the Euler-Karman problem), and 

the cantilever axially compressed beam loses its 
stability «in large» (Fig. 3a). In this case, the 
drop in the critical loads values turns out to be 
strongly dependent on the magnitude of the 
initial imperfections (indicated offsets) (Fig. 
3c). The graph of the dependence of the critical 
loads at the limiting points on the offset value 
shown in Fig. 3b demonstrates that when the 
load was displaced from the axis by 0.01 m (the 
minimum used offset value) its critical value 
decreased by 
of 0.04 m by -
known statement of T. Karman about the 
extremely high sensitivity of short beams 
(beams that lose their stability in the elasto-
plastic stage of material operation) to the initial 
application of compressive load' offsets [3].
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Figure 4. Compressed pivotally supported beam 

 
3. ON THE LOSS OF STABILITY OF A 
COMPRESSED PIVOTALLY SUPPORTED 
BEAM IN THE ELASTO-PLASTIC STAGE 
 
A flat steel beam 10×2×0.4 cm (St. 3) is used to 
qualitatively demonstrate the loss of stability 
effects in the elastoplastic stage under kinematic 
loading in a press (Fig. 4a). Beam 
characteristics = 0,8 , = 1,07 , 
 = 86,6 < 100. 
The beam had hinged boundary conditions. 
According to the Tetmayer’s formula: 
 

= 3100 11,4, = 2112,7 , 
 =  = 1690,2  

 
The actual critical load observed during 
experiment This is 
explained by the high sensitivity of the critical 
load to the initial offsets of load, since here the 
curve of the initial post-critical equilibrium is 
unstable (with a bend at the apex at P = Pcrit, 
Fig. 4b). 
The moment of loss of stability of the elasto-
plastic beam onset corresponds to the maximum 
load. At the beginning of buckling, the beam is 
slightly bent along a curve close to a sinusoid. 
But unlike elastic loss of stability, the "new" 
compressed-bent equilibrium is unstable. The 
beam, as it were, "slips out" of the decreasing 
pressure in the press. At the same time, its shape 

is changing. The curvature of the middle zone of 
the beam becomes larger and larger. On the 
contrary, the zones adjacent to the supports try 
to “straighten out”. In the end, the rod takes the 
shape of an angle of ~130° 140° with a 
concentration of curvature near the middle 
section (Fig. 4c). In fact, a plastic hinge is 
formed here.  
The calculation of such a beam was carried out 
with the NASTRAN (2520 FE plate) to 
construct the equilibrium diagrams shown in 
Fig. 5. The calculated diagram  –  was taken 
as Prandtls diagram with a yield point =

2400 kg cm . The critical load was 1800 kg. 
But this is not the result of loading in the form 
of pure compression. The beam bending was 
provoked by a "small" lateral force Q = 30 kg. 
When performing a geometrically nonlinear 
calculation, such a “disturbing” force is 
required. But this force causes imperfections, to 
which the "elasto-plastic" beam is very 
sensitive.  
Fig. 5 shows the sequential development of 
stresses and deformations in the middle zone of 
the test sample after loss of stability in the 
elasto-plastic stage of material operation. The 
beginning of the formation of the plastic hinge - 
points 1 and 2. But if point 1 corresponds to the 
maximum load, then in point 2 the load dropped 
to ~0,3 . In points 3 and 4, the compressive 
load is even smaller. However, the zone of 
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Figure 5. The equilibrium diagram for the compressed pivotally supported beam 

 
4. ON SOLUTIONS OF ELASTO-PLASTIC 
PROBLEMS OF STABILITY OF FRAMES 
 
It is known that the solution of elastoplastic 
problems can be determined using two different 
approaches: the theory of small elastoplastic 
deformations and using the flow theory. 
According to the first theory, the relationship 
between stresses and deformations turns out to 
be finite; according to the flow theory, these 
relations are differential. 
If the loading is simple, then both theories of 
plasticity give the same results. 

If the loading is not simple, then the results 
obtained using the flow theory, usually, match 
better the experimental data in comparison with 
the results given by the theory of small elasto-
plastic deformations. 
Solutions for both theories are obtained as a 
result of the convergence of iterative processes. 
The FE-complex NASTRAN implements the 
solving procedure according to the flow theory. 
In the semi-automatic version of the stability 
problems for frame systems in the elasto-plastic 
stage solution, it is convenient to use the theory 
of small elasto-plastic deformations with 

On the Calculations for the Stability of Beams, Frames, and Cylindrical Shells in the Elasto-Plastic Stage



30 International Journal for Computational Civil and Structural Engineering

iterations by the method of elastic solutions with 
variable elastic parameters. 
The convergence of this iterative process in the 
general case has not been rigorously proven. 
However, numerous calculations show that for 

ordinary "convex" (broken or smooth)  
diagrams, the iterations converge to such a 
solution.  
 

 

 
Figure 6. The variable parameters of elasticity method. 

 
The essence of the variable parameters of 
elasticity in stability problems method will be 
explained using Fig. 6. 
Let the material have a bilinear  diagram 
with modules E and E2. The first approximation 
is the result of solving the elastic stability 
problem. If the critical "elastic" stresses of the 
first approximation 
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This module takes into account the decrease in 
the bending stiffness of the compressed beams 
at the second iteration compared to the original 
module E. The reduction factor 
 

( )
=

( )

< 1 
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The solution of the characteristic equation of the 
second approximation gives the critical 
parameter ( ) and the critical force ( ) 
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Then all calculations of ( )
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repeated. As a result, we obtain new improved 
two-sided estimates ( ( )
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Iterations continue until the first few digits 
match in the values ( )and  

( ). Usually, 
two or three correct signs are enough for 

. 
As an example, let us consider the solution of 
the elasto-plastic stability of a U-shaped frame 
with a box-shaped cross-section of 3×4 cm and 
0.4 cm thick walls by the method of variable 
elastic parameters problem. Here: = 100 cm, 

= 4,96 cm ,  = 10 , = 2

10  , = 0,6 10  . The 
stress = 2000 /  (bilinear 
diagram).  
The characteristic equation of the first 
approximation (elastic problem) and its solution 
is 
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Thus, after the first iteration step, we have the 
estimates 
 

2292,3 < < 2974,4  /  
 
The new elasticity modulus for the second 
iteration 
 

( )
=

( )

( )
=

2294,3

1,48723
1541347 ,  

( )
=
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= 0,77 
 
Characteristic equation of the second iteration 
 

6 + 0,77
 

= 0,    2,8,
( )

=
 

1,139
= 2,458 

 
Continuing the calculations, we obtain the 
estimates  
 

2348,4 < < 2436  /  
 
The third iteration gives 
 

2353 < < 2360  /  
 
We restrict ourselves to the third approximation 
and assume that 2356 / . 
Critical load .  = 11688,6 kg. 
It is interesting to note that according to the 
solution using a beam FE at = 1/100000, the 
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critical load turned out to be very close to the 
calculated one (  ( ) = 11739 ). 
However, when comparing with the results 
( ~9880,5 ) obtained with the help 
of plate FE, one can see the difference (~
in the critical force. There are no convincing 
explanations for this discrepancy yet. It is 
impossible to explain the difference between the 
flow theory and the theory of small elasto-
plastic deformations, since the result ,  
obtained using the beam FE was calculated 
according to the theory of flows ( =

11739 ), and, as shown above, is in good 
agreement with the value of  obtained 
on the basis of the theory of small elasto-plastic 
deformations ( = 11688 ). Let us 
consider additional solutions to the problem of 
elasto-plastic buckling of a U-shaped frame 
(Fig. 7), composed of 100 cm long beams and 
having 4 × 3 cm rectangular tubular sections 0.4 
cm thick. The analytic model of the frame is 

lower sections of the frame struts are sealed. 
Nodal load (two vertical compressive forces P). 
The diagram of material operation is bilinear 
with module = 2 10   in the first 
section and module = 0,3 = 0,6

10   for the second section ( =

2000 ). The imperfections were 
specified in the form of 2 small horizontal nodal 
forces 22; 0.00001; 
0.0001; 0.001 and 0.01. With such 

seen from the above results, with the loss of 
stability in the elasto-plastic stage, the drop in 
the critical load with an increase in the "forced" 
initial imperfections is quite noticeable. This is 
a significant difference from the "elastic" loss of 
stability (stable symmetric bifurcation), the 
curves of the initial supercritical equilibrium at 

ry close to each other 
(Fig. 7).  
 

 

 
Figure 7. Deformation diagrams of U-shaped frame with different initial imperfections 
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The sensitivity of the elasto-plastic critical load 
to initial imperfections exists due to the fact that 
the post-critical equilibrium of the frame after 
elasto-plastic loss of stability is unstable. 
The nature of a sharp decrease in elasto-plastic 
critical loads is clearly visible in Fig. 7. At  = 

( )/  
That is quite a lot. 
Note that when using plate elements and a 
nonlinear elastic material model, the critical 

= ) practically coincided with the 
corresponding values from the elastic-plastic 
calculation. 
An attempt was made to use a beam FE 
element. For a linearly elastic material, the 
results of calculating  turned out to be quite 
close to those calculated "manually". 
 

 = 147,54  => 

2,716 2 10
10

10
 = 147533  

 
However, the elasto-plastic calculation gave a 
significantly lower critical force (   

117,4 ). The obtained value of the critical 
load on the NASTRAN is in good agreement 
with the result of the calculation by the method 
of variable parameters of elasticity (~ 117 kN). 
 
 
5. STABILITY OF A CIRCULAR 
CYLINDRICAL SHELL UNDER AXIAL 
COMPRESSION 
 
Let us compare the study results on the stability 
of a circular cylindrical shell under axial 
compression made by the author (numerical 
simulation according to the NASTRAN FEM) 
with the results of experiments by V.G. Sazonov 
and the calculations of A.V. Karmishin, given in 
the book [4]. 
Three series (each with six samples) of shells 

mm and thicknesses h = 1.0; 1.5; 2.0 mm were 
subjected to tests. The shells were made from 
pipes and checked for wall thickness differences 

- AMG6. The 
material diagram is shown in Fig. 8, the values 

 
 

 
Figure 8. Stress-strain diagram of the 

elastoplastic material AMG6 
 

Table 1. Coordinates of the AMG6 stress-strain 
diagram 

Point  strain stress, kg/mm2 

1 0 0 

2 0,002 13,40 

3 0,0025 15,20 

4 0,003 16,40 

5 0,004 17,40 

6 0,008 ,40 

 
ests of shells with h = 1 mm and h = 1.5 mm 

were carried out on a laboratory machine with a 
mechanical wire ZDM-10, shells with h = 2 mm 
- on a machine with a Sapper-100 hydraulic 
drive. The alignment of the models was ensured 
by marking the machine plates. To prevent 
distortions, ball joints were used (this is 
evidenced by stable test results). The models 
loading was carried out in stages at a low speed. 
Fig. 8 shows the ( ) diagrams obtained by 
recalculating the ( ) diagram using the 
formulas 
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=
2

,       = . 
 
At loads close to  (Fig. 8), a pronounced 
bending deformation state is observed at the 
edges of the shell. The maximum deflection 
amplitude before the loss of stability reaches 
approximately 0.1 h. 
When =  for shells with h = 1 mm and h = 
1.5 mm, at one of the edges of the shell, the loss 
of stability occurs in an asymmetric shape, 
accompanied by a drop in stresses to = , 
and the maximum deflection at the edge 
increases approximately up to 0.3h. However, 
the shell does not lose its bearing capacity, 
continuing to perceive the load. Then, at =

, the buckling shapes change and the shell 
loses its bearing capacity. 
Shells with h = 2 mm also lose stability in their 
asymmetric shape, but no sharp drop in the load 
is observed. The buckling begins with the 
formation of four regular indentations along the 
ring, which increase with additional loading, 
and the load decreases. 
When modeling cylinders by the finite element 
method, two material models were considered: 
an infinitely elastic and an elasto-plastic one 
based on the digitization of the diagram given in 
[4] (Fig. 8). The load was applied kinematically 
to the upper end of the shell through a rigid-
element (absolutely rigid plate). 
The obtained calculations results compared with 
the results of experiments by V.G. Sazonov and 
calculations by A.V. Karmishin are given in 
table 2. 
The loss of stability in the experiment of 
V.G. Sazonov occurred at stresses 
corresponding to the flat section of the diagram. 
Calculation using a nonlinear elastic model by 
A.V. Karmishin gave a good correlation with 
the experimental results (columns 2 and 3). 
The curve of subcritical and supercritical 
equilibrium states for a shell 1 mm thick, 
obtained by NASTRAN, is shown in Fig. 10.  
When using an elastic model of the material, the 
critical load on the shell was 22.8 kN (point 1 in 

2). 

 
Figure 9. Experimentally obtained deformation 

diagrams of cylindrical shells 
 

The subcritical equilibrium of the shell is 
axisymmetric; a nonlinear edge effect exists 
near the edges of the shell. Then the loss of 
stability occurs, and the shell goes into a distant 
stable equilibrium, characterized by the 
formation of a two-row belt of the rhombic-
triangular indentations [5, 6] (Fig. 10 point 2). 
The compression load was reduced to 8.4 kN. 
With further loading, a secondary bifurcation 
occurs  the restructuring of this belt into a three-
row one (Fig. 10 point 3). After the loss of 
stability at point 2 (and under conditions of 
further loading), it turned out that the rigid 
element shifted and a skew appeared towards 
one part of the lateral surface of the shell. 
Cyclic symmetry has been lost. 
The elasto-plastic equilibrium curve of the shell 
is completely different. Up to a load of 
~3,9 , the relationship between load and 
shortening is linear. Further, with a compression 
of ~3,9 , a sharp increase in shortening was 
observed with a very weak increase in the load 
up to the limit point 4. (Fig. 10). Then the 
equilibrium of the shell became unstable. The 
development of dents was not along the entire 
lateral surface, but only near the end sections, in 
the zone of the elasto-plastic edge effect 
(point 5, Fig. 10). 
Thus, it can be concluded that with the 
compressed circular cylindrical shells’ elasto-
plastic loss of stability, there is no “jump” in the 
load. However, it is 3.5-4 times less than the 
critical loads of elastic loss of stability. 
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shortening is linear. Further, with a compression 
of ~3,9 , a sharp increase in shortening was 
observed with a very weak increase in the load 
up to the limit point 4. (Fig. 10). Then the 
equilibrium of the shell became unstable. The 
development of dents was not along the entire 
lateral surface, but only near the end sections, in 
the zone of the elasto-plastic edge effect 
(point 5, Fig. 10). 
Thus, it can be concluded that with the 
compressed circular cylindrical shells’ elasto-
plastic loss of stability, there is no “jump” in the 
load. However, it is 3.5-4 times less than the 
critical loads of elastic loss of stability. 
 
 

 

 
Figure 10. The diagram of the cylinder’s deformation with a 1 mm thickness and a view of the 

model at characteristic points 
 

Table 2. comparison of results of authors the results of experiments by V.G. Sazonov and 
calculations by A.V. Karmishin 

 

Shell’s 
thickness, 

mm 

Critical stresses, kg/mm2 

Expiriment  
(V.G. Sazonov) 

Plastic shell buckling  
(A.V. Karmishin) 

Elastic 
analysis 

(Nastran) 
Elasto-plastic 

analysis 

1 2 3 4 5 
1    20,45 

1,5 22,6 21,4 148,11 25,75 
2  22,6 178,84 30,55 
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INFLUENCE STIFFNESS OF SHEAR BONDS ON THE STRESS-
STRAIN STATE OF MULTISTOREY BUILDINGS 

 
Valery A. Lyublinskiy 

National Research Moscow State University of Civil Engineering, Moscow, RUSSIA 
 

Abstract. The paper considers issues the nonlinear behavior of shear bonds affecting the changes in the 
distribution of stresses and strains in vertical structures, as well as to compare these stresses and strains with the 
linear statement of the problem solution in which the compliance of the bonds is constant. 
In a complex multiconnected system of the multistory building, the new redistribution of stresses arises, which 
does not coincide with the original distribution of stresses. To correct the stiffness value for the bonds, the 
experimental data were used. A secant module was used to determine the stiffness for vertical joints. Loading 
was performed by the step method. At the extreme stage of loading, the redistribution of stresses in the load-
bearing elements of the building showed their significant leveling. The issue of ultimate deformations of shear 
bonds limiting the process of redistribution of stresses and deformations requires discussion. 
 

Keywords: multistory building, shear bonds, stiffness, nonlinear deformation, bearing system 
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INTRODUCTION 
 
The bearing system of a multi-story buildings 
consists of vertical structures united into a 
spatial system by floors slabs and vertical 
connections with certain stiffness. Vertical shear 

bonds (lintels, welded joints, floor areas) can be 
used as connections in a multi-story building. 
Existing mathematics models of load-bearing 
systems of multistory buildings, in most cases, 
are guided by the elastic work of load-bearing 
elements and their connections [1-3]. In the 
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classical calculation models of a building the 
relationships between stresses and strains are 
specified by the Hooke elastic-linear law. 
However, they do not allow sufficient use of the 
safety margins of the entire load-bearing system 
or can distort the assessment of the real state of 
this load-bearing system of the building. The 
important feature of the real work of materials is 
the nonlinear nature of the relationship between 
stress and deformation of 
both vertical load-bearing structures and the 
elements connecting them.  
Deformation diagrams are used to consider the 
nonlinear properties of structural materials. 
Proposals for concrete deformation diagrams are 
contained in a number of works [4-7]. Description 
of the diagrams of concrete deformation in 
compression is contained in the design standards 
[8,9]. Various studies are devoted to the analysis 
of the work of shear bonds [10-12], welded butts, 
vertical concrete joints [13-14]. 
The aim of this work is to conduct a 
comparative analysis of the stress-strain state 
multistory building with linear and nonlinear 
deformation of shear bonds. The main task of 
the work is to establish changes in the stress-
strain state of the multistory building taking into 
account the experimental data work shear bonds 
as lintels. 
 
 
METHOD 
 
In this work, the object of the study was a 30-
storey residential building made of monolithic 
concrete. A multistorey building with the 
building system is shown in Figure 1. The 
diagram shows 16 walls W and 14 shear bonds 
Shb. The building consists of 30 floors and 
basement and attic premises. Type B25 concrete 
was used, the walls 30 cm thick were connected 
by lintels with a cross-sectional size of 20 by 40 
cm and a length of 2 m, the columns were taken 
as 40 by 40 cm and 40 by 6 cm. 
The building was subjected to permanent, 
temporary and wind loads. The calculation was 
carried out using the ETABS software package 

based on the finite element method [15-17]. For 
walls, a finite element of the shell type was 
adopted, for shear bonds - an elastic element, 
the stiffness of which was refined at each stage 
of the calculation. The maximum size of the 
wall finite element was 85 x 85 cm. The base of 
the building was assumed to be non-deformable. 
To correct the value of the shear modulus, the 
experimental deformation diagram « shear force 
Q - 13,18] was used. A secant 
module was used to determine the stiffness K 
for shear bonds. The loading was carried out by 
the stepwise method (Fig. 2.). 
 

 
Figure 1. The design scheme of the building 

(communication) 
 

 
Figure 2. Experimental strain diagram 
deformation "Q- " for shear joints 

 
The loading was carried until hinged joint is 
formed in one of the shear bonds. During 
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(communication) 
 

 
Figure 2. Experimental strain diagram 
deformation "Q- " for shear joints 

 
The loading was carried until hinged joint is 
formed in one of the shear bonds. During 

 

loading, shear forces and corresponding 
deformations were recorded. 
 
 
RESULTS 
 
The initial calculation of the bearing system 
multistory building with constant stiffness of  

shear bonds is designated K0. The subsequent 
steps of changing the stiffness of the shear 
bonds and the corresponding recalculations of 
the bearing system multistory building are 
designated K1 – K5. 
As an example, the stress-strain state of wall 
W7, wall W2 and the adjacent shear bonds are 
shown. 

 
Table 1. Change in maximum stresses and percentage of reinforcement in wall W7 

 K0 K1 K2 K3 K4 K5 
2) 8881.46 9769.61 10480.13 11013.01 11457.09 11634.72 

%  -10.0 -7.3 -5.1 -4.0 -1.6 
% 0.48 1.03 1.47 1.80 2.08 2.19 
%  0.55 0.44 0.33 0.28 0.11 

 
Table 2. Change in maximum stresses and percentage of reinforcement in wall W2 

 K0 K1 K2 K3 K4 K5 
2) 16980.82 14773.32 13414.85 12396.00 11716.77 11207.34 

%  13.0 9.2 7.6 5.5 4.3 
% 2.72 1.70 1.08 0.62 0.31 0.07 
%  -1.01 -0.62 -0.47 -0.31 -0.23 

 

 
Determination of the actual stress-strain state of 
structural elements of the bearing system was 
evaluated on the basis of comparing the results 
of linear and nonlinear calculations. 
The maximum change in normal stresses occurred 
in the wall W2, W7, W10, W11, W12, W13, 
W14, W15. For wall W7 (Fig 3, Table 1), the 
difference was 33.2%, in the first case the value 
was 8881.46 kN / m2, in the second case it was 
11827.25 kN / m2. For wall W2 (Fig. 4, Table 2), 
the difference between the calculations was -
37.6%, in the first case the value is 16980.82 kN / 
m2, in the second - 10601.57 kN / m2. 
For wall W8 the difference was 21.5%, in the first 
case the value was 9758.06 kN / m2, in the second 
case it was 11852.45 kN / m2. for wall W9 the 
difference was -8%, in the first case the value is 
12803.33 kN / m2, in the second 11774.36 kN / m2. 
Bending moments have changed in almost all 
walls. For the W7 wall (Fig.5), the difference 
between the calculations was 37.3%, in the first 
case the value was 77.88 kN. m, in the second it 
was 106.9 kN. m, for the W8 wall the  

difference was 27.1%, in the first case the value 
was 180.45 kN. m, in the second 229.3 kN. m, 
for the W9 wall the difference was 131.1%, in 
the first case the value was 50.27 kN. m, in the 
second 116.3 kN. m. 
The shear forces in the shear bonds have changed. 
In a number of connections, efforts increased 
(Shb6, Shb7), in some (Shb2) – decreased. 
Reinforcement of vertical construction s of the 
bearing system was also calculated based on a 
comparison of the results of linear and non-
linear calculations. Of course, the maximum 
change in reinforcement occurred in the walls 
with the largest change in normal stresses, in 
the wall W2, W7, W10, W11, W12, W13, 
W14, W15, where in the first case the 
percentage of reinforcement in the walls W2, 
W12 was close to the maximum allowable 
percentage of reinforcement, in the second 
case, the minimum percentage of reinforcement 
1% became less, where it changed by -2.9% 
and -2.16%. 
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Figure 3. Changes vertical stresses in the wall 
(W7) depending on changes in the stiffness of 

shear bonds (K) 

 
 
Figure 4. Changes vertical stresses in the wall 
(W2) depending on changes in the stiffness of 

shear bonds (K)
 

For wall W7 the difference in calculations was 
1.8%, for wall W8 the difference in calculations 
was 1.32%, for wall W9 the difference in 
calculations was -0.6%, for wall W13 the 
difference in calculations was 2.32%, for wall 
W14 the difference in calculations amounted to 
2.7%. This was due to a redistribution of stresses. 
In the process of redistribution of stresses and 
deformation during the nonlinear operation of shear 
bonds, changes occur in all load-bearing elements 
of a multistory building. There is a relative 
equalization of stress levels in all vertical bearing 
structures (Fig. 6). Redistribution of stresses from 
more loaded elements to less loaded ones took 
place. To the extent that the stiffness parameters of 
the shear bonds allowed it. Further redistribution 
stresses is impossible. Shear bonds gradually reach 
ultimate deformations (Fig. 6). 
Due to the decrease in the stiffness of the shear 
bonds, the bending moment in the walls of the 
bearing system increases. There is an increase in 
the deflection of the bearing system the 
multistorey building. 

CONCLUSIONS 
 
The bearing system of multistorey buildings is 
experiencing a turn in the plan and a flat bend 
in two directions. Stress-strain state multistory 
buildings are determined by position of 
vertical constructions in the building plan and 
by the stiffness characteristics walls and shear 
bonds. 
In the bearing system, all walls and shear 
bonds are in a spatial interaction. They cannot 
be deformed and destroyed independently of 
other elements, their deformations are 
constrained by neighboring shear bonds, walls 
and overlaps. 
When the bearing capacity of one or several 
elements of the bearing system is reached, the 
bearing capacity of the system as a whole is not 
exhausted. The numerical experiments carried 
out have shown that with an increase in the 
load, the stresses are redistributed in all 
elements of the bearing system. 
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Figure 5. Changes bending moment in the wall 
(W7) depending on changes in the stiffness of 

shear bonds (K) 

 
 

Figure 6. Changing the normal stresses in the 
walls W1- W16 in accordance with the change in 

the stiffness of the shear bonds at each step Ki 
 
 

 

The maximum value of change in normal 
stresses -10% occurred in wall W7. The 
percentage of reinforcement increases 
significantly in wall W14 - 2.33%. 
The spatial work of shear bonds is a mechanism 
for the spatial redistribution of stresses in 
vertical structures. The stiffness shear bonds are 
important for the determination of deformations 
and stresses in vertical bearing structures. 
 
 
REFERENCES 
 
1. Zolotov A.B.  P.A. V.N., 

Mozgaleva M.L. Discrete-continual finite 
element method. Applications in 
Construction, ASV, Moscow, 2010, 336 . 

2.  N.I.  P.A. Mathematical 
fundamentals of linear three-dimensional 
analysis of load bearing structures of 

multistory buildings with the use of 
discrete-continual model. // Vestnik 
MGSU, 2, 2011, P. 44-49. 

3.   . Comparative 
analysis of analytical and experimental 
results of the strength of compressed 
reinforced concrete columns under special 
combinations of loads. // MATEC Web of 
Conferences, 
doi:10.1051/matecconf/20168601029. 

4.  N.  A. The application of 
ANSYS software package in limit load 
analysis of structures made from 
anisotropic nonlinear elastic materials. // 
MATEC Web of Conferences, 
doi:10.1051/matecconf/ 201711700019. 

5. A.,  A.A., 
 K.I. Review of diagrams of 

concrete deformation under compression in 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

-150 -100 -50 0

H(floors)

M(K*M)

K
0
K
1
K
2
K
3
K
4
K
5

4000

6000

8000

10000

12000

14000

16000

18000

0 1 2 3 4 5 6 7 8 9 10 11
step

(KN/M2) W1
W2
W3
W4
W5
W6
W7
W8
W9
W10
W11
W12
W13
W14
W15
W16

Influence Stiffness of Shear Bonds on the Stress-Strain State of Multistorey Buildings



42 International Journal for Computational Civil and Structural Engineering

 

national and foreign concrete codes. // Ind. 
& Civ. Eng., 2014, 3, pp. 80-84. 

6.  N.I.  B.S  
O.V. Analysis and enhancement of 
curvilinear diagrams of concrete 
deformations for calculation of reinforced 
concrete structures on the basic of a 
deformation model. // Ind. & Civ. Eng., 2013, 
1, pp. 28-30. 

7.   V.  G. Application 
of concrete deformation model for calculation 
of bearing capacity of reinforced concrete 
structures. // MATEC of Web Conference, 
doi:10.1051/matecconf/201819604008.   

8. Building Code of RF SP 63.13330.2018 
Concrete and reinforced concrete structures. 
General provisions, Moscow, 2019, p. 170. 

9. .  M., 
. Experimental studies of 

compliance of vertical joints used in 
construction of high-rise panel buildings. // 
MATEC Web of Conferences, 
doi:10.1051/matecconf/201819602049. 

10.  D.K.  V.K., Kappos 
A.J., Mergos P.E. Shear-Critical 
Reinforced Concrete Columns under 
Increasing Axial Load. // ACI Structural 
Journal, 2020, 117(5), pp. 29 - 39. 

11.  V. About determination of 
ductility of Connections when forming 
calculation models of panel buildings. // 
Hous. Constr. 2017, v. 3, pp. 17-21. 

12.  Strength and 
compliance of vertical joints of wall panels 
using flexible loops. // Housing 
construction, 2014, v. 5 pp 60-62. 

13.  V., TO test vertical weldid butt 
joints of panel buildings. // Build. & 
Reconst., 2019 v. 5, pp. 17-22, 
doi:10.33979/2073-7416-2019-85-5-17-22. 

14.  A., Popov D. Reduce of bearing 
strength of the bent reinforce-concrete 
elements on a sloping section with the 
corrosive damage of transversal armature. // 
MATEC Web of Conferences, 2017, 
doi:10.1051/matecconf/201711700162. 

15. . Finite element and 
approximation.,  Moscow, 1986, p. 
318. 

16.  O.C, Taylor R.L.,  The 
Finite Element Method Set, sixth Edition. 
Butterworth-Heinemann, 2005, p. 435. 

17.  S.F  D.I. The finite 
element method in the calculation of spatial 
reinforced concrete structures. // Publishing 
house of ONMU, Odessa, 2009, p. 89. 

18.  Experimental 
study of the strength and suppleness of a 
vertical welded joint. // Syst. Technol. Met. 
2018, v. 5, pp. 17-19. 

 
 

  
 
1. 

 -

, -   
2. 

-

-49. 
3. . Comparative 

analysis of analytical and experimental results 
of the strength of compressed reinforced 
concrete columns under special combinations 
of loads. // MATEC Web of Conferences, 
doi:10.1051/matecconf/20168601029. 

4.  The application of 
ANSYS software package in limit load 
analysis of structures made from anisotropic 
nonlinear elastic materials. // MATEC Web 
of Conferences, 
doi:10.1051/matecconf/201711700019. 

5. 
 

Valery A. Lyublinskiy



43Volume 18, Issue 3, 2022

 

national and foreign concrete codes. // Ind. 
& Civ. Eng., 2014, 3, pp. 80-84. 

6.  N.I.  B.S  
O.V. Analysis and enhancement of 
curvilinear diagrams of concrete 
deformations for calculation of reinforced 
concrete structures on the basic of a 
deformation model. // Ind. & Civ. Eng., 2013, 
1, pp. 28-30. 

7.   V.  G. Application 
of concrete deformation model for calculation 
of bearing capacity of reinforced concrete 
structures. // MATEC of Web Conference, 
doi:10.1051/matecconf/201819604008.   

8. Building Code of RF SP 63.13330.2018 
Concrete and reinforced concrete structures. 
General provisions, Moscow, 2019, p. 170. 

9. .  M., 
. Experimental studies of 

compliance of vertical joints used in 
construction of high-rise panel buildings. // 
MATEC Web of Conferences, 
doi:10.1051/matecconf/201819602049. 

10.  D.K.  V.K., Kappos 
A.J., Mergos P.E. Shear-Critical 
Reinforced Concrete Columns under 
Increasing Axial Load. // ACI Structural 
Journal, 2020, 117(5), pp. 29 - 39. 

11.  V. About determination of 
ductility of Connections when forming 
calculation models of panel buildings. // 
Hous. Constr. 2017, v. 3, pp. 17-21. 

12.  Strength and 
compliance of vertical joints of wall panels 
using flexible loops. // Housing 
construction, 2014, v. 5 pp 60-62. 

13.  V., TO test vertical weldid butt 
joints of panel buildings. // Build. & 
Reconst., 2019 v. 5, pp. 17-22, 
doi:10.33979/2073-7416-2019-85-5-17-22. 

14.  A., Popov D. Reduce of bearing 
strength of the bent reinforce-concrete 
elements on a sloping section with the 
corrosive damage of transversal armature. // 
MATEC Web of Conferences, 2017, 
doi:10.1051/matecconf/201711700162. 

15. . Finite element and 
approximation.,  Moscow, 1986, p. 
318. 

16.  O.C, Taylor R.L.,  The 
Finite Element Method Set, sixth Edition. 
Butterworth-Heinemann, 2005, p. 435. 

17.  S.F  D.I. The finite 
element method in the calculation of spatial 
reinforced concrete structures. // Publishing 
house of ONMU, Odessa, 2009, p. 89. 

18.  Experimental 
study of the strength and suppleness of a 
vertical welded joint. // Syst. Technol. Met. 
2018, v. 5, pp. 17-19. 

 
 

  
 
1. 

 -

, -   
2. 

-

-49. 
3. . Comparative 

analysis of analytical and experimental results 
of the strength of compressed reinforced 
concrete columns under special combinations 
of loads. // MATEC Web of Conferences, 
doi:10.1051/matecconf/20168601029. 

4.  The application of 
ANSYS software package in limit load 
analysis of structures made from anisotropic 
nonlinear elastic materials. // MATEC Web 
of Conferences, 
doi:10.1051/matecconf/201711700019. 

5. 
 

 

80-84. 
6.  

 

-30. 
7.  Application 

of concrete deformation model for 
calculation of bearing capacity of 
reinforced concrete structures. // MATEC 
of Web Conference, 
doi.org/10.1051/matecconf/20181960400 

8.  63.13330.2018   
 .  

. ., 2018, . 170. 
9.  A. Kovalev M., 

., Experimental studies of 
compliance of vertical joints used in 
construction of high-rise panel buildings. // 
MATEC Web of Conference, 
doi:10.1051/matecconf/201819602049. 

10. 
A.J., Mergos P.E., Shear-Critical 
Reinforced Concrete Columns under 
Increasing Axial Load. // ACI Structural 
Journal, 2020, 117(5), pp. 29 - 39. 

11. 

-21. 
12.  . .,  . . 

 
2014 5  60-62. 

13. . 

 // 

-22. 
14.  Reduce of bearing 

strength of the bent reinforce-concrete 
elements on a sloping section with the 
corrosive damage of transversal armature. // 
MATEC Web of Conferences, 2017, 
doi:10.1051/matecconf/201711700162 

15. 
,  

16.  O.C, Taylor R.L.,  The 
Finite Element Method Set, Sixth Edition. 
Butterworth-Heinemann, 2005, p. 435. 

17.  

, , 
, . 

18.  

-158. 
 
 
 

 
 
 

Valery A. Lyublinskiy, Associate Professor, Ph.D.; 
Professor Department of reinforced concrete 
constructions, National Research Moscow State 
University of Civil Engineering; 26, Yaroslavskoe 
Shosse, Moscow, 129337, Russia; phone: +7(495) 
287-49-19 (3036); Email: LyublinskiyVA@mgsu.ru. 
 
 
 
 
 
 
 
 

, 
, 

 

5) 
287-49-19(3036); Email: LyublinskiyVA@mgsu.ru.  

Influence Stiffness of Shear Bonds on the Stress-Strain State of Multistorey Buildings



44 International Journal for Computational Civil and Structural Engineering

MODELING OF THE MICROCLIMATE OF A RESIDENTIAL 
COURTYARD DURING RENOVATION 
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Abstract. The article provides an example of modeling the microclimate of a residential courtyard during 
renovation in conditions of high-density urban development. Modeling is carried out on the basis of a bioclimatic 
indicator - the environmental heat load index (TNS-index). The calculations are based on the method for analysis  
temperature radiation and determining the angel factors between a black glob temperature to the surrounding the 
given platforms of side of residential courtyard. The method shows a good reflection on changes in spatial 
planning, architectural and construction solutions, landscaping, aeration of the yard, etc. This allows to 
comprehensively assessing the degree of comfort of the microclimate of the courtyard for specific weather 
conditions.  
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1. INTRODUCTION  
 
The program of Housing Renovation in 
Moscow, launched in 2017, is systemic and 
multi-purpose. The renovation should improve 
the living conditions of more than a million 
residents for the formation and development of 
a modern urban environment [1]. 

As a part of the environment-forming of open 
urban areas is its climate [2]. 
Interest increases to the quantitative and 
qualitative analysis of changes in the 
indicators of the microclimate of the courtyard 
area after renovation, for example, for the 
warm season with a significant increase in 
building density, and, if necessary, its 
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1. INTRODUCTION  
 
The program of Housing Renovation in 
Moscow, launched in 2017, is systemic and 
multi-purpose. The renovation should improve 
the living conditions of more than a million 
residents for the formation and development of 
a modern urban environment [1]. 

As a part of the environment-forming of open 
urban areas is its climate [2]. 
Interest increases to the quantitative and 
qualitative analysis of changes in the 
indicators of the microclimate of the courtyard 
area after renovation, for example, for the 
warm season with a significant increase in 
building density, and, if necessary, its 

melioration by various methods to achieve 
comfort [3]. 
With an increase in building density, streets, 
squares, adjacent territories, courtyards, etc. 
sink to the bottom of "urban canyons". The 
visible part of the sky decreases. Therefore, 
the intense heat exchange with it, as with the 
coldest surface of the surrounding space, 
descends. Among other things, the result of 
this microclimatic process is an increase in 
radiation temperatures due to the surrounding 
surfaces. The increasing of radiation 
temperatures, the deterioration of the aeration 
of the urban active layer, air pollution and 
technogenic heat lead to the effect known as 
an urban heat island [4]. 
This article provides a number of simulation 
results for a bioclimatic indicator - the 
environmental heat load index (TNS-index) 
based on the method for analysis the radiation 
temperature using the irradiance coefficients 
obtained from a spherical bulb thermometer to 
the surrounding reduced areas of fences of a 
residential yard [5]. Based on the obtained 
simulation results, recommendations have been 
proposed to increase comfort in the courtyard of 
a residential building planned for renovation in 
Moscow. 
 
 
2. PROBLEM FORMULATION 
 
Simulation of the TNS-index was carried out for 
the space-planning solution of the residential 
yard, proposed by the Moscow Committee for 
Architecture, and was based on: 
- variability of the use of materials in the 
decoration of the facade and their areas; 
- variability of materials used in paving, 
landscaping; 
- rational landscaping of yard areas and 
landscaping of vertical surfaces; 
- changes in the aeration mode during the 
installation of "windows" in the perimeter (well) 
building. 
 
 

2.1 ENVIRONMENTAL HEAT LOAD 
INDEX (TNS-INDEX) 
 
According to SanPiN 2.2.4.548-96 "Hygienic 
requirements to occupational microclimate" 
TNS-index is calculated from the formula: 
 

TNS=0.7×tw+0.3×t  
 
where  
tw is the wet bulb temperature, ° ; 
t  is the spherical bulb temperature, ° . 
Simulation of the microclimatic conditions of a 
residential court yard for the warm period of the 
year based on the TNS-index is not random, 
since the TNS-index has established itself as a 
universal tool for evaluation the environment 
indoors and outdoors during the warm season 
among other widely used bioclimatic indicators 
containing the radiation component. The TNS-
index is easy to calculate. Many installations for 
field surveys using a spherical bulb 
thermometer determine these indicators 
automatically [6, 7]. 
As Figure 1 shows, the TNS-index has good 
compatibility with the WBGT index (ISO 7243) 
and the operational (equivalent) temperature, 
which is used to determine thermal comfort 
based on the predicted mean vote (PMV) 
according to ISO 7730. However unlike the 
latter one, it has no restrictions in its application 
with a significant local asymmetry of radiation 
temperatures. 
 

 
Figure 1. Graphs for TNS-index and WBGT-

index under the same meteorological 
conditions. 
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3. ALGORITHM FOR ANALYSIS 
 
3.1. Step 1. Calculation of radiation 
temperatures (tr) for i point of the yard at a 
height of 1.5m 
Based on the determination of the average 
radiation temperature inside the room, in 
accordance with the formula (12) ISO 
7726:1998 “Ergonomics of the thermal 
environment — Instruments for measuring 
physical quantities" and earlier numerical 
results, confirmed by field studies, an equation 
has been proposed for determining the average 
radiation temperature of the environment using 
the irradiance coefficients from a spherical bulb 
thermometer to the surrounding reduced areas 
of fences of a residential court yard [5]. 
The formula for the average radiation 
temperature of the environment for the i point of 
a residential court yard from the influence of all 
six fences looks like this: 
 

tri= . × .             (2) 
 
where .   is the irradiance coefficient from 
a spherical bulb thermometer towards the 
reduced area of a particular fence; 
t . is the temperature of the reduced area, ° ; 
N is the number of reduced areas on the fence. 
 
3.2. Step 2. Calculation of the indication of a 
spherical thermometer (tg) for the i point of 
the yard 
According to ISO 7243, the relationship 
between the temperature of a bulb thermometer 
and the radiation temperature of the 
environment during natural convection, i.e.  < 
0.15 m/s is defined as: 
 

= . × ×

. ×
,                    (3) 

 
where tR is the ambient radiation temperature, 
° ;  is the air temperature, ° ;  is the 
spherical bulb thermometer readings, ° ;  is 
the wind velocity, m/s. 
 

3.3. Step 3. Calculation of the TNS index for 
the i point of the yard 
The TNS-index is calculated according to 
formula 1. 
Field studies of new residential microdistricts 
have shown that the average values of the wet 
thermometer readings (tw) amounted to +18.0 ° 
C at an average relative humidity of 46% [7] for 
the absence of tree and shrub plantations or their 
insufficiency, as well as the absence of water 
surfaces at an outdoor temperature of +26.0 ° C. 
Formula 1 takes the form: 
 

i=0,7×(+18° ) +0,3×t i 
 
3.4. Step 4. Construction of areas of the TNS-
index of a residential yard and determination 
of the level of comfort/discomfort according 
to Table 1 
 

Table 1. Working conditions in terms of TNS-
index (°C) for working premises with a heating 

microclimate, regardless of the period of the 
year and open areas in the warm season 

(upper limit) 
 

Cate
gory 

of 
work 

* 

Working conditions 
Per
miss
ible 

* 

Harmful Dange
rous 

(extre
me) 

3.1 3.2 3.3 3.4  
Ia 26,4 26,6 27,4 28,6 31,0 31,0 
Ib 25,8 26,1 26,9 27,9 30,3 30,3 
IIa 25,1 25,5 26,2 27,3 29,9 29,9 
IIb 23,9 24,2 25,0 26,4 29,1 29,1 
III 21,8 22,0 23,4 25,7 27,9 27,9 
* According to app. 1 SanPiN 2.2.4.548-96 "Hygienic 
requirements to occupational microclimate" 

 
 
4. OBJECT OF SIMULATION 
 
The object of the study was two identical 
residential courtyards planned for placement in 
zones 18.1 and 22.1 in accordance with the 
Planning Project for the Perovo district of 
Moscow, proposed by the Moscow Architecture 
Committee under the renovation program 
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3.1. Step 1. Calculation of radiation 
temperatures (tr) for i point of the yard at a 
height of 1.5m 
Based on the determination of the average 
radiation temperature inside the room, in 
accordance with the formula (12) ISO 
7726:1998 “Ergonomics of the thermal 
environment — Instruments for measuring 
physical quantities" and earlier numerical 
results, confirmed by field studies, an equation 
has been proposed for determining the average 
radiation temperature of the environment using 
the irradiance coefficients from a spherical bulb 
thermometer to the surrounding reduced areas 
of fences of a residential court yard [5]. 
The formula for the average radiation 
temperature of the environment for the i point of 
a residential court yard from the influence of all 
six fences looks like this: 
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where .   is the irradiance coefficient from 
a spherical bulb thermometer towards the 
reduced area of a particular fence; 
t . is the temperature of the reduced area, ° ; 
N is the number of reduced areas on the fence. 
 
3.2. Step 2. Calculation of the indication of a 
spherical thermometer (tg) for the i point of 
the yard 
According to ISO 7243, the relationship 
between the temperature of a bulb thermometer 
and the radiation temperature of the 
environment during natural convection, i.e.  < 
0.15 m/s is defined as: 
 

= . × ×

. ×
,                    (3) 

 
where tR is the ambient radiation temperature, 
° ;  is the air temperature, ° ;  is the 
spherical bulb thermometer readings, ° ;  is 
the wind velocity, m/s. 
 

3.3. Step 3. Calculation of the TNS index for 
the i point of the yard 
The TNS-index is calculated according to 
formula 1. 
Field studies of new residential microdistricts 
have shown that the average values of the wet 
thermometer readings (tw) amounted to +18.0 ° 
C at an average relative humidity of 46% [7] for 
the absence of tree and shrub plantations or their 
insufficiency, as well as the absence of water 
surfaces at an outdoor temperature of +26.0 ° C. 
Formula 1 takes the form: 
 

i=0,7×(+18° ) +0,3×t i 
 
3.4. Step 4. Construction of areas of the TNS-
index of a residential yard and determination 
of the level of comfort/discomfort according 
to Table 1 
 

Table 1. Working conditions in terms of TNS-
index (°C) for working premises with a heating 

microclimate, regardless of the period of the 
year and open areas in the warm season 

(upper limit) 
 

Cate
gory 

of 
work 

* 

Working conditions 
Per
miss
ible 

* 

Harmful Dange
rous 

(extre
me) 

3.1 3.2 3.3 3.4  
Ia 26,4 26,6 27,4 28,6 31,0 31,0 
Ib 25,8 26,1 26,9 27,9 30,3 30,3 
IIa 25,1 25,5 26,2 27,3 29,9 29,9 
IIb 23,9 24,2 25,0 26,4 29,1 29,1 
III 21,8 22,0 23,4 25,7 27,9 27,9 
* According to app. 1 SanPiN 2.2.4.548-96 "Hygienic 
requirements to occupational microclimate" 

 
 
4. OBJECT OF SIMULATION 
 
The object of the study was two identical 
residential courtyards planned for placement in 
zones 18.1 and 22.1 in accordance with the 
Planning Project for the Perovo district of 
Moscow, proposed by the Moscow Architecture 
Committee under the renovation program 

(Figure 2). The building density is 52.59 
thousand sq. m/ha (super dense) [8]. 
The size of the space of the residential yard after 
renovation is 104.4 × 122.4 m; h=10-55-65-95 
m. 
 
4.1.  Initial data: 
The residential group is assumed to be 
latitudinal (Figure 2.). 
- period of the year: July 
- time period: 11.00-13.00 hours 
- air temperature +26.0 °C - with a security of 
0.98; 
- wind speed up to 0.06 m/s; 
- clear. 
The solar component coming to the spherical 
bulb thermometer is +21.5 °  
 

 
Figure 2. urban planning solution a) 3D 

vizualization; b) scheme 

On the basis of field studies of similar objects 
(Table 2) [7], the surface temperatures of 
various coatings (tmelt) corresponding to the 
above mentioned meteorological conditions 
were obtained: 
 

Table 2. Surface temperatures of urban 
planning solution coating for air temperature 

+26,0° . 
 

No Coating Surface 
temperature, C 

1 2 3 
1 Facade "light" - concrete 

surface painted in light 
colors 

+30.0 

2 The facade is dark +36.0 
3 Window +28.0 
4 Concrete pavers "light" +36.0 
5 Concrete pavers "dark" +38.0 
6 Rubber coating, brown, 

recreation and sports grounds 
+40.0 

7 Lawn +32.0 
 
The temperature of the sky was calculated by 
formula 4 [9]: 
 

sky=0.0552×                    (4) 

sky=0.0552×(273 + 26.0) =285,4°  or 
+12,4°  

 
Specifically, for the area under consideration, 
the equation for calculating the radiation 
temperature of the environment for the i point 
considering the irradiance coefficient from the 
sphere bulb thermometer towards the given sites 
after its renovation (104.4×122.4×95.0 m), takes 
the following form: 
 

tri= . . . . ×

. . .+ . . . . ×

. . . + + . . . . ×

. . . + . . . . ×

. . .+ 
+ . . . . ×

. . .+ . . . . ×

. . .                (5) 

a) 

b) 
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where 
. . . is the average surface temperature of the 

reduced area of a particular fence of an 
imaginary yard space; 

. . is the irradiance coefficient from a 
sphere bulb thermometer in the direction of the 
reduced areas of a specific fence of an 
imaginary yard space 
 
 
5. NUMERICAL RESULTS AND 
CONCLUSIONS FOR THE MOSCOW 
ARCHITECTURE OPTION 
 
The TNS index calculation grid is 1.8 × 1.8 m. 
In accordance with Table 1, three areas of the 
TNS-index were built on the yard plan (Figure 
3.): 
- in the sun above +25.1° ; 
- in the sun in the range of +24.2°  

 
- in the shade less than +24.2° . 
 

 
Figure 3. Areas of the TNS-index (°C) for the 

projected urban planning solution 
 

Using the obtained TNS-index (Table 1.) (R 
2.2.2006-05 "Occupational health. Guidelines 
for the hygienic assessment of factors of the 

working environment and the labor process. 
Criteria and classification of working 
conditions"), we can draw the following 
conclusions about the bioclimatic impact on a 
person from due to such urban planning 
solutions for specific weather conditions: 
1. Throughout the yard it is comfortable to be in 
a state of rest and unhurried walks with an 
intensity of energy consumption up to 200 Kcal 
/ h. 
2. Fast walking (>5 km/h), carrying a grocery 
bag (more than 1 kg), light jogging, etc. with 
energy consumption up to 220 Kcal/h will cause 
uncomfortable heat sensations such as: slightly 
warm - warm in half of the yard. 
3. Physical activity with energy consumption 
over 220 Kcal / h, for example: volleyball, 
gymnastics, badminton, will cause 
uncomfortable heat sensations such as: warm-
hot in half of the yard. 
 
 
6. CLIMATOMELIORATIVE MEASURES, 
SIMULATION RESULTS  
 
6.1. Coating materials, paving 
Calculations of radiation temperatures and field 
studies show the surface-ground provides main 
“contribution” to the resulting radiation 
temperature from the surrounding surfaces 
(42÷46%), regardless of the height of the yard 
building [5]. Since the degree of heating of 
materials in the sun is related to the absorption 
coefficient of short-wave radiant energy 
(Equation 5.), It should be noted that the 
materials of coatings, paving must have 
absorption coefficients (ap) of no more than 0.5, 
for example: white sand; yellow brick; polished 
marble. Well-maintained lawns can also be used 
to reduce the resulting radiation temperatures. 
Additional sun heating of surfaces (ti), 
according to IEC 60721-2-4:1987 
“Classification of environmental conditions. 
Part 2: Environmental conditions appearing in 
natural. Solar radiation and temperature" is 
determined by the formula: 
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where 
. . . is the average surface temperature of the 

reduced area of a particular fence of an 
imaginary yard space; 

. . is the irradiance coefficient from a 
sphere bulb thermometer in the direction of the 
reduced areas of a specific fence of an 
imaginary yard space 
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CONCLUSIONS FOR THE MOSCOW 
ARCHITECTURE OPTION 
 
The TNS index calculation grid is 1.8 × 1.8 m. 
In accordance with Table 1, three areas of the 
TNS-index were built on the yard plan (Figure 
3.): 
- in the sun above +25.1° ; 
- in the sun in the range of +24.2°  

 
- in the shade less than +24.2° . 
 

 
Figure 3. Areas of the TNS-index (°C) for the 

projected urban planning solution 
 

Using the obtained TNS-index (Table 1.) (R 
2.2.2006-05 "Occupational health. Guidelines 
for the hygienic assessment of factors of the 

working environment and the labor process. 
Criteria and classification of working 
conditions"), we can draw the following 
conclusions about the bioclimatic impact on a 
person from due to such urban planning 
solutions for specific weather conditions: 
1. Throughout the yard it is comfortable to be in 
a state of rest and unhurried walks with an 
intensity of energy consumption up to 200 Kcal 
/ h. 
2. Fast walking (>5 km/h), carrying a grocery 
bag (more than 1 kg), light jogging, etc. with 
energy consumption up to 220 Kcal/h will cause 
uncomfortable heat sensations such as: slightly 
warm - warm in half of the yard. 
3. Physical activity with energy consumption 
over 220 Kcal / h, for example: volleyball, 
gymnastics, badminton, will cause 
uncomfortable heat sensations such as: warm-
hot in half of the yard. 
 
 
6. CLIMATOMELIORATIVE MEASURES, 
SIMULATION RESULTS  
 
6.1. Coating materials, paving 
Calculations of radiation temperatures and field 
studies show the surface-ground provides main 
“contribution” to the resulting radiation 
temperature from the surrounding surfaces 
(42÷46%), regardless of the height of the yard 
building [5]. Since the degree of heating of 
materials in the sun is related to the absorption 
coefficient of short-wave radiant energy 
(Equation 5.), It should be noted that the 
materials of coatings, paving must have 
absorption coefficients (ap) of no more than 0.5, 
for example: white sand; yellow brick; polished 
marble. Well-maintained lawns can also be used 
to reduce the resulting radiation temperatures. 
Additional sun heating of surfaces (ti), 
according to IEC 60721-2-4:1987 
“Classification of environmental conditions. 
Part 2: Environmental conditions appearing in 
natural. Solar radiation and temperature" is 
determined by the formula: 
 

ti = ta +(ap ×E)/hto,                  (6) 
 

where ta is the air temperature, °C; 
ap is the absorption coefficient of radiant 
energy; 
E is the solar flux density, W/m²; 
hto is the heat transfer coefficient of the surface, 
W/m²× °. 
 
6.2. Facade finishing materials 
The previous section also applies to the issue of 
finishing insolated facades. As you approach the 
sunlit facade, its synergistic effect on the 
resulting radiation temperatures increases to 
35% of the total “contribution” (Figure 4).  
 

 
 

Figure 4. Graphs of radiation temperatures 
generated by an insulated facade with various 

architectural and construction solutions 
 
This means the pedestrian paths fall into the 
zone of active influence of the insolated facade. 
There are cases when, in the absence of an 
extensive pavement-path network, a person is 
experienced the maximum thermal load while 
moving along a fire-prevention passage along a 
multi-meter wall illuminated by the sun. It is 
recommended to provide shortest paths to the 
entrances to the building and objects in the yard 
when planning it (Figure 5). 
 
 
 
 

 
Figure 5. a). in the planning structure of the 
yard only fire lanes with sidewalks; b). in the 

planning structure of the courtyard, a developed 
sidewalk and path network 

 
If it is necessary to use “dark” (radiant energy 
absorption coefficient of the material ~ 0.8) facade 
elements in architectural and construction 
solutions, it is advisable to make the facing of the 
first five floors from “light” material (radiant 
energy absorption coefficient is not more than 
0.6). At the same time, at least 50% of the thermal 
radiation generated by the insolated facade falls on 
the first five floors (Figures 4, 6). 
 

 
Figure 6. Variants of the architectural and 

construction solution for the insolated facade: 
a) "dark"; b) "combined" with the first floors of 

"light" cladding 
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6.3. Landscaping area 
Since 2020, the planning structure of the 
adjoining and courtyard areas of residential 
buildings has been standardized including 
landscaping area. However, these requirements 
are only quantitative. 
Simulation of the thermal load of the 
environment to residential yard shows the green 
areas should be quantitative and applied nature. 
For example, the even distribution of green areas 
allows you to evenly distribute the heat load 
isotherms of the yard. In the future, individual 
trees or groups of trees can be grown in these 
areas, which will improve the microclimate in the 
warm season (Figure 7) [10]. 

 
Figure 7. a) quantitative nature of landscaping; 

b) applied nature of landscaping 

For landscaping vertical insolated surfaces, 
climbing grapes were chosen as the most 
common fast-growing plant of medium latitude 
with well-studied properties (Figure 8) [11]. 
Moreover, a plant height of 6 to 8.0 meters is 
sufficient, because a further increase in the height 
of vertical gardening does not lead to significant 
changes in the heat load (calculation data). 
The calculation of the TNS-index for wall 
landscaping showed that it becomes more 
comfortable on the walking route (Figure 9). 
The shift of the increased area of the TNS-index 
(> +25.1°C) to the central part of the yard is due 
to the use of molded rubber coating with a high 
absorption coefficient of solar energy (~0.8) in 
the coating of playgrounds, recreation and 
sports grounds. It is recommended to replace the 
coating material of the sites with materials with 
a solar energy absorption coefficient (0.5÷0.6). 
 

 
Figure 8. The example of green facade of 

building 
 

 
Figure 9. TNS-index areas (° ) for the designed 

urban planning solution 

a) 

b) 
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6.4. Aeration mode 
The variant of urban planning proposed by the 
Moscow Committee for Architecture is a semi-
closed morphotype of the yard [12]. There is 
practically no aeration in such yards, the 
temperature fields are more stable than in sparse 
buildings. Simulation of the TNS-index shows 
that in order to improve the thermal conditions 
of the yard, it is enough to increase the air 
velocity in the surface (active) layer up to 0.1 
m/s. The TNS-index will drop to a favorable 
+24.8 °C. To aerate the residential yard, it is 
proposed to make an additional gap in the 
perimeter building and several through arches, 
considering the wind rose of the warm period of 
the year (Figure 10). 
 

 
Figure 10. a). there is not aeration of the yard; 

b). aeration of the yard 
 
 

7. CONCLUSIONS 
 
The possibility of the radiation temperatures' 
calculation for the environment of the yard in 
regard with the urban planning solution of the 
surrounding buildings, allows to simulate the 
microclimate of its territory and assess the 
degree of its comfort based on the bioclimatic 
indicator of the TNS-index. 
This simulation allows you give a 
comprehensive recommendation for improving 
the microclimate for typical meteorological 
conditions during the warm season in the 
renovation area of Moscow, such as follows: 
- development of the system of sidewalk and 
footpath network of the yard; 
- rational placement of landscaping areas on the 
territory of the yard and landscaping of the 
insolated facade; 
- thermal performance of materials used in 
coatings, paving and facade cladding; 
- space-planning solution in order to improve 
the aeration of the yard. 
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1. INTRODUCTION 
 
Trends in the development of information 
technology are changing the classical idea of how 
to solve many problems that arise in civil 
engineering. Accelerated analysis of large 
information flows of multivariate solutions from 

the concept of the project to the decommissioning 
moment for a certain construction object requires 
the use of artificial intelligence methods. It is clear 
that machine learning, deep learning, and 
reinforcement learning are becoming the leading 
information technologies. For example, the 
development of neural networks makes it possible 

International Journal for Computational Civil and Structural Engineering, 18(3) 54–64 (2022)

DOI:10.22337/2587-9618-2022-18-3-54-64



55Volume 18, Issue 3, 2022

ON THE QHASI CLASS AND ITS EXTENSION  
TO SOME GAUSSIAN SHEETS 

 
Charles El-Nouty 1, Darya V. Filatova 2 

 

1 LAGA, UMR 7539, F-93430, Université Sorbonne Paris Nord, Paris, FRANCE 
2 National Research Moscow State University of Civil Engineering, Moscow, RUSSIA 

 
Abstract. Introduced in 2018 the generalized bifractional Brownian motion is considered as an element of the quasi-
helix with approximately stationary increment class of real centered Gaussian processes conditioning by parameters. 
This paper proves that the generalized bifractional Brownian motion is an element of the above mentioned class with no 
condition on parameters. The quasi-helix with approximately stationary increment class of real centered Gaussian 
processes is extended to two-dimensional processes as the fractional Brownian sheet, the sub-fractional Brownian sheet, 
and the bifractional Brownian sheet. This generalized presentation of the class of stochastic processes is used to augment 
the training samples for generative adversarial networks in computer vision problem. 
 

Keywords: centered Gaussian process, generalized bifractional Brownian motion, Gaussian sheet, 
generative adversarial network, computer vision 

 
 

 
 

 
-  1,  2 

 

1 ,  7539, -93430, - , ,  
2  

,  
 

.  
  

 

 -
 

  
-

 
 

 :  
-

 
 
 

1. INTRODUCTION 
 
Trends in the development of information 
technology are changing the classical idea of how 
to solve many problems that arise in civil 
engineering. Accelerated analysis of large 
information flows of multivariate solutions from 

the concept of the project to the decommissioning 
moment for a certain construction object requires 
the use of artificial intelligence methods. It is clear 
that machine learning, deep learning, and 
reinforcement learning are becoming the leading 
information technologies. For example, the 
development of neural networks makes it possible 

to more accurately solve the problem of finding and 
classifying defects or pathologies hidden from the 
human eye on the surface of a structure, even at an 
early stage of the destruction process. In pursuit of 
the goal of increasing the reliability of the solutions 
obtained, the solution methodology itself is 
modified [1]. Popular in computer vision, 
convolutional neural networks very often use the 
so-called pseudo-samples for training, which result 
from generating data using various random noises 
[2]. This approach to training neural networks has 
led to the creation of generative adversarial 
networks (GANs) [3]. The main idea of the GAN 
is to compete with two neural networks in a zero-
sum game, i.e. one network generates information 
and the other tries to please it. This competitive 
process must change over time to avoid overfitting 
the guessing network. When writing a scenario for 
generating pseudo data, it is necessary to use some 
universal multidimensional (even if two-
dimensional) stochastic process or a class of 
processes that allows you to display reality as 
closely as possible - stationary or non-stationary 
dynamics of the phenomenon under study. The 
modern development of the theory of stochastic 
processes makes it possible to introduce a certain 
class of processes that can be successfully used to 
create a GAN, and as a result, to increase the 
reliability of solving computer vision problems.  
In [4], a new class of centered Gaussian 
processes was introduced. More precisely, a 
centered Gaussian process { ( ), }X t t I R  
belongs to the quasi-helix with approximately 
stationary increments (QHASI) class if it fulfills 
the five following assumptions: 
 
 A1: (0) 0X   with probability 1; 
 A2:  there exists  0 such that  X   is 

self-similar with index ; 
 A3: there exist   

1 20 C C ; 
such that 2( , )s t I  

2 2
1

2
2

| | ( ( ) ( ))
| | ;

C t s X t X s
C t s

E
 

 A4: there exists  

3 1 2[ , ]C C C  
such that  2( , )s t I , t s , 0,st  when 

0t s , 2 2
3( ( ) ( )) ( )X t X s C t sE ,  

 A5: there exists  
4 1 2[ , ]C C C  

such that  t I , 2 2
4( ) | |X t C tE . 

 
Let us make some comments about the 
assumptions. Assumptions (A1) and (A5) are done 
for sake of convenience. Then, assumption (A2) 
means that the process X  is an attractive one. 
Finally, assumption (A3) means that the process 
X  is a -quasi-helix in the sense of [5], whereas 
assumption (A4) means that the increments of X  
are approximately stationary for small increments, 
this notion having been introduced in [6]. The 
underlying idea of the QHASI class is to replace the 
stationary increments property by assumptions 
(A3) and (A4). 
The QHASI class contains some famous Gaussian 
processes such that the fractional Brownian 
motion (fBM), the bifractional Brownian motion 
(bBM) and the sub-fractional Brownian motion 
(sfBM). The values of the associated constants  

1 2, 3 4, , ,C C C C   can be found in [4] for each of 
these processes. We refer on one hand to [6] for 
further information on the bBm and on the other 
hand to [7] for further information on the sfBm. 
Note also that the following processes are also 
elements of the QHASI class: 
 
 the sub bifractional Brownian motion (sbBm) 

(see [8]) 
 the generalized fBM (gfBm) (see [9], [10]) 

 
In [10], the generalized bifractional Brownian 
motion (gbBm) , , ,: H KY Y , was introduced. It 
is defined as follows: 
  

, , , , ,( ) : ( ) ( ) ( ),
0, 0, 0,

H K H K H KY t Y t B t B t
t

 

 
where ,{ ( ), }H KB t t R  is a bBm with indices  
0 1H  and 0 1K  . 
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Set ( 2 )/2
1

2
( ) KK , 0 1K . We insist on the 

fact that the process Y  was already introduced for 
specific values of  , , and K . More 
precisely, the sfBm corresponds to (1), (1), ,1HY , the 
sbBm to ( ), ( ), ,K K H KY  and the gfBm to , , ,1HY . 
In [10], it was proved that the gbBm was an 
element of the QHASI class under some 
conditions on  H  and K . More precisely, the 
following result was established. 
 
Theorem 1.  Assume that  2 1HK  . Then the 
gbBm is an element of the QHASI class, with 
 
  HK , 
  2 2

1 ( ) 2 KC , 
  1 2 2

2 2 (( ) 2 )K HKC , 

  1 2 2
3 2 KC , 

  2 2 2
4 2(1 2 ) .HK KC  

 
 
The first aim of this paper is to show that the 
gbBm is an element of the QHASI class for any  
 

( , , , ) ]0, [ ]0, [ ]0,1[ ]0,1]H K . 
 
Our first result is stated in the following theorem. 
 
Theorem 2.  Assume that  2 1HK . Then the 
gbBm is an element of the QHASI class, with 
 
  HK , 
  2 1 2 2

1 2 (1 2 ) ( )HK KC , 
  1 2 2

2 2 ( )KC , 

  1 2 2
3 2 KC , 

  2 2 2
4 2(1 2 ) .HK KC   

 
 
Let us make some comments on the above 
theorems. As it was already observed in [4], [8] 
and [12], the hyperbola  2 1HK   plays a key 
role. It has also an influence on the values of the 
constants  1C   and  2C . Let focus our attention 
on two specific cases. First, when 

( 2 )/2
1

2
( ) KK , theorem 2 generalizes 

proposition 1.1 in [8]. Next, when  1K  and 
2 1H , the values of the constant 2C  given in 
the above theorem and in [9] are similar, but the 
value of 1C  given in Theorem 2 is less precise 
than the value of 1C  given in [9]. It can be 
explained by the fact that, when  1K  , direct 
computations are available. 
The second aim of this paper is to answer to the 
following question: can we extend the QHASI 
class to two-dimensional processes? To this 
purpose, we introduce the following notation.  
 
Let 

1 , 0X s s  
and  

2 , 0X t t  
 

be two elements of the QHASI class. For any 
1,2i , we denote by  1 2, 3 4, , ,i i i i iC C C C  

the associated constants. Set 
 

2 2
1 1 2 1 1 1 2, ( ( ))s s X s X sE  

and  
2 2
2 1 2 2 1 2 2, ( ( )) .t t X t X tE  

 
Set  ,u s t   and  ( , )ij i ju s t , 1 , 2i j . 
We consider some Gaussian sheets  

,X u u R R  such that 
 

1 1

2 2 .

ij i j i i

j j

X u X u X s X s

X t X t

E E

E
 

 
We can easily derive the variance of the process 
X . We have 
 

1 2

2 2 2
1 2

2 2
4 ,X

X u X s X t

C s t

E E E
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Set ( 2 )/2
1

2
( ) KK , 0 1K . We insist on the 

fact that the process Y  was already introduced for 
specific values of  , , and K . More 
precisely, the sfBm corresponds to (1), (1), ,1HY , the 
sbBm to ( ), ( ), ,K K H KY  and the gfBm to , , ,1HY . 
In [10], it was proved that the gbBm was an 
element of the QHASI class under some 
conditions on  H  and K . More precisely, the 
following result was established. 
 
Theorem 1.  Assume that  2 1HK  . Then the 
gbBm is an element of the QHASI class, with 
 
  HK , 
  2 2

1 ( ) 2 KC , 
  1 2 2

2 2 (( ) 2 )K HKC , 

  1 2 2
3 2 KC , 

  2 2 2
4 2(1 2 ) .HK KC  

 
 
The first aim of this paper is to show that the 
gbBm is an element of the QHASI class for any  
 

( , , , ) ]0, [ ]0, [ ]0,1[ ]0,1]H K . 
 
Our first result is stated in the following theorem. 
 
Theorem 2.  Assume that  2 1HK . Then the 
gbBm is an element of the QHASI class, with 
 
  HK , 
  2 1 2 2

1 2 (1 2 ) ( )HK KC , 
  1 2 2

2 2 ( )KC , 

  1 2 2
3 2 KC , 

  2 2 2
4 2(1 2 ) .HK KC   

 
 
Let us make some comments on the above 
theorems. As it was already observed in [4], [8] 
and [12], the hyperbola  2 1HK   plays a key 
role. It has also an influence on the values of the 
constants  1C   and  2C . Let focus our attention 
on two specific cases. First, when 

( 2 )/2
1

2
( ) KK , theorem 2 generalizes 

proposition 1.1 in [8]. Next, when  1K  and 
2 1H , the values of the constant 2C  given in 
the above theorem and in [9] are similar, but the 
value of 1C  given in Theorem 2 is less precise 
than the value of 1C  given in [9]. It can be 
explained by the fact that, when  1K  , direct 
computations are available. 
The second aim of this paper is to answer to the 
following question: can we extend the QHASI 
class to two-dimensional processes? To this 
purpose, we introduce the following notation.  
 
Let 

1 , 0X s s  
and  

2 , 0X t t  
 

be two elements of the QHASI class. For any 
1,2i , we denote by  1 2, 3 4, , ,i i i i iC C C C  

the associated constants. Set 
 

2 2
1 1 2 1 1 1 2, ( ( ))s s X s X sE  

and  
2 2
2 1 2 2 1 2 2, ( ( )) .t t X t X tE  

 
Set  ,u s t   and  ( , )ij i ju s t , 1 , 2i j . 
We consider some Gaussian sheets  

,X u u R R  such that 
 

1 1

2 2 .

ij i j i i

j j

X u X u X s X s

X t X t

E E

E
 

 
We can easily derive the variance of the process 
X . We have 
 

1 2

2 2 2
1 2

2 2
4 ,X

X u X s X t

C s t

E E E
 

 

where 4 14 24XC C C . 
 
Note that when the process 1X  is a fBm with 
Hurst index 10 1H  and the process 2X  is a 
fBm with Hurst index 20 1H , the process  
X  is a fractional Brownian sheet (fBS) with 
indexes  1H  and 2H . There is a huge literature 
on the fBs. We refer to [13] for further 
information on this process. 
The rest of the paper is organized as follows. In 
section 2, we prove Theorem 2, whereas the 
properties of the two-dimensional process  X   
are studied in section 3. In section 4, we focus 
our attention on specific sheets and illustrations 
for the computer vision problem related to the 
surface anomalies detection. Section 5 concludes 
the main results of this research. 
 
 
2. PROOF OF THEOREM 2 
 
Recall first that  1 2 2HK  , and therefore  

1/ 2H   and  1/ 2K . Note that the values 
of  2 3, ,C C   and  4C   were already given in 
[CEN18]. The proof of the theorem will be 
divided into four steps. 
 
Step 1. Let us determine the value of the constant  

1C . Combining proposition 10 with lemma 12 
presented in [10], we have for 0t s  
 

2 2
, , ,

2
, , , , , ,

21 2 2

2
,

1 2
1/2,2

, : ,

2

,

2 ,

H K

H K H K

HKK

H K

K HK
HK

s t s t

Y t Y s

t s

F s t

F s t

E

 

 
where 

2 2
2 2

, , 2 0
2

KH H
HK HK

H K
t sF s t t s , 

2 2
1/2,2 , 2 0

2

K
HK HK

HK
t sF s t t s . 

 
Let us establish a suitable upper bound of 
 

2 1 2
, 1/2,2( ) ( , ) 2 ( , )K HK

H K HKF s t F s t . 
 

 Recall that  
 

2 2 2 2 22 ( ) 2 ( ) . 
 

Thus, we have   
 

2 1 2
, 1/2,2

2 2
,

2 1
1/2,2

( , ) 2 ( , )

2 ( , )

2 ( , )

K HK
H K HK

H K

HK K
HK

F s t F s t

F s t

F s t

 

 
Note that  2 1 (2 1) 1 0HK K H K  . 
Next, combining inequality (2.4) in [8] with 
straight computations, we get 
 

2 1
, 1/2,2

2 21
2

22 1 2 2

2 22 11
2

, 2 ( , )

2

2 2

2 2 .

K

K

HK K
H K HK

KH H

HKK HK HK HK

HK HKK HK

F s t F s t

t s

t s t s

t s t s

 

 
Hence, we get 
 

22 1 2 2 2 2

2 22 11
2

22 1 2 2

, 2 2

2 2

2 1 2 .

K

HKK

HK HKK HK

HKHK K

s t t s

t s t s

t s

 

 
The constant 1C  is now determined. 
 
Step 2. The aim of this step is to show that 

1 3 2C C C . Since1 2 2HK  and 0 1K , 
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we have  
 

2 12 2 1 2K HK , 
 

and therefore  
 

2 12 2 2 .HK K K  
 
The last inequality can be rewritten as follows  
 

2 1 12 (1 2 ) 2 .HK K K  
 

Hence 1 3 2C C C . 
Step 3. Let us show that  4 2 3C C C  . To 
determine the sign of  3 4C C  , it suffices to 
study the function  ,H KT   defined by 
 

1 2
,

2 1

( ) (2 1)

2(2 1) 2 1, .

K
H K

HK K K

T x x

x x R
 

 
We will distinguish the following two cases. 
 
Case 1. 1K   and  2 1H . 
We have  2 1

,1( ) 2(2 1)H
HT x x . Keep in mind 

that 0  and 0 . Once 0x , it follows 
that ,1( ) 0HT x . Thenceforward, 3 4C C . 
 
Case 2.  1K   and  1 2HK .  
The function  ,H KT  has a unique minimum at 
the point  

2

0 1
2 1

2 1

HK K

Kx . 

 
Since   

2 0HK K , 
 

we obviously have  0 0x . Moreover, recall 
that, when 0x x , ,H KT is a non-increasing 
function, otherwise a non-decreasing one. Note 
that 
 

1
, (0) 2 1 0K

H KT . 

Thus we have  , ( ) 0H KT x   for any  0x  , 
and therefore  3 4C C . 
 
Step 4. Let us show that 1 4C C . It suffices to 
verify  
 

2 1 2 2

2 2 2

2 1 2

2 1 2 .

HK K

HK K
 

 
This inequality can be rewritten in the form  
 

2 2 2 21 2 2 1 2HK K HK K , 
 

which is equivalent to  
 

221 2 0.HK K  
 
Since 2 0HK K , 1 4C C . 
This completes the proof of the theorem. 
 
 
3. PROPERTIES OF THE PROCESS X 
 
Let us state some basic properties of the process X  
 
Proposition 3. We have 
  ( , )X   is a Gaussian process, 
  ( ,0) (0, ) 0X s X t ,  
 for any  0 0s  , the one-dimensional 

process  1
0 0 , , 0s X s t t   is a  

14 2C X  process, 
 for any  0 0t  , the one-dimensional 

process  2
0 0, , 0t X s t s   is a  

24 1C X   process. 
  

Proof. The first two points are obvious. To prove 
the third point, it suffices to compute  
 

1 1
0 0 1 0 0 2, ,s X s t s X s tE . 
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HT x x . Keep in mind 

that 0  and 0 . Once 0x , it follows 
that ,1( ) 0HT x . Thenceforward, 3 4C C . 
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The function  ,H KT  has a unique minimum at 
the point  

2

0 1
2 1

2 1

HK K
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Since   

2 0HK K , 
 

we obviously have  0 0x . Moreover, recall 
that, when 0x x , ,H KT is a non-increasing 
function, otherwise a non-decreasing one. Note 
that 
 

1
, (0) 2 1 0K

H KT . 

Thus we have  , ( ) 0H KT x   for any  0x  , 
and therefore  3 4C C . 
 
Step 4. Let us show that 1 4C C . It suffices to 
verify  
 

2 1 2 2

2 2 2

2 1 2

2 1 2 .

HK K

HK K
 

 
This inequality can be rewritten in the form  
 

2 2 2 21 2 2 1 2HK K HK K , 
 

which is equivalent to  
 

221 2 0.HK K  
 
Since 2 0HK K , 1 4C C . 
This completes the proof of the theorem. 
 
 
3. PROPERTIES OF THE PROCESS X 
 
Let us state some basic properties of the process X  
 
Proposition 3. We have 
  ( , )X   is a Gaussian process, 
  ( ,0) (0, ) 0X s X t ,  
 for any  0 0s  , the one-dimensional 

process  1
0 0 , , 0s X s t t   is a  

14 2C X  process, 
 for any  0 0t  , the one-dimensional 

process  2
0 0, , 0t X s t s   is a  

24 1C X   process. 
  

Proof. The first two points are obvious. To prove 
the third point, it suffices to compute  
 

1 1
0 0 1 0 0 2, ,s X s t s X s tE . 

We have 
 

1 1
0 0 1 0 0 2, ,s X s t s X s tE  

1

1 1

2
0 1 0 1 0 2 1 2 2

2 2
0 14 0 2 1 2 2

14 2 1 2 2 .

s X s X s X t X t

s C s X t X t

C X t X t

E E

E

E

 

 
We omit the proof of the last point.            

 
 
Keep in mind that the flavor of the QHASI class 
consists in the quasi-helix property in the sense of 
Kahane [2] and its approximately stationary one. 
To extend these concepts to two-dimensional 
processes, let us recall that the increment  of 
X  between the points  11 1 1,u s t  and 

22 2 2,u s t  is defined as follows 
 

11 22 12 21X u X u X u X u , 
 

where  12 1 2,u s t  and 21 2 1,u s t . 
Set  
 

2 2
11 22,u uE . 

 
We can establish the following essential 
proposition. 
 
Proposition 4. We have 
 

2 2 2
11 22 1 1 2 2 1 2, , ,u u s s t t . 

 
Proof. As far as we know, the above 
proposition has not been written yet. Therefore 
we will prove it. Direct computations yield 
 

2
11 22

2 2 2 2
1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

2 2
1 1 1 2 2 1 2 2

2 2
2 1 2 2 1 1 1 2

,

2

.

u u

X s X s X t X t

X s X s X t X t

X s X s X t X t

X t X t X s X s

E E E E

E E

E E E

E E E

 

Since 
 

2 2
1 1 2 1 1 1 1 1 2

2
1 2

, 2s s X s X s X s

X s

E E

E
 

 
and 
 

2 2
2 1 2 2 1 2 1 2 2

2
2 2

, 2

,

t t X t X t X t

X t

E E

E
 

 
we have 

 
2

11 22

2 2 2 2
1 1 1 2 2 1 2 2

2
1 1 2 2 1 2 2

2 2
2 1 2 2 1 1 1 2

,

2 ,

u u

X s X s X t X t

s s X t X t

X t X t X s X s

E E E E

E

E E E

 

2
1 1 2 2 1 2 2

2 2
2 1 2 2

2 2
1 1 1 2 1 1 1 2

2
1 1 2 2 1 2 2

2 2 2
2 1 2 2 1 1 2

2 2 2
1 1 2 2 1 2 2

2 1 2 2

2 2
1 1 2 2 1 2

2 ,

2

2 ,

,

,

2

, , .

s s X t X t

X t X t

X s X s X s X s

s s X t X t

X t X t s s

s s X t X t

X t X t

s s t t

E

E E

E E E

E

E E

E E

E

 

 
The proof of the proposition is now complete.  
 
Combining the above proposition with the fact 
that the processes 1X  and 2X  are elements of 
the QHASI class, we get the following results. 
 
Proposition 5. We have 

1 2

1 2

2 2 2
1 1 2 1 2 11 22

2 2
2 1 2 1 2

,

,
X

X

C s s t t u u

C s s t t
 

where  1 11 21XC C C   and  2 12 22XC C C . 
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Proposition 6. When  2 1 0s s , 2 1 0s s ,  
and  2 1 0t t  , 2 1 0t t , we have 

1 22 22
11 22 3 2 1 2 1, ( ) ( )Xu u C s s t t , 

where  3 13 23XC C C  . 
 
It is obvious that  1 3 2X X XC C C  and  

1 4 2X X XC C C . Roughly speaking, we can say 
that the process  X   is a quasi-helix in the 
sense of Kahane [2] and has approximately 
stationary increments. We can associate to  X   
the six constants 1 2 1 2, 3 4, , , , .X X X XC C C C
Thus, we answer to the question stated in the 
introduction. Indeed we are able, on one hand to 
extend the definition of the QHASI class to two 
dimensional processes, and on the other hand to 
create new Gaussian sheets. 
 
 
4. SOME SPECIFIC SHEETS 
 
4.1. The fractional Brownian sheet 
Let 1X  be a fBm with Hurst index 10 1H  
and 2X  be a fBm with Hurst index 20 1H . 
As already mentioned, the process X  constructed 
as described earlier is the fBs. Note that its six 
associated constants are  1 2, ,1,1,1,1H H . It 
implies that calculi are quite convenient for the fBs. 
This partially explains its popularity. 
 
4.2. The subfractional Brownian sheet 
Let 1X  be a sfBm with Hurst index 10 1H  
and 2X  be a sfBm with Hurst index  

20 1H . We can construct the process  X . 
To determine the six associated constants, we 
have to consider the four following cases: 
 
 when  1

1 2H   and  1
2 2H  , the constants 

are 
1 2

1 2

2 1 2 1
1 2

2 1 2 1

, ,1, 2 2 2 2 ,

1, 2 2 2 2 ;

H H

H H

H H
 

 when 1
1 2H  and 1

2 2H , the constants are 

2 1

1 2

2 1 2 1
1 2

2 1 2 1

, , 2 2 ,2 2 ,

1, 2 2 2 2 ;

H H

H H

H H
 

 when  1
1 2H   and  1

2 2H  , the 
constants are 

1 2

1 2

2 1 2 1
1 2

2 1 2 1

, , 2 2 ,2 2 ,

1, 2 2 2 2 ;

H H

H H

H H
 

 when  1
1 2H   and  1

2 2H  , the 
constants are 

1 2

1 2

2 1 2 1
1 2

2 1 2 1

, , 2 2 2 2 ,

1,1, 2 2 2 2 .

H H

H H

H H
 

 
4.3. The bifractional Brownian sheet 
Let 1X  be a bBm with Hurst indices  

10 1H  and 10 1K  as well as 2X  be a 
bBm with Hurst indices 20 1H  and 

10 1K . We can construct the process X . Its 
six associated constants are 
 

1 2 1 2 1 22 2
1 1 2 2, , 2 , 2 , 2 ,1 .K K K K K KH K H K  

 
4.4. Other possible sheets 
Following the same ideas, we can construct the 
sub-bifractional Brownian sheet, the generalized 
fractional Brownian sheet and the generalized 
bifractional sheet. There is no difficulty to give 
the six associated constants. We can also mix the 
different elements of the QHASI class in order to 
create new sheets. For example, let 1X  be a fBm 
with Hurst index 10 1H  and 2X  be an 
element of the QHASI class with the associated 
constants 1 2, 3 4, , ,C C C C . We can construct 
the process X  using six associated constants 
 

1 1 2, 3 4, , , ,H C C C C  
 
In some sense, the influence of the fBm vanishes. 
This is not really surprising since the fBm has 
stationary increments. 
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Proposition 6. When  2 1 0s s , 2 1 0s s ,  
and  2 1 0t t  , 2 1 0t t , we have 
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It is obvious that  1 3 2X X XC C C  and  

1 4 2X X XC C C . Roughly speaking, we can say 
that the process  X   is a quasi-helix in the 
sense of Kahane [2] and has approximately 
stationary increments. We can associate to  X   
the six constants 1 2 1 2, 3 4, , , , .X X X XC C C C
Thus, we answer to the question stated in the 
introduction. Indeed we are able, on one hand to 
extend the definition of the QHASI class to two 
dimensional processes, and on the other hand to 
create new Gaussian sheets. 
 
 
4. SOME SPECIFIC SHEETS 
 
4.1. The fractional Brownian sheet 
Let 1X  be a fBm with Hurst index 10 1H  
and 2X  be a fBm with Hurst index 20 1H . 
As already mentioned, the process X  constructed 
as described earlier is the fBs. Note that its six 
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20 1H . We can construct the process  X . 
To determine the six associated constants, we 
have to consider the four following cases: 
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 when  1
1 2H   and  1

2 2H  , the 
constants are 

1 2

1 2

2 1 2 1
1 2

2 1 2 1

, , 2 2 2 2 ,

1,1, 2 2 2 2 .

H H

H H

H H
 

 
4.3. The bifractional Brownian sheet 
Let 1X  be a bBm with Hurst indices  

10 1H  and 10 1K  as well as 2X  be a 
bBm with Hurst indices 20 1H  and 

10 1K . We can construct the process X . Its 
six associated constants are 
 

1 2 1 2 1 22 2
1 1 2 2, , 2 , 2 , 2 ,1 .K K K K K KH K H K  

 
4.4. Other possible sheets 
Following the same ideas, we can construct the 
sub-bifractional Brownian sheet, the generalized 
fractional Brownian sheet and the generalized 
bifractional sheet. There is no difficulty to give 
the six associated constants. We can also mix the 
different elements of the QHASI class in order to 
create new sheets. For example, let 1X  be a fBm 
with Hurst index 10 1H  and 2X  be an 
element of the QHASI class with the associated 
constants 1 2, 3 4, , ,C C C C . We can construct 
the process X  using six associated constants 
 

1 1 2, 3 4, , , ,H C C C C  
 
In some sense, the influence of the fBm vanishes. 
This is not really surprising since the fBm has 
stationary increments. 
 

4.5. Illustrations 
Now we give several illustrations of an image 
generation, using the fractional Brownian sheet 
(see Fig. 1) and the subfractional Brownian sheet 
(see Fig.3, Fig. 5, Fig. 7, and Fig. 9). As it is 
possible to notice these images are similar with 
the pictures which one can obtain by thermal 
camera, say for some heated surface. Since our 
goal is only to augment quantity of training 
samples, we just suppose that minimal values of 
the generated process correspond to “black” 
pixels and maximal values corresponds to 
“white” pixels. Setting “red” color as a normal 
temperature for the heated surface, it is possible 
to see “overheated” areas. To make the corrupted 
areas more visible we apply color-based 
segmentation using k-means clustering (see 
Fig. 2, Fig. 4, Fig. 6, Fig. 8, and Fig. 10). 
 

 
Figure 1. Test 1 - the fractional Brownian sheet 

with parameters 0.75,0.75,1,1,1,1   

Figure 2. Segmented areas for Test 1 
 

 
Figure 3. Test 2 – the subfractional Brownian 

sheet with parameters 
0.75,0.75,1,0.34,1,0.34  

 
Figure 4. Segmented areas for Test 2 

Figure 5. Test 3 – the subfractional Brownian 
sheet with parameters 

0.75,0.25,1,0.76,1,0.76  
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Figure 6. Segmented areas for Test 3 

 
Figure 7. Test 4 – the subfractional Brownian 

sheet with parameters 
0.25,0.75,1,0.76,1,0.76  

 
Figure 8. Segmented areas for Test 4 

 
Figure 9. Test 5 – the subfractional Brownian 

sheet with parameters 
0.25,0.25,1, 1.67, 1,1.67)

 
Figure 10. Segmented areas for Test 5 

 
It is obvious that only by changing the parameters 
of the stochastic process we get different corruption 
processes for the surface. Moreover, any repetition 
of the generation even with the same parameters 
gives new image preserving the main tendency of 
the corruption process.   
 
 
5. CONCLUDING REMARKS 
 
We have completed previous results by proving 
that the gbBm is an element of the QHASI class 
with no condition on the parameters. When 
2 1HK , the constant 1C  has been determined. 
Then we have proposed a construction of several 
Gaussian sheets based on the QHASI class. We 
have studied the main properties of these sheets 
such that the self-similarity one, the quasi-helix one 
and the approximately stationary one. The QHASI 
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5. CONCLUDING REMARKS 
 
We have completed previous results by proving 
that the gbBm is an element of the QHASI class 
with no condition on the parameters. When 
2 1HK , the constant 1C  has been determined. 
Then we have proposed a construction of several 
Gaussian sheets based on the QHASI class. We 
have studied the main properties of these sheets 
such that the self-similarity one, the quasi-helix one 
and the approximately stationary one. The QHASI 

class is therefore extended to two dimensional 
processes. The associated constants are 
determined. We have also focused our attention on 
new specific sheets, the well-known fractional 
Brownian one becoming a particular case. 
We insist on the fact that a natural extension can be 
done for three dimensional processes. In this case, 
the increment  of X  between the points   
 

111 1 1 1( , , )u x y z  
 
and   
 

222 2 2 2( , , )u x y z  
 
is defined as follows 
  

222 112 121 211

122 212 221 111 ,
X u X u X u X u

X u X u X u X u
 

 
where   
 

( , , ),1 , , 2ijk i j ku x y z i j k  
 
are points in 3R . We can also determine the seven 
associated constants: the first three ones deal with 
self-similarity whereas the last ones deal with the 
constants , 1 4iC i . Following the same lines, 
we can build n  dimensional processes. However, 
the increment  has no simple expression. This is 
why we omit this extension. 
The numerical illustrations were shown for the 
Gaussian sheets. This generalized presentation of 
the class of stochastic processes was used to 
augment the training samples for generative 
adversarial networks in computer vision problem. 
The same approach can be used in 3,R which 
permits solve many applied problems devoted to 
default diagnostics by computer vision.  
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Abstract. Thin-walled structures are widely used in various structural engineering applications due to their 
advantage of high bearing strength when compared to self-weight and used in a complex loading situation where 
subjected to combined loadings. When a thin-walled section is subjected to a combined load with restrained 
torsion, they are ineffective at resisting, resulting in a reduction in beam capacity due to torsion and additional 
warping stresses. A finite element calculation can be used to analyze a 3D bar of thin-walled structural sections. 
Different commercial software and studies commonly consider six degrees of freedom at each node of a member 
for a space frame without considering the effect of warping restraint at the member's ends. This paper presents a 
finite element calculation for thin-walled sections with restrained torsion using the 14x14 member stiffness matrix, 
which includes warping as an additional degree of freedom and is commonly used for open thin-walled sections. 
In this study, we considered two different methods for including the additional degree of freedom for the stiffness 
matrix, which are very close to each other for small values of characteristics number. 
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1. INTRODUCTION 
Steel members are now manufactured as thin-wall 
sections because of their high strength, highly 
flexible, ductility, quick construction, and effective 
space partitioning, and they are widely used in 
various engineering structures. Thin-walled beams 
are those that are primarily prone to bending. When 
a thin-walled section is subjected to a combined 
load, it is ineffective at resisting, resulting in a 
reduction in the beam's capacity. The behavior is 
poorly described by elementary formulations that 
reduce the mechanical components to stretching, 
bending, and uniform torsion (i.e., the simplest case 
of a uniform distribution of cross-sectional warping 
along the beam axis [1-2]. Warping effects occur 
primarily at the points of action of concentrated 
torsional moments (except at free end support of 
beam) and at sections with free-warping 
restrictions, and they are accounted for by an 
additional degree of freedom at each nodal point in 
the form of the first derivative of the angle of twist 
of the beam's cross-section [3-5]. 
The analysis for extension, bending and flexure is 
rather straight-forward, but the analysis for the 
coupled deformations of torsion, warping and 
distortion poses a major challenge[6]. Currently, 
most design specifications do not provide clear 
guidance for combined bending and torsion design 
and the need exists for a simple design equation. 
The variation of the displacement over a section of 
a member is expressed with a common function for 
stretching, torsion and bending[7-10]. I-shaped 
steel beams are widely used as structural elements 
because of their flexural efficiency about the strong 
axis. It considers the cross section as completely 
rigid in its own plane, and the effect of shearing 
deformations is neglected[11]. The solutions for 
thin-walled section with nonuniform torsion were 
developed as initial works and also there are studies 
considered to be as  a design aids for simple 
cases[12-13]. This is limited for a slender beam and 
the shear deformation in middle surface is 
negligible but for short-deep beam and closed thin-
walled beams, the shear deformation should be 
considered[4,14]. However, in many applications 
beams are eccentrically loaded and as a result 
experience torsional loads in combination with 

bending. The importance of restrained torsion of 
thin-walled section has grown significantly as the 
deformations and stresses caused by torsion affects 
the behavior of the structures with open as well as 
closed section[15-16]. Like all open sections, I-
shaped steel beams are very inefficient at resisting 
torsion and the interaction effects due to torsion 
acting in combination with bending can 
significantly reduce the capacity of the beam.  
Many design methods have been developed to deal 
with combined bending and torsion, but none have 
been universally adopted by design standards. In 
the past decades, many relevant researches have 
been conducted and different commercial software  
commonly consider six degrees of freedom at each 
node of a member for a space frame without 
considering the effect of warping restraint at the 
ends of the member[9][17-18]. A finite element 
model is investigated based on a mixed variational 
formulation and numerical method of designing 
thin-walled bar systems using various theories and 
formulated matrices to provide an explicit way to 
calculate internal forces and stresses in thin-walled 
bar systems [19-22]. The bending and torsion 
behavior of cold-formed steel bars was studied 
experimentally based on the strengths of unbraced 
cold-formed steel channel beams loaded 
eccentrically [23-24]. Modern software packages 
for structural analysis use finite element types 
which consider up to six degrees of freedom at the 
structural nodes, which corresponds to the linear 
and angular displacements in these nodes as for the 
rigid bodies[25]. Moreover, various studies 
commonly consider with two degrees of freedom 
at each node of a member without considering the 
effect of warping restraint at node [26-27]. The 
warping part of the first derivative of the twist angle 
has been considered as the additional degree of 
freedom in each node at the element ends which 
can be regarded as part of the twist angle curvature 
caused by the warping moment [17][27][30]. 
Numerous studies developed the 14x14 member 
stiffness matrix including warping as an additional 
degree of freedom and commonly with open thin-
walled section [18][25][28-29]. 
In this paper, a 3D frame element stiffness matrix 
will be presented which is more convenient for 

Vera V. Galishnikova, Tesfaldet H. Gebre



67Volume 18, Issue 3, 2022

 
 

1. INTRODUCTION 
Steel members are now manufactured as thin-wall 
sections because of their high strength, highly 
flexible, ductility, quick construction, and effective 
space partitioning, and they are widely used in 
various engineering structures. Thin-walled beams 
are those that are primarily prone to bending. When 
a thin-walled section is subjected to a combined 
load, it is ineffective at resisting, resulting in a 
reduction in the beam's capacity. The behavior is 
poorly described by elementary formulations that 
reduce the mechanical components to stretching, 
bending, and uniform torsion (i.e., the simplest case 
of a uniform distribution of cross-sectional warping 
along the beam axis [1-2]. Warping effects occur 
primarily at the points of action of concentrated 
torsional moments (except at free end support of 
beam) and at sections with free-warping 
restrictions, and they are accounted for by an 
additional degree of freedom at each nodal point in 
the form of the first derivative of the angle of twist 
of the beam's cross-section [3-5]. 
The analysis for extension, bending and flexure is 
rather straight-forward, but the analysis for the 
coupled deformations of torsion, warping and 
distortion poses a major challenge[6]. Currently, 
most design specifications do not provide clear 
guidance for combined bending and torsion design 
and the need exists for a simple design equation. 
The variation of the displacement over a section of 
a member is expressed with a common function for 
stretching, torsion and bending[7-10]. I-shaped 
steel beams are widely used as structural elements 
because of their flexural efficiency about the strong 
axis. It considers the cross section as completely 
rigid in its own plane, and the effect of shearing 
deformations is neglected[11]. The solutions for 
thin-walled section with nonuniform torsion were 
developed as initial works and also there are studies 
considered to be as  a design aids for simple 
cases[12-13]. This is limited for a slender beam and 
the shear deformation in middle surface is 
negligible but for short-deep beam and closed thin-
walled beams, the shear deformation should be 
considered[4,14]. However, in many applications 
beams are eccentrically loaded and as a result 
experience torsional loads in combination with 

bending. The importance of restrained torsion of 
thin-walled section has grown significantly as the 
deformations and stresses caused by torsion affects 
the behavior of the structures with open as well as 
closed section[15-16]. Like all open sections, I-
shaped steel beams are very inefficient at resisting 
torsion and the interaction effects due to torsion 
acting in combination with bending can 
significantly reduce the capacity of the beam.  
Many design methods have been developed to deal 
with combined bending and torsion, but none have 
been universally adopted by design standards. In 
the past decades, many relevant researches have 
been conducted and different commercial software  
commonly consider six degrees of freedom at each 
node of a member for a space frame without 
considering the effect of warping restraint at the 
ends of the member[9][17-18]. A finite element 
model is investigated based on a mixed variational 
formulation and numerical method of designing 
thin-walled bar systems using various theories and 
formulated matrices to provide an explicit way to 
calculate internal forces and stresses in thin-walled 
bar systems [19-22]. The bending and torsion 
behavior of cold-formed steel bars was studied 
experimentally based on the strengths of unbraced 
cold-formed steel channel beams loaded 
eccentrically [23-24]. Modern software packages 
for structural analysis use finite element types 
which consider up to six degrees of freedom at the 
structural nodes, which corresponds to the linear 
and angular displacements in these nodes as for the 
rigid bodies[25]. Moreover, various studies 
commonly consider with two degrees of freedom 
at each node of a member without considering the 
effect of warping restraint at node [26-27]. The 
warping part of the first derivative of the twist angle 
has been considered as the additional degree of 
freedom in each node at the element ends which 
can be regarded as part of the twist angle curvature 
caused by the warping moment [17][27][30]. 
Numerous studies developed the 14x14 member 
stiffness matrix including warping as an additional 
degree of freedom and commonly with open thin-
walled section [18][25][28-29]. 
In this paper, a 3D frame element stiffness matrix 
will be presented which is more convenient for 

 
 

advanced structural analysis of 3D beam 
structures. The structures are analyzed or 
designed by using only the effect of Saint Venant 
torsion resistance thus the analysis may ignore 
the torsion part in the members and the design 
may be underestimated. To overcome this 
inaccuracy, several researchers tried to develop 
stiffness matrix with seven degrees of freedom at 
each node of a member for a space frame. This 
additional stiffness matrix considers the warping 
degree of freedom at the ends of the member with 
thin-walled section. This study deals with the 
Space frame finite element method regarding the 
first order theory based on the assumption is that 
the resulting deformations are small, and that the 
equilibrium may be formulated for the 
undeformed structure as an approximation. This 
is done by considering beam element and 
equation which are necessary for the computing 
deformations will be derived thus to calculate the 
displacements and internal forces and moments 
for frame structures. 
 
 
2. METHOD 

 
2.1. Geometry and concept of 3D thin-walled 
Frame 
Considering Prismatic thin-walled beams of 
straight and of constant cross-section with y1-
axis is defined parallel to the longitudinal 
direction of the beam, while the y2-axis and y3-
axis describe the transversal plane of the cross-
section as shown in figure 2. The member is 
connected to local coordinate system and the 
corresponding displacement field adopted for the 
axial direction is v1, while v2 and v3 are used for 
the cross-section’s plane. Similarly, 1 2 and 3 
are angles of rotation about the axis y1, y2 and y3 
and  is the sectional warping or twist of the 
section along y1. Consider a point P with a 
member coordinate (y1, y2, y3) in the member 
coordinate system. The basic assumption in the 
classical beam theory is that a cross-section 
orthogonal to the x-axis at the coordinate x 
remains plane and keeps its shape during 
deformation. 

Due to the assumptions of the classical beam 
theory the cross-section orthogonal to the y1-axis 
at the coordinate y1 remains plane and keeps its 
shape during deformation and the general theory 
of elasticity for three-dimensional solids reduced 
to a special theory for space frames. The 
displacement of the point consists of a translation 
equal to that of the centroid C of section y1 and a 
rotation displacement due to the rotation of the 
section as a rigid body about an axis through the 
centroid and a warping displacement normal to 
the section.  
 

 

 

Figure 1. he orientation of coordinate systems 
for 3D beam section 

 
Let S be a plane section normal to the axis of a 
member, which contains a point P and intersects 
the axis in point Q as shown in figure 1. The 
hypothesis for frame behavior [1] states that the 
shape of section S in its plane does not change 
under load, and that the displacement of point P 
is due to:  

 The displacement of point Q  
 A small rotation of section S about an 

axis passing through point Q 
 A warping displacement in the y1 

direction, which is the product of a twist 
with a warping function  
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Where: 1 2 3( , , )kPv y y y the displacement coordinate 
of point P in the member space, 1v ( )k y  
displacement coordinate of centroid C of section 
y1, 1( ),k y  coordinate of the rotation vector of the 
section, 2 3(y ,y ):   warping function of center of 
rotation C 1(y ) twisting of the section 
 

 

 

Figure 2. Beam kinematics, local and global 
reference systems for mass matrix 

 
The strain coordinates are determined with the 
linear strain-displacement relations of the linear 
theory of elasticity. Because the frame 
hypothesis states that the shape of a section in its 
plane does not change, the strains are neglected. 
 

11 1P,1 1,1 3 2,1 2 3,1 ,1

12 1P,2 2P,1 3 ,2 2,1 3 1,1

13 1P,3 3P,1 2 ,3 3,1 2 1,1

v v y y
v v v y
v v v y

 (2) 

  
The expressions for the shear strains are 
rearranged so that the contributions of flexure, 
uniform torsion and torsion restraint are shown 
explicitly: 
 

12 2,1 3 3 ,2 1,1 ,2 1,1(v ) (y ) ( )
flexure uniform torsion torsion restraint

  (3) 

13 3,1 2 2 ,3 1,1 ,3 1,1(v ) (y ) ( )
flexure uniform torsion torsion restraint

  (4) 

 
The constitutive hypothesis states that the strains 
due to the Poisson effect can be neglected in the 
analysis. For a linearly elastic material with 
modulus of elasticity E and shear modulus G the 
stress-strain may be calculated from equation (2) 
as follow: 

11 11 1,1 3 2,1 2 3,1 ,1E E(v y y )   (5) 
12 12 3 ,2 2,1 3 1,1G G( v y )   (6) 

13 13 2 ,3 3,1 2 1,1( )

modulus of elasticity
modulus

G G v y

E
G shear

    (7) 

 
The Virtual work of the inner forces mW done 
by the stresses 11 12 13, and of expressions (5)-
(7), in the volume V of a member with length a, 
and area A due to virtual strains

11 12 13, and is given by: 
 

T
m

V
W (8)

 
W  

 state of stress vector (Voigt notation).  
The integrals of the products of the stress 
components with the geometric variables with 
the geometric quantities 1 2 3, ,y y y and over the 
area of the member are called stress resultants in 
the member and denoted as follows:  
 

1 1 11

2 2 12

3 3 13

2 2 11 3

3 3 11 2

axial force in direction y

transverse force in direction y

transverse force in direction y

bending moment about axis y

bending moment about axis y

A

A

A

A

n dA

n dA

n dA

m y dA

m y dA

11

13 2 ,3 12 3 ,2

13 ,3 12 ,2

bimoment due to warping m
primary torsion
m ( ) ( ) )

secondary torsion
m ( )

A

A

Tp
A

Ts
A

dA

y y dA

dA

  (9) 

 
The stress resultants acting on the positive face 
of a section are positive if they act in the positive 
direction of the axes of the member coordinate 
system. The stress resultants in the member of 
expression (9) are substituted into expression (8) 
and can be rewritten as follows: 
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uniform torsion and torsion restraint are shown 
explicitly: 
 

12 2,1 3 3 ,2 1,1 ,2 1,1(v ) (y ) ( )
flexure uniform torsion torsion restraint

  (3) 

13 3,1 2 2 ,3 1,1 ,3 1,1(v ) (y ) ( )
flexure uniform torsion torsion restraint

  (4) 

 
The constitutive hypothesis states that the strains 
due to the Poisson effect can be neglected in the 
analysis. For a linearly elastic material with 
modulus of elasticity E and shear modulus G the 
stress-strain may be calculated from equation (2) 
as follow: 

11 11 1,1 3 2,1 2 3,1 ,1E E(v y y )   (5) 
12 12 3 ,2 2,1 3 1,1G G( v y )   (6) 

13 13 2 ,3 3,1 2 1,1( )

modulus of elasticity
modulus

G G v y

E
G shear

    (7) 

 
The Virtual work of the inner forces mW done 
by the stresses 11 12 13, and of expressions (5)-
(7), in the volume V of a member with length a, 
and area A due to virtual strains

11 12 13, and is given by: 
 

T
m

V
W (8)

 
W  

 state of stress vector (Voigt notation).  
The integrals of the products of the stress 
components with the geometric variables with 
the geometric quantities 1 2 3, ,y y y and over the 
area of the member are called stress resultants in 
the member and denoted as follows:  
 

1 1 11

2 2 12

3 3 13

2 2 11 3

3 3 11 2

axial force in direction y

transverse force in direction y
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bending moment about axis y

A

A

A

A

n dA

n dA
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m y dA

m y dA
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13 2 ,3 12 3 ,2

13 ,3 12 ,2

bimoment due to warping m
primary torsion
m ( ) ( ) )

secondary torsion
m ( )

A

A

Tp
A

Ts
A

dA

y y dA

dA

  (9) 

 
The stress resultants acting on the positive face 
of a section are positive if they act in the positive 
direction of the axes of the member coordinate 
system. The stress resultants in the member of 
expression (9) are substituted into expression (8) 
and can be rewritten as follows: 
 
 

 
 

1 1 2 2,1 3

3 3,1 2
1

2 2,1 3 3,1 ,10

1,1 1,1

( )
( )

( )

a
T

V

Tp Ts

n v n v
n v

dv dy
m m m
m m

 (10) 

 

 
Figure 3. Local reference system and internal 

forces  
 
The loads acting of the volume and the surface of 
the member in the theory of elasticity are 
replaced by line loads acting at axis 1y and by 
nodal forces acting at the nodes of the member, 
as shown in figure 3. The nodal forces acting at 
the end node are equal to the stress resultants 
defined based on equation (8). The virtual work 
of the nodal forces due to variations kv of the 
displacement coordinates and k of the rotation 
coordinates is given by:
 

1 1

1 ,1 1 ,1

2 2 2 2 3 3

3 3 ,1 ,1

3

1

( ) ( )

( )

 is virtual work of the nodal forces

n TpB B TpA A

TsB B B TsA A A

B B A A B B

A A B B A A

kB kB kA kA
k

n
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m m

m m m
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Figure 4. Positive directions of the member and 

nodal force coordinates 
 
The virtual work of the inner forces in the volume 
of a member is expressed in terms of the strains 
and the virtual strains: 
 

11 11 12 12 13 13( )m
V

W E G G dV   (12) 

 
Expressions (5) to (7) for the strains and the 
Prandtl stress function for 2,1 3,1and are 
substituted: 
 

a a
m 1 2 1 3 1

0 A 0 A
1 1,1 2 2,11 3 3,11 1,1
2 1,1 2 2,11 3 3,11 1,1

2 2
3 2 ,3 3 ,2 1,1 1,1

W E h h dA dy G h dA dy

h v y v y v
h v y v y v
h (y ) (y )

 (13) 

 
The integrals of functions of the coordinates and 
the warping function in (13) are called the shape 
parameters of the section or matrix section 
properties. To define the shape functions, we 
used a variable F for designations. They are 
defined and denoted as follows: 
 

a aT
m 1 T 1,1 1,1 1

0 0
1 2 3
2 22 23 2
3 32 33 3

2 3

W E k F k dy G J dy

F F F F
F F F F

F
F F F F
F F F F

 (14) 

 
Where the section constants are expresses as 
given below: 
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T
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F y dA F y y dA
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F y dA F dA
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The virtual work of the nodal forces due to 
variations of the displacement coordinates and of 
the rotation coordinates is given by: 
 

 

1 1

1 ,1

1 ,1

2 2 2 2 3 3

3 3 ,1 ,1
3

1

( )
( )

( )
virtual work of the nodal forces

n TpB B TpA A

TsB B B

TsA A A

B B A A B B

A A B B A A

kB kB kA kA
k

n

W m m
m
m
m m m
m m m

n v n v
W

   (15) 

 
The virtual work of member loads due to 
variations kv of the displacement coordinates 
and k of the rotation coordinates is given by: 
 

a 3
q i i i i 1

i 10

i
i

W t ( q v t ) dy

q  distributed force load in the direction of axis i 
t  distributed moment load in the direction of axis i
t  distributed bimoment load

(16) 

 
2.2. Governing equations for 3D thin-walled 
frames 
The governing equations for a member and 
frame are derived by applying the principle of 
virtual work to the frame. The sum over the 
members of the virtual work mW  of the inner 
forces in (14) equals the sum over the members 
of the virtual work m dW of the member loads.  
 

The differential governing equations for the 
generalized member displacements are 
satisfied for arbitrary virtual displacements and 
expressed as follows: 
 

 
Similarly for frames, The sum over the members 
of the virtual work mW of the inner forces in 
(14) equals the sum over the members of the 
virtual work m dW of the member loads and the 
virtual work nW of the nodal loads: 
 

 
 

3. RESULT AND DISCUSSION 
 
3.1. Element stiffness matrix for a combined 
load: 
Stiffness matrix as it is known, the relationship 
between the generalized force vector qm and the 
generalized displacement vector vm is 
established by the stiffness matrix Km of the 
element. 
 

 
The displacement variation over the length of 
a member is related to the nodal displacements 
by solving the differential equations the 
differential governing equations for the 
generalized member displacements such that 
the values of the displacement functions at the 
nodes equal the unknown nodal displacement 
values. For non-uniform torsion, a 
trigonometric interpolation of rotation 1 is 
used as an initial parameter and finally 
compared with the approximation solution. 

1,1 1

3 2,1111 2 3,1

2 3,1111 3 2,1

1,1111 1,11 1 ,1

0
0
0

0T

E Av q
E J v q m
E J v q m
EJ G J m m

 (17) 

1 1

M M
m md nm m

W W W  (18) 

m m mq K v  (19) 

Vera V. Galishnikova, Tesfaldet H. Gebre



71Volume 18, Issue 3, 2022

 
 

1

2 2 3 3

2
22 2 23 2 3

2
33 3 2 2

2
3 3

2 2
2 ,3 3 ,2

1

( ) ( )

A

A A

A

A A

A A

A A

T
A

F dA

F y dA F y dA

F dA

F y dA F y y dA

F y dA F y dA

F y dA F dA

J y y dA

 

 
The virtual work of the nodal forces due to 
variations of the displacement coordinates and of 
the rotation coordinates is given by: 
 

 

1 1

1 ,1

1 ,1

2 2 2 2 3 3

3 3 ,1 ,1
3

1

( )
( )

( )
virtual work of the nodal forces

n TpB B TpA A

TsB B B

TsA A A

B B A A B B

A A B B A A

kB kB kA kA
k

n

W m m
m
m
m m m
m m m

n v n v
W

   (15) 

 
The virtual work of member loads due to 
variations kv of the displacement coordinates 
and k of the rotation coordinates is given by: 
 

a 3
q i i i i 1

i 10

i
i

W t ( q v t ) dy

q  distributed force load in the direction of axis i 
t  distributed moment load in the direction of axis i
t  distributed bimoment load

(16) 

 
2.2. Governing equations for 3D thin-walled 
frames 
The governing equations for a member and 
frame are derived by applying the principle of 
virtual work to the frame. The sum over the 
members of the virtual work mW  of the inner 
forces in (14) equals the sum over the members 
of the virtual work m dW of the member loads.  
 

The differential governing equations for the 
generalized member displacements are 
satisfied for arbitrary virtual displacements and 
expressed as follows: 
 

 
Similarly for frames, The sum over the members 
of the virtual work mW of the inner forces in 
(14) equals the sum over the members of the 
virtual work m dW of the member loads and the 
virtual work nW of the nodal loads: 
 

 
 

3. RESULT AND DISCUSSION 
 
3.1. Element stiffness matrix for a combined 
load: 
Stiffness matrix as it is known, the relationship 
between the generalized force vector qm and the 
generalized displacement vector vm is 
established by the stiffness matrix Km of the 
element. 
 

 
The displacement variation over the length of 
a member is related to the nodal displacements 
by solving the differential equations the 
differential governing equations for the 
generalized member displacements such that 
the values of the displacement functions at the 
nodes equal the unknown nodal displacement 
values. For non-uniform torsion, a 
trigonometric interpolation of rotation 1 is 
used as an initial parameter and finally 
compared with the approximation solution. 

1,1 1

3 2,1111 2 3,1

2 3,1111 3 2,1

1,1111 1,11 1 ,1

0
0
0

0T

E Av q
E J v q m
E J v q m
EJ G J m m

 (17) 

1 1

M M
m md nm m

W W W  (18) 

m m mq K v  (19) 

 
 

1 1 1

1
1 1

1

2 2 2

2 3
2

2
3

2 22
2

2
3

0 1

1

1 3 2
(1 )

(3 2z)
(1 )

T

A

B

T

A

A

B

B

v z

z v
z v

v

z z v
a z z
z v
a z z

h v

h v

h v

h v

 

3 3 3

2 3
3

2
2

3 32
3

2
2

1 3 2
(1 )

(3 2z)
(1 )

T

A

A

B

B

v

z z v
a z z

z v
a z z

h v

h v  

 
To consider the warping of the restrained member, 
additional degrees of freedoms are introduced at the 
nodes and added to member displacement vector. 
An interpolation function containing hyperbolic 
functions of y1, which satisfies the governing 
differential equation (16) for torsion considered:  
 

 
T

1

T
1 2 3 4

h C
sinh z
cosh z

h C C C C C
z
1

 

 
The derivatives in the integrand on the left-hand 
side of equation (20) are formed:  
 

T T
1,1 1 2,11 21 2

1 2 2

v g v v g v 0 z 1
12z 6

1 a (6z 4)1 1g g
1 (12z 6)a a

a (6z 2)

 

3,11 3 3

3 2

12 6
(6 4)1

(12 6)
(6 2)

Tv

z
a z

za
a z

g v

g

  
The interpolation functions are substituted into 
the left-hand side of (18) and the integration over 
the length of the member is performed for axial 
and bending loads but separately considered for 
torsion as it developed based on the two different 
methods. 
 

Ta
1 1,1 1 1 10 1a

3 2 2,11 10T Ta
2 2 2 3 3,11 1 3 32 0 3

E A v v dy v K v
E J v v dy
v K v E J v v dy v K v

 

1 2
1

2 1

1 1 k kE AK
1 1 k ka

 

3 4 6 4
2 2

4 5 7 82
2 3 6 7 3 7

4 8 7 52 2

12 6a 12 6a k k k k
6a 4a 6a 2a k k k kE JK

k k k ka 12 6a 12 6a
k k k k

6a 2a 6a 4a

 

9 10 12 10
2 2

10 11 13 143
3 3 12 13 9 13

10 14 13 112 2

12 6a 12 6a k k k k
6a 4a 6a 2a k k k kE JK

k k k ka 12 6a 12 6a
k k k k

6a 2a 6a 4a

 

 
The contribution of torsion to the internal virtual 
work of the governing differential equation (16) 
is given as the following expressions: 
 

a
1,11 1,11 T 1,1 1,10

T
1 2

1
2

( E C G J ) dA

b ( K K ) b
K warping stiffness matrix 
K stiffness matrix for torsion with out warping restraint

 

 
Stiffness matrices 1 2K and K are added to the 
member stiffness matrix mK in the usual 
manner.   

T
1 1 1
T

1 1 2 1 3 1 4 1
T

1A 1,1A 1B 1,1B

(y ) g (y ) b
g g (y ) g (y ) g (y ) g (y )

b

 (20) 

Finite Element Analysis for Thin-Walled Member Subjected to Combined Loading  



72 International Journal for Computational Civil and Structural Engineering

 
 

T1 T2 T3 T4
T2 T6 T7 T8

T 3 T3 T7 T11 T12
T4 T8 T12 T16

T1 T11
2

T6 T16

T2 T4
2

T8

2

T3 T1 T7 T12

k k k k
k k k kECK
k k k ka
k k k k

K K S sinh ,
sinhK K S (cosh ) a

K K S*(cosh 1) a,
sinhK S 1 a

S , Q 2 1 cosh sinh ,
Q

K K , K K T2K

 

 
The above element stiffness matrix for torsion 
with restrain warping can be used by divided into 
two matrices. The parameters KT1, KT2, KT6 and 
KT8 can be replace by approximation as shown 
below: 
 

2 2
T1a T2a

2 2
T6a T8a

6 1K 12 * K 6 *
5 10
2 1K 4 * K 2 *

15 30

 

 
Considering the above series expressions, the 
alternative matrices can express as shown below: 
 

2 2
Ta 3

2 2

2 2

2 2

12 6a 12 6a

6a 4a 6a 2aE CK
a 12 6a 12 6a

6a 2a 6a 4a

36 3a 36 3a

3a 4a 3a aG J
30a 3a 3a 36 3a

3a a 3a 4a

 

 
Comparing both methods, we can conclude that 
both are similar for small value of  and which is 
commonly considered for open thin-walled 
section as their value of is small as shown in 
figure 5. 
 
 

Figure 5. Evaluation of exact and approximate methods for various values of  
 
 

If the member is free to warp, Cw = 0 and the 
torsional moment is carried by St Venant’s 
torsion which is considered as uniform torsion. 

Considering Expression 21, only the second part 
of the matrix or the uniform torsion stiffness 
matrix can be used as given below. 
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If the member is free to warp, Cw = 0 and the 
torsional moment is carried by St Venant’s 
torsion which is considered as uniform torsion. 

Considering Expression 21, only the second part 
of the matrix or the uniform torsion stiffness 
matrix can be used as given below. 
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Element load vector: Consider loads which vary 
linearly from start node A to end node B: 
 

1

1

T
k k

kA kAT
k k k k

kB kB

q

q m
m

q m

h q

h m q m
 

 
These loads and the interpolation functions are 
substituted into the right-hand side of equation 
(17). The integration over the length of the 
member is shown for 1 3 .q and q   
 

1 1 1 1 1 1 1 1 1 1 10 0

3 3 1 3 3 3 3 1 3 3 30 0

a a T T T

a a T T T

q v dy dy

q v dy dy
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3 4
5 6

3
4 3
7 8

2 1 b baB
1 2 b b6

21 9 b b
3a 2a b baB
9 21 b b60
2a 3a b b

 

 

The results are compared with different studies  
in both methods to include the aadditional 
degrees of freedom and are introduced at the 
nodes and added to member displacement 
vector[29][30][31]. The member variables are 
collected in member displacement vector Vm and 
member load vector qm and the matrices are 
arranged correspondingly in member stiffness 
matrix km. 
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10 11 13 14

4 5 7 8

T5 T6 T7 T8
m

2 1

6 7 3 7

12 13 9 13

T9 T10 T11 T12

10 14 13 11

4 5 7 8

T13 T14 T15 T16

k k
k k k k

k k k k
k k k k

k k k k
k k k k

k k k k
k k

k k k k
k k k k

k k k k
k k k k

k k k k
k k k k

K

1 1A 2 3B
1A

1 2A 2 2B
2A

7 2A 8 2B
3A

3 3A 4 3B
1A

5 3A 6 3B 2A

1 1A 2 1B 3A

5 1A 6 1B A
m e
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1B
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b m b m
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4. CONCLUSION  
 

The frequently used finite element method for 
thin-walled sections only considers six degrees 
of freedom (DOFs) in each node of a beam, but 
it has been demonstrated that including warping 
of the section as an additional DOF in structural 
analysis can result in a safe and optimal design. 

According to this study the following 
conclusions are drawn. The simple geometric 
properties of the section are used to generate the 
stiffness matrix for thin-walled beam sections 
with retrained torsion. By considering an 
additional degree of freedom at each node, the 
trigonometric and approximation solutions of an 
interpolation function are used to express the 
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stiffness matrix for non-uniform torsion. The 
stiffness matrix for 3D thin-walled sections 
subjected to combined loading is presented, 
making advanced structural analysis bar 
elements more convenient. This stiffness matrix 
is more applicable for open thin-walled sections 
because the value of characteristics number for 
open section is very small comparing to the 
closed thin-walled sections. To include the 

additional degree of freedom both trigonometric 
and approximate methods are considered and for 
characteristics number ( ) =1 and 2 the errors 
range between 6.7 % to – 9.7 % which is 
considered reasonable and both methods are 
acceptable for open thin-walled sections. The 
length of the member is limited based on the 
section type and with maximum value of 
characteristics number ( ) less than 2. 
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CONTROL OF A NONLOCAL IN TIME FINITE ELEMENT 
MODEL OF THE DYNAMIC BEHAVIOR OF A COMPOSITE 

BEAM BASED ON THE RESULTS OF A NUMERICAL 
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Abstract. The article presents numerical methods for controlling the parameters of temporal nonlocality of 
computer models of rod structures made of composite materials. The finite element method is the most widely 
used numerical method for solving practical problems of the analysis of mechanical systems. A nonlocal in time 
internal damping model is integrated into the algorithm of this method. The one-dimensional model of the Euler-
Bernoulli beam is presented in the article. The equilibrium equation of a moving mechanical system is solved 
numerically using an implicit scheme. In the article the damping matrix obtained from the condition of 
stationarity of the total deformation energy was used. The article presents the study of non-local in time damping 
model properties. The model is integrated into the finite element method. The non-local model is algorithmized 
and programmed in the MATLAB software package. 

 
Keywords: nonlocal in time damping, damping with memory, composite material, 

Euler-Bernoulli beam vibration, equilibrium equation, least squares technique, finite element analysis, 
iterative implicit scheme, structural dynamics 
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INTRODUCTION 
 
Today, the models of oscillatory processes 
taking place in mechanical systems can be 
modeled in various ways. Also the 
computational mathematical and algorithmic 
apparatus has been significantly developed. 
Despite this, scientists devote a special place to 
the issue of adequate modeling of the damping 
properties of structures made of structurally 
complex materials. For example, the papers [1, 
2] present ideas of damping kernels created as a 
linear combination of decreasing functions. In 
works [3, 4, 5] study the issues of constructing 
the effective characteristics of a layered 
composite material, the layers of which are 
viscoelastic.  
In this article, we present the results of 
modeling of the damping properties of 
structures made of structurally complex 
materials, built on the assumption that the 
material has nonlocal in time properties of 
internal damping. In [6, 7, 8] the matrix form of 
the modified equation of motion of mechanical 
systems was studied: 
 
 

( ) + · · ( ) · 

· (1 ) · ( ) ( ) · 

· · ( ) = ( ), 

(1) 

 

 
the integral term endows the classic 
computational model with the time nonlocality. 
Here 0 < < 1 is the temporal nonlocality 
weight coefficient [7];  – initial time of the 
oscillatory process. Matrices of masses M, 
damping D and stiffness K of the computer 
model are developed from the condition of a 
minimum change in the total energy of a 
mechanical system deformed in motion [6, 8, 9]. 
When = 1 – the model preserves the locality 
of the time component. The function ( ) 
in equation (1) is usually called the damping 
kernel function [7]. The Gaussian curve was 
taken as the damping kernel into a solution: 
 

( ) =
( )  (2) 

 

 
the parameter > 0 in (2) characterizes the area 
of nonlocal properties of the time component, 
while regardless of the value of ,  

( )
= 1 ;  [ ] – all moments of 

time preceding the considered component of the 
time axis . Reducing the value of the 
parameter  increases the level of nonlocality 
along the time axis of the model. Such a 
statement of the problem endows the damping 
forces in the calculation model with the property 
of "memory" (hereinafter, this property of the 
model will be called "damping with memory"). 
Thus, in the numerical calculation of the 
structure according to the implicit scheme in the 
term (1), responsible for damping with memory, 
the values of the rates of change of 
displacements and deformations are taken into 
account not only at the previous computational 
step , but also at all previous time steps up to 

. 
The use of the kernel of the internal damping 
operator (2) can be attributed to the 
mathematical idealization of the description of 
the distribution of the "memory" of the 
composite in time, which is generally not based 
on the features of the microstructure of the 
material. To use the constructed model in 
practical calculations, it must be calibrated 
based on the data of a physical or alternative, 
for example numerical experiment. In this case, 
the parameter  in (2) becomes the main control 
parameter of the considered computational 
model, which sets the degree of nonlocality. 
 
 
MODEL CALIBRATION TECHNIQUES 
 
As an example, consider the oscillations of a beam 
made from the composition material. The beam is 
rigidly fixed at the edges and loaded with an 
instantly applied uniformly distributed load. The 
general physical and mechanical parameters of the 
design and the values of the momentarily applied 
load are presented in Table 1.  

Control of a Nonlocal in Time Finite Element Model of the Dynamic Behavior of a Composite Beam Based
on the Results of a Numerical Experiment
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Table 1 
General parameters  

of a fiberglass vinyl ester beam.
Young's of elasticity [ ]: E=1720000;  
Beam length [m]: L=12;  
Material density [t/m3]:  =1.9;  
Beam cross-sectional area (constant along 
the entire length) [m2]: A=0.06;  
Moment of inertia [m4]: I=4.5000e-04;  
Instantaneously applied load [N/m2]: q=-1. 

 

 
To emphasize the necessity and benefit of further 
studies of the nonlocal in time model of damping 
properties of composite materials, the comparison 
of the results of equation (1) solution in a local 
statement (for = 1) with experimental data is 
presented. The fig.1 shows the time history of 
vertical displacements of the middle node of the 
beam. The solid line shows the numerical solution 
of the problem based on a one-dimensional local 
in time computational model; dotted line - data 
obtained as a result of a numerical experiment 
implemented in the finite element software 
package SIMULIA Abaqus (structurally complex 
properties of the composition were taken into 
account using an orthotropic material model). 
 

 
Figure 1. Vertical displacement of the middle 

node of the oscillating beam made of a 
composite material: ( ) – experimental 

curve; ( ) – is a time-local curve 
 

Based on the simulation results, it was concluded 
that the computer model, local in time, approximates 
the (dynamic) oscillatory process inside a structure 
made of a structurally complex material with a 
reliability that is not sufficient for further application 
in design justification process. Calculations using 
isotropic or local one-dimensional models for 

composites give a significant error, which is 
unacceptable in the calculation of such structures 
subjected to dynamic effects. 
The article presents two main approaches 
(methodologies) to determining the optimal 
value of the parameter  for a non-local in time 
one-dimensional model of the dynamic behavior 
of a structure made of composite material.  
In this work the following indices are used: 
  ( ) – displacement vector obtained as a 
result of a numerical experiment implemented 
in the software package SIMULIA Abaqus; 
 ( ) – the displacement vector obtained 
as a result of solving equation (1), according to 
the implicit scheme by the modified Newmark 
method [10]; 
 ( ) – a curve synthesizing the values of 
the displacement vector obtained as a result of a 
numerical experiment. 
 ( ) – a sum of squared deviations of 
vector elements ( ) to ( ).  
 
Methodology 1. Direct construction of a search 
model for the optimal nonlocality parameter of the 
dynamic properties of the composite by the least 
squares method (LSM).This technique provides an 
automated search for the value of the parameter , 
in which the sum of the squared deviations 

( ) takes the minimum value. Fig. 2 shows 
the dependency graph ( ), showing the 
behavior of the non-local model (1) in a fairly 
wide range of parameter values 1 200 (the 
value of  was not further increased in this work). 
In Figure 3, we have localized the range of  
values relative to ( ) smallest value.
 

 
Figure 2. Dependence of  on . The 

ordinate shows the summation of the squared 
deviations ( ) 
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Figure 3. Dependence of  on , localized 

in the region of extreme values of  : the 
abscissa shows the values of the parameter  in 
the range 1 40, the ordinate shows the 

sum of squared deviations ( ) 
 
As a result of processing the data of the LSM 
experiment, we obtain ( ) with the 
minimum value ( ), corresponding to the 
value = 2,68601. Below, in Figure 4, there 
are two graphs of the vertical displacement of 
the middle section of an oscillating beam made 
of composite material: ( ) – experimental 
displacement data; ( ) – displacement 
data based on a calibrated time-nonlocal 
damping model at = 2,68601 sec. 
 

 
Figure 4. Time history of the composite beam 
middle node vertical displacement: ( ) – 
experimental curve; ( ) – calibrated 
non-local in time curve at = 2,68601 sec. 

 
As can be seen from the fig 4., the non-local in 
time computational model, approximates the 
oscillatory process of an element made of a 
structurally complex material with sufficient 
reliability. The result of the search for the optimal 
nonlocality parameter value for a one-dimensional 
composite beam, shows the efficiency of the 
constructed model. However, this technique 
seems to be computationally difficult. Below we 
describe the developed alternative technique, 

which is simpler both in terms of computational 
costs and the search for the optimal value of the 
nonlocality parameter  for a composite material. 

 
Methodology 2. Search for the optimal value of 
the nonlocality parameter based on the least 
squares method using a synthesizing curve. 
Under the synthesizing curve, ( ), we 
will mean some analytical (interpolating) curve 
approximating the experimental data with a 
satisfactory accuracy, ( ). Below is an 
algorithm for constructing an expression for 
such a curve by the least squares method in the 
form of the polynomial of the fourth degree: 
 

( ) = + · + 
+ · + · + · , 

(3) 

 

  – the desired polynomial coefficients 
calculated in comparison with the values of 

( ). 
Representing (3) in matrix form, we find the 
coefficients  by the least squares method from 
the conditions for the minimum sum of squared 
deviations of the values ( ) from the 
desired curve ( ): 
 

( , , , , ) = 

= min ( ) ( ) , 
(4) 

 
 – number of nodes taken along the time axis .  

Below, the minimum condition is expressed in 
partial derivatives  equated to zero, written as 
a system, where = 0,1,2,3,4 – is the number of 
the required coefficient .   
 

+ + + + 1   =

+ + + +   =

+ + + +   =

+ + + +   =

+ + + +   =
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Here  – time coordinate;  – the number of 
points taken on the time axis. The system of 
equations (4) is represented in matrix form: 
 

= , 
 

(5) 

Then 
 

=

1

,  

 

= , (6) 

=

( )

( )

, 

 
as well as the solution of equation (5): 
 

= , 
 

(7) 

 

The Fig. 5 graphically presents a comparison 
of the experimental values of dynamic vertical 
displacements of the middle node of the beam 
FE model ( ), with the displacement 
values obtained using the synthesizing curve 

( ). 
 

 
Figure 5. Graphical comparison of the 

numerical experimental values of the middle 
node vertical displacements ( ), with the 

displacement values obtained using the 
synthesizing curve ( ) for the time period 

= 0.65 sec. 

The Fig. 5 shows some difference between the 
values of the experiment and the model values, 
which indicates the possibility of developing the 
presented methodology by clarifying the 
appropriate type of curve. 
The main advantage of using the synthesizing 
curve lies in the "simplicity" of its further 
application in identifying the optimal value of 
the temporal nonlocality parameter of the model 

. This is also determined by the fact that the 
derivatives of such a synthesizing function can 
be represented as a functional dependence. This 
greatly simplifies the calculation and results 
analysis at the model calibration stage.  
Let us substitute the expressions of the 
synthesizing curve ( ) and its derivatives 

 ( ),
 ( ) of the first and second 

order into equation (1): 
 

· 12 + 6 + 2 + 
+ · · 4 + 3 + 2 + + 
+(1 ) · ·

( )
·(4 (

) + 3 ( ) + 2 ( ) +

+ ) + · + + +

+ + = ( ). 

 
 
 
(8) 

 
Now we transform equation (8) in such a way 
that the terms containing the desired parameter 

, are located to the left side, and those free 
from it are to the right: 
 

(1 )2
· ·

( )
(4 ( ) + 

+3 ( ) + 2 ( ) + )  = 
= ( ) · 12 + 6 + 2  

· · 4 + 3 + 2 +  
· + + + + . 

 
 
 
 
(9) 

 
Let us denote in (9) by ( ) the “effective 
load” vector calculated for the  moment of 
time: 
 

( ) = ( )  
12 + 6 + 2  

4 + 3 + 2 +  
+ + + + . 

 
 
(10) 
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Then the total effective load vector will look 
like:
 

= ( ). 
 
(11) 

 
Now we denote by ( , ), the integral operator 
in (8) - (9), calculated for the -th moment of 
time and containing the nonlocality parameter 
of the model : 
 

( , ) =
( )

(4 ( ) + 

+3 ( ) + 2 ( ) + ) , 

 
 

(12) 

 
 – time parameter characterizing the moments 

of time preceding the moment . 
Then the total integral operator takes the form: 
 

( ) = ( , ). 
 
(13) 

 
Substituting expressions (11) and (13) into 
(9), we obtain an equation for an unknown 
quantity (the nonlocality parameter of the 
model ): 
 

2
( ) =

1

1
. (14) 

The solution of equation (14) is algorithmized 
and performed in accordance with the stated 
method 2 and programmed in MATLAB. As a 
result of the numerical solution (14), we 
obtained the value of the nonlocality 
parameter in the middle node of the composite  
beam, equal to = 2.78328 sec. Figure 6 
shows a graph of the values of the vector 

( ), of to = 2.78328 sec, in 
comparison with the experimental values 

( ). 
 
 

 
Figure 6. Vertical displacement of the composite 

beam middle node: ( ) – experimental curve; 
( ) – calibrated non-local in time curve at 

= 2.78328 sec. 
 
In Table 2 comparison of the calibration results 
of the non-local model by the two methods 
described with the results of the local model is 
presented. The average relative error is calculated 
by the formula ( ) ( ) 

( )
, 

where N=251 – is the number of nodal points 
taken along the time axis. 
 

Table 2. 

 

The value of 
the non-
locality 
parameter , 
[sec] 

Relative 
calculation 
error, [%] 

Local model - 44,08 
Non-local 
model 
calibrated by 
methodology 1 

2.68601 4.52 

Non-local 
model 
calibrated by 
methodology 2 

2.78328 4.52 

 
 
CONCLUSION 
 
A non-local damping model applied to dynamic 
calculations of structures made of composite 
materials gives a result with a smaller relative 
calculation error in comparison with the 
experimental results than a local one. 
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Two techniques have been developed for 
controlling a non-local model of nonlocal in time 
damping properties according to experimental 
data. Those techniques are presented in the 
article on the example of a specific composite 
sample analysis. When rounding the error to a 
hundredth of a percent, both techniques give a 
result with the same reliability of calculations. To 
date, technique 1 seems to be basic, while 
technique 2 is more promising in terms of 
algorithmization of the process of modeling the 
temporal nonlocality of damping properties of 
composite materials. The choice of synthesizing 
curves suitable for real experimental data is a 
matter for a separate study. 
 
 
ACKNOWLEDGEMENT 
 
This research has been supported by the Russian 
Science Foundation (Project No 21-19-00634). 
 
 
REFERENCES 
 
1. Oleynik O.A., Shamaev A.S., Yosifian G.A., 

1992, Mathematical Problems in Elasticity and 
Homogenization. Elsevier, North-Holland. 

2. Bardzokas D.I., Zobnin A.I., 
2003, Mathematical Modelling of Physical 
Processes in Composite Materials of 
Periodical Structures. URSS, Moscow. 

3. Shamaev A.S., Shumilova V.V., 2016, 
Asymptotic behavior of the spectrum of 
one-dimensional vibrations in a layered 
medium consisting of elastic and kelvin–
voigt viscoelastic materials. Proceedings of 
the Steklov Institute of Mathematics 
295(1), 202-212. 

4. Shamaev A. S., Shumilova V. V., 2016, 
Homogenization of the equations of state 
for a heterogeneous layered medium 
consisting of two creep materials. 
Proceedings of the Steklov Institute of 
Mathematics 295(1), 213-224. 

5. Yang X.J., 2019, General Fractional 
Derivatives: Theory, Methods and 
Applications. CRC Press, New York. 

6. Sidorov V.N., Badina E.S, 2021, The 
Finite Element Method in Problems of 
Stability and Vibrations of Bar Structures. 
Examples of calculations in Mathcad and 
MATLAB. ASV Publishing House, 
Moscow. 

7. Sidorov V.N., Badina E.S, 2021, Non-
local damping models in dynamic 
calculations of structures made of 
composite materials. Civil engineering, . 
9, p. 66-70.  

8. Sidorov V.N., Badina E.S., Detina E.P., 
2021, Nonlocal in time model of material 
damping in composite structural elements 
dynamic analysis. International Journal for 
Computational Civil and Structural 
Engineering, 17(4):14-21. 

9. Zenkevich O., 1975, Finite element 
methods in engineering. Mir, Moscow. 

10. Bathe K. J., Wilson E.L., 1976, Numerical 
methods in finite element analysis. Prentice 
Hall, New York. 

 
 

 
 
1. Oleynik O.A., Shamaev A.S., Yosifian 

G.A., 1992, Mathematical Problems in 
Elasticity and Homogenization. Elsevier, 
North-Holland. 

2. Bardzokas D.I., Zobnin A.I., 
2003, Mathematical Modelling of Physical 
Processes in Composite Materials of 
Periodical Structures. URSS, Moscow. 

3. Shamaev A.S., Shumilova V.V., 2016, 
Asymptotic behavior of the spectrum of 
one-dimensional vibrations in a layered 
medium consisting of elastic and kelvin–
voigt viscoelastic materials. Proceedings of 
the Steklov Institute of Mathematics 
295(1), 202-212. 

4. Shamaev A. S., Shumilova V. V., 2016, 
Homogenization of the equations of state 
for a heterogeneous layered medium 
consisting of two creep materials. 
Proceedings of the Steklov Institute of 
Mathematics 295(1), 213-224. 

Vladimir N. Sidorov, Elena P. Detina, Elena S. Badina



85Volume 18, Issue 3, 2022

5. Yang X. J., 2019, General Fractional 
Derivatives: Theory, Methods and 
Applications. CRC Press, New York. 

6. , 2021, 

. , 
. 

7.  . .,  . ., 2021, 

. 

, . 9, p. 66-
70.  

8. Sidorov V.N., Badina E.S., Detina E.P., 
2021, Nonlocal in time model of material 
damping in composite structural elements 
dynamic analysis. International Journal for 
Computational Civil and Structural 
Engineering, 17(4):14-21. 

9.  ., 1975, 
. , . 

10. Bathe K. J., Wilson E.L., 1976, Numerical 
methods in finite element analysis. Prentice 
Hall, New York. 

 
 

 

Vladimir N. Sidorov, Corresponding Member of Russian 
Academy of Architecture and Construction Science, 
Professor, Dr.Sc, Head of the Department of Computer 
Science and Applied Mathematics, National Research 
University Moscow State University of Civil Engineering, 
Professor of «Building Structures, Buildings and 
Facilities» Department, Institute of Railway Track, 
Construction and Structures, Russian University of 
Transport (MIIT), Professor of Department «Engineering 
Structures and Numerical Mechanics», Perm National 
Research Polytechnic University; 127994, Russia, 
Moscow, Obraztsova st., 9, b. 9, phone: +74956814381, 
e-mail: sidorov.vladimir@gmail.com. 
 
Elena S. Badina, Ph.D, Associate Professor of «Computer 
Aided Design» Department, Institute of Railway Track, 
Construction and Structures,  Russian University of 
Transport (MIIT), Senior Researcher at the Scientific and 
Educational Center for Computer Modeling of Unique 
Buildings, Structures and Complexes of the Moscow State 
University of Civil Engineering, Senior Researcher at the 
Department of Mechanics of Structured and 
Heterogeneous Environment of the Institute of Applied 
Mechanics of the Russian Academy of Sciences;  
127994, Russia, Moscow, Obraztsova st., 9, b. 9, phone: 
+74956092116, e-mail: shepitko-es@mail.ru. 
 
Elena P. Detina, Research Engineer, Department of 
Analytical Fundamental Scientific Research on the 
Dynamics of Building Structures, Scientific and 
Educational Center for Computer Modeling of Unique 
Buildings, Structures and Complexes (REC KM), 
Lecturer at the Department of Applied Mathematics and 
Informatics, Moscow State University of Civil 
Engineering (NRU MGSU); 129337, Russia, Moscow, 
Yaroslavskoe shosse, 26, phone +74957819988, e-mail: 
detinaep@mgsu.ru 
 

, -

 

 

9, 
+74956814381, e-mail: sidorov.vladimir@gmail.com. 
 

, 

-
  

 

 
 

9, 
+74956092116, e-mail: shepitko-es@mail.ru. 

 
-

-

+74957819988, e-mail: detinaep@mgsu.ru 
 

Control of a Nonlocal in Time Finite Element Model of the Dynamic Behavior of a Composite Beam Based
on the Results of a Numerical Experiment



86 International Journal for Computational Civil and Structural Engineering

International Journal for Computational Civil and Structural Engineering, 18(3) 86–94 (2022)

DOI:10.22337/2587-9618-2022-18-3-86-94

ANALYSIS OF THE FILTRATION PROBLEM BY BITWISE 
SEARCH METHOD 

 
Liudmila I. Kuzmina 1, Yuri V. Osipov 2, Maxim D. Astakhov 2 

1 HSE University, Moscow, RUSSIA  
2 Moscow State University of Civil Engineering, Moscow, RUSSIA 

 
Abstract. During the construction of ground and underground structures, filtration of a liquid grout in loose soil 
makes it possible to strengthen the foundation and create underground waterproof partitions. A one-dimensional 
problem of filtering a bidisperse suspension in a homogeneous porous medium with size-exclusion particle capture 
mechanism is considered. The article is devoted to the calculation of the exact solution of the problem given as 
the upper limit of the integral with a singularity. The proposed bitwise search method for calculating integrals 
makes it possible to smooth out fluctuations of the solution near the singularity. Partial and total retention profiles 
are analyzed. 
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1. INTRODUCTION 
 
Filtration problems are relevant for many areas 
of science and technology. In construction 
problems, modeling the filtration of the smallest 
particles in a porous medium allows one to study 
the properties of soils and analyze the 
possibilities of strengthening loose soil to create 
a solid foundation [1–4]. 
The carrier fluid flows through the porous 
medium and carries the fine solids of suspension. 

During the filtration process, some particles are 
retained and form a deposit. There are many 
different mechanisms of particle capture, which 
are determined by the physicochemical 
properties of the porous medium, liquid, and 
suspension particles, as well as the geometry of 
the porous structure [5–7]. If the particle sizes 
and pore cross sections are of the same order, the 
prevailing particle capture mechanism is size-
exclusion: suspended particles are transported 
through wide pores and get stuck at the entrance 
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1. INTRODUCTION 
 
Filtration problems are relevant for many areas 
of science and technology. In construction 
problems, modeling the filtration of the smallest 
particles in a porous medium allows one to study 
the properties of soils and analyze the 
possibilities of strengthening loose soil to create 
a solid foundation [1–4]. 
The carrier fluid flows through the porous 
medium and carries the fine solids of suspension. 

During the filtration process, some particles are 
retained and form a deposit. There are many 
different mechanisms of particle capture, which 
are determined by the physicochemical 
properties of the porous medium, liquid, and 
suspension particles, as well as the geometry of 
the porous structure [5–7]. If the particle sizes 
and pore cross sections are of the same order, the 
prevailing particle capture mechanism is size-
exclusion: suspended particles are transported 
through wide pores and get stuck at the entrance 

of narrow pores [8–10]. Suppose that the 
Newtonian fluid is incompressible, the 
suspended particles move at the same speed as 
the carrier fluid, the retained particles are 
stationary and cannot be knocked out of the 
porous frame by the fluid or suspended particles. 
The standard one-dimensional mathematical 
model of filtration of a monodisperse suspension 
in a homogeneous porous medium includes the 
balance equation for the masses of suspended and 
retained particles and the kinetic equation for the 
growth of the particles retained concentration 
[11–14]. The equations are considered in a 
dimensionless form: the concentrations of 
suspended and retained particles are normalized 
by dividing by the concentration of the 
suspension at the inlet of the porous medium, the 
length of the porous sample is taken as a unit, and 
the unit of time is the period of passage of a 
suspended particle through the porous medium 
from inlet to outlet. The dimensionless velocity 
of particles and carrier fluid is equal to 1. 
When filtering in a porous medium, the deposit 
is unevenly distributed. The distribution of 
retained particles is given by the retention profile 
- the concentration of deposited particles at a 
fixed time, which depends on the coordinate. For 
a monodisperse suspension, the retention profile 
decreases monotonically: it is maximum at the 
inlet of the porous medium and minimum at the 
outlet. 
If the suspension contains suspended particles of 
two different sizes, then the mass balance and 
kinetic equations of deposit growth are written 
separately for each type of particles. The 
connection between the equations for different 
particles is carried out by a single filtration 
function, which is included in both kinetic 
equations and depends on a linear combination of 
partial retained concentrations. When filtering a 
bidisperse suspension, the profile of large 
particles decreases monotonically, while the 
profile of small particles is nonmonotone: near 
the inlet of a porous medium, the profile 
increases, reaches a maximum, and then 
decreases monotonically. As time increases, the 
maximum point moves away from the inlet. The 

monotonicity or nonmonotonicity of the total 
retention profile depends on the model 
parameters. The retention profiles of a bidisperse 
suspension were studied numerically in [15, 16], 
and an analytical solution was obtained in [17]. 
Filtration problems, as a rule, do not have an 
exact analytical solution. In many works devoted 
to the numerical solution of filtration problems, 
the finite difference method is used [18–20]. 
Calculation using an explicit difference scheme 
allows you to quickly make calculations, but the 
presence of discontinuities significantly 
complicates finding a solution. If an exact 
solution in an implicit closed form or its 
asymptotics is known, it is used to numerically 
calculate the solution in an explicit form [21, 22]. 
For the problem of filtering a bidisperse 
suspension in a porous medium, an exact implicit 
solution is obtained. The solution is given in the 
form of integrals with variable limits, the 
integrand has a singularity. Finding the value of 
the integral near the singularity is a difficult 
computational problem. In this article, bitwise 
search method for calculation of a solution is 
used [23]. This method makes it possible to 
smooth out fluctuations in the solution that arise 
when calculating integrals with singularities 
using standard methods. The results of 
calculations for solving the filtration problem by 
the standard method and by the bitwise search 
method are presented. The profiles of the total 
retained concentration and partial retained 
concentrations of particles of the same size are 
obtained and analyzed. 
 
 
2. MATHEMATICAL MODEL 
 
In the domain { 0, 0}x t  consider the 
system 
 

 0,i i ic c s
t x t

 (1) 

0 0
1 1 1 2 2 2(1 ) , , 1, 2i

i i
s b c b B c s B c s i
t

. (2) 
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Here 0, ,i i iB c  are positive constants, 1 2 , 
0 0
1 2 1c c . The unknowns , , 1, 2i ic s i  are 

the suspended and retained particles 
concentrations, respectively, b is the 
concentration of occupied sites, iB  is the 
individual area that an attached particle occupies 
at the rock surface, and 0

ic  are the particle 
concentrations in the injected suspension. 
For the uniqueness of the solution of problem (1), 
(2), the conditions are set at the inlet of the 
porous medium and at the initial moment: 
 
 00 : , 0 : 0, 0, 1,2i i i ix c c t c s i . (3) 
 
The solutions 1 2( , ), ( , )c x t c x t  have a 
discontinuity on the characteristic line t x , 

because the initial and boundary conditions do 
not match at the origin. The line t x  is the 
concentration front  of the suspended and 
retained particles which divides the interior of the 
domain  into two zones. In the domain 

0 { 0, 0 }x t x  the problem has a zero 
solution; in the domain 1 { 0, }x t x  the 
solution is positive. In the domain 1  the 
solutions  1 2( , ), ( , )c x t c x t are related by the 
formulae 
 

 
1 2 2 1/ /

0 02 1
1 1 2 20 0

2 1
,c cc c c c

c c
 (4) 

 
and are given in implicit form 
 

 
1

2 1
1

2

1 2

2

1/
0 0 0 0 0

1 1 1 2 2 2 2 0
1

2/
0 0 0 0 0

1 1 1 1 2 2 20
2

( ),

( )

( ),
( )

c

c

c

c

dc t x
cc B c c c B c c c
c

dc t x
cc B c c c B c c c
c

                              (5) 

 
where 
 
 0( , ) i x

i i ic c x x c e  (6) 
 
is the solution on the concentration front . 
For known 1 2( , ), ( , )c x t c x t  concentrations of 
retained particles are given by the formula 
 

0 0 0 0
1 1 1 1 2 2 2 2

, 1, 2
( ) ( )

i i
i

c cs i
B c c c B c c c

. (7) 

 
In particular, at the inlet 0x  solution (7) takes 
the form 
 

 
0

0

0 2 0 2
1 1 1 2 2 2

( ) (1 ), 1, 2,
( ) ( ) .

Bti i
i

cs t e i
B

B B c B c
 (8) 

Consider the properties of retention profiles 
given by formula (7) at fixed time t. 
- The partial retention profile 1( , )s x t  decreases 
monotonically for all t x ; 
- The partial retention profile 2 ( , )s x t  decreases 
monotonically for 0x t t  and increases 
monotonically for 0t t ; 
-The total retention profile ( , )s x t  decreases 
monotonically for all t x  if 0 0

1 1 2 2B c B c ; 
decreases monotonically at 0x t T  and 
increases monotonically at 0t T  if 0 0

1 1 2 2B c B c . 
So, any non-monotonic retention profile has a 
maximum point. As time increases, the 
maximum point shifts from the inlet of the 
porous medium. 
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Here 0, ,i i iB c  are positive constants, 1 2 , 
0 0
1 2 1c c . The unknowns , , 1, 2i ic s i  are 

the suspended and retained particles 
concentrations, respectively, b is the 
concentration of occupied sites, iB  is the 
individual area that an attached particle occupies 
at the rock surface, and 0

ic  are the particle 
concentrations in the injected suspension. 
For the uniqueness of the solution of problem (1), 
(2), the conditions are set at the inlet of the 
porous medium and at the initial moment: 
 
 00 : , 0 : 0, 0, 1,2i i i ix c c t c s i . (3) 
 
The solutions 1 2( , ), ( , )c x t c x t  have a 
discontinuity on the characteristic line t x , 

because the initial and boundary conditions do 
not match at the origin. The line t x  is the 
concentration front  of the suspended and 
retained particles which divides the interior of the 
domain  into two zones. In the domain 

0 { 0, 0 }x t x  the problem has a zero 
solution; in the domain 1 { 0, }x t x  the 
solution is positive. In the domain 1  the 
solutions  1 2( , ), ( , )c x t c x t are related by the 
formulae 
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where 
 
 0( , ) i x

i i ic c x x c e  (6) 
 
is the solution on the concentration front . 
For known 1 2( , ), ( , )c x t c x t  concentrations of 
retained particles are given by the formula 
 

0 0 0 0
1 1 1 1 2 2 2 2

, 1, 2
( ) ( )

i i
i

c cs i
B c c c B c c c

. (7) 

 
In particular, at the inlet 0x  solution (7) takes 
the form 
 

 
0

0

0 2 0 2
1 1 1 2 2 2

( ) (1 ), 1, 2,
( ) ( ) .

Bti i
i

cs t e i
B

B B c B c
 (8) 

Consider the properties of retention profiles 
given by formula (7) at fixed time t. 
- The partial retention profile 1( , )s x t  decreases 
monotonically for all t x ; 
- The partial retention profile 2 ( , )s x t  decreases 
monotonically for 0x t t  and increases 
monotonically for 0t t ; 
-The total retention profile ( , )s x t  decreases 
monotonically for all t x  if 0 0

1 1 2 2B c B c ; 
decreases monotonically at 0x t T  and 
increases monotonically at 0t T  if 0 0

1 1 2 2B c B c . 
So, any non-monotonic retention profile has a 
maximum point. As time increases, the 
maximum point shifts from the inlet of the 
porous medium. 
 
 

3. BITWISE SEARCH METHOD 
 
Obtained exact solution makes it possible to 
perform calculations using formulae (5) without 
a numerical solution of the original problem (1)–
(3). Calculation of the implicit solution – the 
upper limit of integration in integrals (5) was 
performed by the bitwise search method [24, 25]. 
Finding the solution numerically is complicated 
by the fact that the upper limit of integration is 
close to the singularity of the integrand. 
Calculations by standard methods lead to 
oscillations of the solution and increase of an 
error, since the derivative solutions are limited. 
To obtain a smooth solution, the bitwise search 
method was chosen as one of the direct search 
methods that does not use derivatives in 
calculations. With a large error in calculating the 
values of the function, the bitwise search method 
makes it possible to avoid an excessive number 
of iterations. 
The profile is constructed by calculating the 
profiles of suspended particles concentrations 

1 2( , ), ( , )c x t c x t  at each point of the porous 
medium at a fixed time t. Formulae (4) set a 
relation for concentrations and make it possible 
to implement two approaches to computation of 
a solution. You can use one profile as a basic one, 
calculating it by formula (5), and obtain the 
second profile algebraically by formula (4). If we 
calculate both profiles by formulae (5), algebraic 
formulae (4) can be used to check the accuracy 
of the solutions found. 
The input parameters of the program are: 

 x_step – step by x,  
 t – time for which the solution profile is 

calculated, 
 accuracy – obtained accuracy of the 

solution nc , 
 calc – list of profiles, which are 

calculated by formulae (5). 
Denote the following variables: 

 nNeed  – the right side of equation (5), the 
value of the integral, 

 Depth – the current bit of the search for 
, called the search depth, 

 S – the calculated value of the integral at 
the current iteration, 

 nRes  – the last obtained profile value, 
 Best – a pair of variables: 

o Best[0] = Delta – deviation 
between the values of the integral 
S and Need, 

o Best[1] = nc  – the calculated 
solution, 

 Plus – flag storing the search direction: 
o true (1) – in the direction of 

increase of nc , 
o false (0) – in the direction of 

decrease of nc . 
The first step is to calculate the right side 

( )n nNeed t x  of the integral (5), then the 
condition 0Need  is checked, which means 
that the solution behind the front t x  is 
positive. If 0Need , the point x belongs to the 
front and n nc c . Otherwise, we proceed to the 
calculation for one of the basic profiles. 
The search depth (Depth) for the next step in x is 
calculated using the linear interpolation formula 
 

10log 1n nDepth Res c . 
 

The search depth determines in which bit the next 
value of nc  can be obtained, and reduce the 
number of iterations of the algorithm. 
Then it is checked that the upper integration limit 
cannot be less than the lower one: n nRes c , 
otherwise n nRes c .  
The condition 0

n nRes c  is also checked, which 
means that the concentration cannot exceed the 
initial concentration of the suspension, otherwise 

n nRes c . 
Let's start the calculation of nc  at a given point x, 
setting nRes  as the initial value. The algorithm 
includes the following steps. 

1. Calculate the integral on the left side of 
formula (5) with the current value nc  
using the Simpson method. 

2. Calculate Delta S Need . 
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3. If [0]Delta Best , then 
{ , }nBest Delta c . 

4.  If ( )10 accuracyDelta , then the value of 
the integral is found with the required 
accuracy, go to step 1 with the next value 
of x.

5. If S Need  and Plus = true, change the 
search direction (Plus = false) and 
increase the search bit (Depth +=1). 

6. If S Need  and Plus = false, change the 
search direction (Plus = true) and increase 
the search bit (Depth +=1). 

7. If Depth accuracy , then the specified 
accuracy of the solution is reached, go to 
step 1 with the next value of x. 

8. Let's take the next step 
10 , if ,
10 , if .

Depth
n n

Depth
n n

c c Plus false
c c Plus true

 

9. Check that the value of nc  does not go 
beyond the limits of the interval 0[ , ]n nc c . 

If 0[ , ]n n nc c c , then take a step back 
10 , if ,
10 , if .

Depth
n n

Depth
n n

c c Plus false
c c Plus true

, 

and increase Depth +=1, then return to 
step 8. 

10. Increase x by one step and go to step 1. 
At the end of the loop, the result of the 
calculation is Best[1]. 
Dependent profile is calculated by formula (4). 
If both profiles were calculated by formulae (5), 
then with the help of (4) the calculation error is 
determined - the discrepancy between the values 
of the same profiles is calculated. 
 
 
4. NUMERICAL SIMULATION 
 
Figure 1 shows the profiles of partial and total 
concentration of retained particles at different 
time for the parameters 1 225, 5 , 

1 20.125, 0.025B B , 0 0
1 20.5, 0.5c c . 

  
a) t=0.2 b) t=2 

  
c) t=10 d) t=40 

Figure 1. Retained concentration profiles 
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At the end of the loop, the result of the 
calculation is Best[1]. 
Dependent profile is calculated by formula (4). 
If both profiles were calculated by formulae (5), 
then with the help of (4) the calculation error is 
determined - the discrepancy between the values 
of the same profiles is calculated. 
 
 
4. NUMERICAL SIMULATION 
 
Figure 1 shows the profiles of partial and total 
concentration of retained particles at different 
time for the parameters 1 225, 5 , 

1 20.125, 0.025B B , 0 0
1 20.5, 0.5c c . 
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c) t=10 d) t=40 

Figure 1. Retained concentration profiles 

According to Fig. 1 profiles of large and small 
particles are separated at a long time. Large 
particles are mainly deposited near the inlet of 
the porous medium, while small particles are 
deposited near the outlet. The monotonicity of 

the total sediment profile depends on the 
parameters of the problem. 
The graphs of solutions obtained without the 
procedure for smoothing oscillations have kinks 
and oscillating nonmonotonic sections that are 
unacceptable in smooth solutions (Fig. 2). 

  
Figure 2. Unacceptable non-smooth retention profiles 

 
 
5. CONCLUSION 
 
For the filtration model of bidisperse suspension 
in a homogeneous porous medium 

 Implicit exact solutions are found in the 
form of integrals with singularities. 

 Bitwise search method is used to 
calculate the smoothed solution. 

 The algorithm of the bitwise search 
method is described. 

 Smooth numerical solutions are obtained. 
 Retention profiles of total and partial 

deposit concentrations are constructed. 
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MODELING AND MONITORING OF STRUCTURAL SAFETY OF 
LONG-OPERATING UNDERGROUND STRUCTURES OF THE 

SEWAGE SYSTEM IN THE CONDITIONS OF INCREASING 
ANTHROPOGENIC ACTIONS IN ORDER TO PROVIDE 

SUSTAINABLE LIFECYCLE OF ENGINEERING 
INFRASTRUCTURE OF THE MEGACITY (THE EXPERIENCE 

OF ST. PETERSBURG) 
 

Nickolai A. Perminov 1, Rashid A. Mangushev 2 
1 Emperor Alexander I Saint-Petersburg State Transport University, Saint-Petersburg, RUSSIA 
2 Saint-Petersburg State Architecture and Construction University, Saint-Petersburg, RUSSIA 

 
Abstract. Long-term operation in difficult engineering-geological conditions of unique underground sewage 
facilities creates the danger of violating their structural safety. A long-term study of the dynamics of changes in a 
technical state of large pumping stations and deep sewage tunnels made it possible to establish patterns of influence 
of intensive anthropogenic and dynamic actions on this process. The developed discrete and continuous diagnostic 
models of defect development in tunnel structures allow identifying potentially hazardous areas subjected to 
manifestation of critical failures and methods of their localization. On the basis of numerical modeling the 
boundaries of defect-free joint operation of the system “source of impact – geo-mass – sewage underground 
structure” have been determined. The geotechnical and structural calculations are used to simulate the interaction 
of the facilities with the soil environment and predict adaptive stress-strain control system parameters. With 
increasing external anthropogenic and dynamic impacts, modeling zones of urban areas with potentially dangerous 
sections of underground sewage facilities constitute the basis for development of regulatory documents on 
monitoring methods and safe development of the geotechnical infrastructure of a megacity. 
 

Keywords: unique underground sewer structures, structural safety, complex ground conditions, 
modeling and monitoring, man-made impacts 
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1. INTRODUCTION. GENERAL 
FEATURES OF THE PROBLEM UNDER 
SOLUTION 
 
At development of big cities unique underground 
sewage structures require special protection 
against anthropogenic actions. Sewage pump 
stations and tunnels as the facilities of an 
increased level of responsibility should meet the 
requirements of safe operation excluding the risk 
of emerging dangerous failures [1, 2]. The 
analysis of data on a current technical state of 
large pump stations (the depth of lowering - 
down to 71 m, the diameter -  up to 66 m) and 
deep sewage tunnels (the total length – more than 
2500 km) in more than ten largest cities of Russia 
with developed historical downtowns allowed 
developing methods of evaluation of their 
technical state, make a classification and a 
catalogue of defects. 
In order to identify causes of defects at operation 
of underground pump stations (violation of 
integrity of a structure shell, force cracks, 
corrosion of concrete and reinforcement due to 
leakages) there were analyzed processes of 
construction and lowering of a large RC shell. 
During the sinking of large-size tempering 
structures, specific conditions of their interaction 
with the ground massif manifest themselves. Due 
to the inclusion of the scale effect (factor) (by the 
hyper size of the side surface area of the shell 

interacting with heterogeneous soil S=14500m2 
and its super large mass  creating 
a powerful kinetic momentum at instantaneous, 
most often sudden, landings of the lowering 
structure [3, 4]. The joint manifestation of these 
factors is responsible for the specific, non-linear 
behavior of the structure during sinking and the 
host soil mass. The strength and deformability of 
a large-scale massive structure, its geometric 
variability should be calculated not only for the 
final stage of construction. Still for the entire 
history of immersion, taking into account the 
history of the interaction of the shell with the soil 
massif during immersion and consequently the 
effect of stage-by-stage inheritance of the stress. 
That can only be done using nonlinear problem 
solving and computer modeling. 
The analysis of the experimental results 
presented in the article showed that the main 
defects leading to failure of shell integrity and 
cracking occurred during the erection of the 
underground part in the soil mass. Thus, the main 
task is to ensure the operation of the structure in 
up to the limit modes at the stage of its life cycle 
during the erection. In order to be able to realise 
these conditions, it is crucial to assess the actual 
structural performance taking into account the 
process of its stage-by-stage erection in the soil 
mass under the non-linear material properties of 
the structure and the ground. These conditions 
can be taken into account to build a correct model 
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of the interaction history of the shell during its 
step-by-step insertion into the soil mass. 
Calculated justification of the range of 
preliminarily changes in the stress-strain state of 
the mega massive shell when it is immersed in 
heterogeneous soils will ensure a defect-free life 
cycle of the underground structure at the stage of 
erection [5]. The analysis of the shell loading 
history at the stage of its erection taking into 
account the effect of VAT inheritance allows to 
create an adequate calculation and analytical 
model of the underground structure and to choose 
a rational calculation method for predicting the 
dynamics and spatial boundaries of stress-strain 
state (SSS) changes in the reinforced concrete 
shell structure, ensuring defect-free structure at 
all stages of its immersion. 
The methodological approach proposed in the 
article allows you to move from the previously 
adopted method of calculation on the sinking 

 of geotechnics. Edited by V.A. 
Ilyichev and R.A. Mangushev, 2016) of large-
size underground water disposal facilities erected 
by tempering method to the concept of modeling 
and prediction of defect-free life cycle at the 
stage of their construction. The results of 
experimental and theoretical studies represented 
in the article convincingly show that modeling 
and calculated justification of preventive 
protection parameters by geotechnical methods 
of underground construction at the stage of 
erection will ensure its safety and stability to 
man-made impacts at subsequent stages of the 
life cycle during long-term operation. 
The paper draws special attention to 
investigation of structural safety of deep sewage 
tunnels, long-operating in the bulk of unstable 
soils of different strength at growing 
anthropogenic and dynamic actions. For almost 
most of the cities under consideration, the 
network of tunnel collectors has an average value 
of the physical deterioration degree more than 
60% with a development dynamic of 0.6-1.2% 
per year. It was found that for the cities where the 
operation of the engineering infrastructure is 
carried out in complex engineering and 
geological conditions typical, for example, for St. 

Petersburg, the degree of the tunnels wear is 
significantly greater, reaching 83% with a higher 
development dynamic of up to 1.6-2.1 % per 
year. Development of a methodology for 
identifying the potentially dangerous sections of 
tunnels operated for a long time in difficult soil 
conditions, with their subsequent modeling and 
monitoring, will ensure their structural safety 
with increasing man-induced dynamic impacts.  
 
 
2. THE METHODS OF MONITORING 
AND GEOTECHNICAL EVALUATION OF 
NON-STATIONARY INTERACTION OF A 
LARGE SHELL WITH 
HETEROGENEOUS SOIL MILIEU 
 
According to the results of field and calculated-
experimental works and data of complex system 
of geotechnical monitoring (Figure 1) of large-
sized (D=50÷60m and  sinking wells 
the peculiarities of their interaction with 
heterogeneous soil medium during sinking were 
studied. The heterogeneity of soil strata is 
characterized as follows: the upper stratum is 
represented by quaternary strata to a depth of 
14.0-25.0 m (dusty sands of medium density, 
water-saturated, E = 11 MPa, C = 0.005 MPa,  
= 30°; dusty loamy sandy loam, E = 4 MPa, C = 
0.01 MPa,  = 15°; dusty loamy layered fluid 
plastic,  = 9 MPa,  = 0.025 MPa,  = 16°; 
dusty loamy semi-solid with gravel, pebbles,  = 
14 MPa,  = 0.028 MPa,  = 28°), the lower one 
- the roof of Proterozoic clays of dislocated solids 
(E = 19 MPa,  = 0.04÷0.06 MPa,  = 18÷21°). 
The geomonitoring structure included: 1) 
program complex of calculations and the 
geomassive stress under different erection 
modes; 2) technical means of instrumental 
observations and SSS control of the separate 
elements of the system "structure - geomassive"; 
3) information-measuring system of gathering, 
processing, storage and identification of 
parameters (data) of observations and control; 4) 
geotechnical methods of the influence on the 
geometric massif and soil and structure stress. 
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Figure 1. Geocomplex of monitoring and 
regulating stress-strain behavior of an 

embedding geobulk. 
 
The monitoring established the peak values of 
horizontal stresses at the moment of "roll", 
exceeding the calculated values by more than 2.5 
times. This can cause the appearance of 
microcracks in the concrete structure, which will 
inevitably lead to violations of waterproofing of 
the structure. The consequences of this 
circumstance were noted after 15-20 years of 
culverts' operation by the inevitable failure of 
their airtightness (Figure 2). 
 

 
 

 
 

 
Figure 2. Sinking stages and monitoring of the 

stress-strain state of the large-sized sinking 
well: a - sinking hodogram; b, c - volume 
diagram of the shell displacement and the 

stress-strain state (SSS) of the shell 
 
According to the analysis of sinking process and 
stress-strain state of large-sized shell, different, 
even alternating, stress-strain state of "large-
sized shell-soil mass" system and different types 
of pressures (SP22.13330) of ground medium on 
the shell, including resting pressure, active and 
passive pressure (see Figure 3) are observed at 
different sinking stages. 
The strength and deformability of a large-scale 
massive structure, its geometric variability, must 
be calculated not only for the final stage of 
construction, but for the entire history of 
immersion, taking into account the history of the 
interaction of the shell with the ground massif 
during immersion. 
According to the general theory the ground 
pressure on the walls of the well at rest can be 
determined from the expression: 
 

                    (1) 
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where - coefficient of lateral pressure of the 
ground at rest; - specific weight of the ground; 
z - distance from the ground surface to the point 
in question. 
At displacements of the manhole shell wall > 
0.005h (SP22.133 p.9.21) from the ground at 
depth z, the active pressure on the enclosure, 
which corresponds to the minimum pressure 
value, is realized. The passive pressure , is 
realized at much larger displacements of the wall 
on the ground ( ) and corresponds 
to the maximum value of pressure. 
If there is no load on the ground surface, the 
expressions for determining the active and 
passive pressures are as follows: 
 

                     (2) 
                     (3) 

 
where:  - coefficient of active ground 
pressure; - coefficient for the influence of 
ground cohesion on the active pressure;  - 
coefficient of passive ground pressure; - 
coefficient for the influence of ground cohesion 
on passive pressure; c - specific ground cohesion.  
 

 
 

Figure 3. Asymmetric deformation 
(displacement) of the KGOK shell 

 
Figure 4. Dependence of lateral soil pressure 

on the shell on displacements u  u , ua) 
according to clause 9.21 (SP 22.13330) 

 
The dependence of the effective horizontal 
pressure of the ground on the retaining structure 
in the interval u  (u , ua) has a comple  character 
(Figure 4). 
The active and passive pressures of the ground on 
the enclosure constitute the pressure limits, that 
is, the effective pressure is always in the range: 
 

                  (4) 
 
The dependence of the effective horizontal 
ground pressure on the holding structure in the 
interval has a complex character 
(Figure 4). 
In Figure 3 and considering Figure 4 we show the 
character of asymmetric deformations 
(displacements) of the shell contour according to 
the diagram of dependence of horizontal soil 
pressure on the walls of the well depending on 
the character of its displacement (asymmetric 
contraction-expansion of the shell in its upper 
and lower parts) and the diagram of lateral soil 
pressure, when approximating it by piecewise 
linear function. 
The function of change of pressure value at 
some depth z from displacements can be 
represented as follows: 
 

        (5) 

g
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With some assumptions, the function  
 

                     (6) 
 
where k is the stiffness coefficient of the ground; 

- ground pressure at rest. 
The ground stiffness coefficient can be used as 
the ground stiffness coefficient. 
The resulting pressure along the bottom and top 
sections of the well wall is the sum of the 
effective pressures on both sides of the enclosure. 
Let us present in the form of two graphs the 
effective ground pressure on the wall of the well 
from the ground (left) and the excavation (right) 
depending on the horizontal displacement of the 
well shell (Figure 3). 
Construct the function as a piecewise 
given function for any value of z. 
To describe the effective pressures for 
individual sections of the diagram between the 
active and passive pressure limits 

 , instead of (a), 
(b), (c), (d) we will use (1), (2), (3), (4), adding 
indices for the terms relating to the axis of 
contraction and expansion of the well diameter. 
In the case where the knife part of the wall of the 
well is surrounded on both sides by the soil mass 

will take the form of: 
 

(7)

 
 
If we separately consider the resultant pressures 
on the shell up to the face ( ), expression 
(7) will take the form: 
 

     

(8) 

 
Let us substitute expressions (1), (2), (3) in (7) 
and (8): 

          
(9)

 

   

(10)

 
 
The analysis of formulas (9) and (10) 
describing resultant pressures shows that 
practically independent of properties of the 
host soil mass, the sum of effective pressures 
on the asymmetric deformed shell (Figure 3) 
both in the opposite axial directions and in the 
lower and upper parts of the shell exhibit a high 
degree of nonuniformity. As comparative 
calculations show, the non-uniformity of the 
resulting pressures can be of the order of one 
unit (see Figure 5) or more, either on both sides 
of it, or along the formations of the lower and 
upper sections of the manhole walls. It is 
impossible to predict such character of the 
stress-strain state (SSS) of the "sinking 
structure-soil massif" system using the 
recommended calculation approach, as it was 
noted, and it is also impossible to ensure 
verticality and uniformity of sinking by 
applying previously known methods of 
geotechnology [6], as evidenced by hodograms 
(see Figure 2a). 
The analysis of the conditions of interaction 
between a massive large-sized shell and the 
ground massif when immersed in heterogeneous 
strata testifies to the manifestation of non-
stationarity effects in the parameters reflecting 
this process. In order to be able to study the 
regularities of manifestation and conditions for 
preventing their prohibitive development in our 
further studies, it is necessary to use simulation 
of shell immersion modes, solving for this 
purpose the problems in linear and nonlinear 
formulations. 

 

p p
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Figure 5. Slip lines for active and passive 

pressures on the retaining wall (by Korolev 
K.V.) 10Ea<<En 

 
The strength and deformability of a large-scale 
massive structure, its geometric variability should be 
calculated not only for the final stage of construction. 
Still for the entire history of immersion, taking into 
account the history of the interaction of the shell with 
the soil massif during immersion and consequently 
the effect of stage-by-stage inheritance of the stress. 
That can only be accomplished using nonlinear 
problem solving, nonlinear models, and computer-
based nonlinear modeling. 
 
 
3. THE RESULTS OF MODELING AND 
ANALYSIS OF REGULATED MODES OF 
LOWERING OF A MASSIVE SHELL IN 
HETEROGENEOUS SOIL USING THE 
METHODS OF GEOTECHNOLOGY 
 
3.1 Numerical modeling of the process of 
correcting a tilt of a massive embedded 
structure 
In engineering practice, it is known that during the 
construction of large-diameter manholes there are 
often problems associated with the deviation of the 
structure from the design position. The causes of 
uneven sinking of the well, as it was found in 
section 2, are peculiarities of interaction of the 
large-sized shell with heterogeneous soil medium 
at the stage of its sinking and non-stationary nature 
of the stress-strain state of the system "large-sized 
lowering shell - the host soil mass". 
By means of numerical geotechnical calculations it 
is proposed to choose technically possible 
geotechnological methods for controlling the 
sinking process: change of the geomassivation in 
the base of the structure and on the side surface, for 

example, by methods of prestressing the soil mass, 
by means of loading leader screens, regulation of 
the soil resistance on the side surface and other 
protective geotechnological measures,  
In order to assess the effectiveness of geotechnical 
measures to correct the roll, several series of 
calculations were carried out on the ground massif 
with a buried structure. In the initial series of 
calculations, the soil base was modeled as a linearly 
deformable medium. In the subsequent series, the 
nonlinearly deformable material. As a linear 
medium, a model with a  coupling between 
stresses and strains was used [7, 8]. An incremental 
model based on generalized  law was used 
to simulate nonlinear material. 
 
Description of the nonlinear ground model 
An incremental strain-type model was used as the 
computational ground model to solve the 
nonlinear problem. The relationship between 
stresses and strains in the model is taken 
separately for the volumetric and shear 
components of the stress tensor: 
 

 
(11) 

 
 
Where: - increment of the deviatoric 
component of the stress tensor; - increment of 
the deviatoric component of the strain tensor; 

- increment of the average stress; - 
increment of the average strain; - differential 
volume strain; - differential shear strain. 
The mathematical approximation of deviator 
loading is taken as a linear polynomial of two 
variables:  
- under the condition of loading by the deviatoric 
component of the stress tensor 
 

              (12) 
 

- under the condition of unloading by the 
deviatoric component of the stress tensor 
 

                         (13) 

g
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Approximation of the differential volume strain 
modulus under the condition of loading by the 
spherical component of the stress tensor is 
carried out by a second-order power polynomial: 
 

            (14) 
 
at "unloading":  
where:  - tangential stress intensity; - 
average stress; - model 
design parameters.  
Parameters of the computational model 

(12-14) were determined 
from the data of three-axis tests in the 
stabilometer. The tested soil is a sandy soil of 
medium coarseness with density Pd=1.65g/cm3 
and humidity W=10%. 
The procedure for solving the nonlinear problem 
was reduced to the well-known method of variable 
stiffness [9, 10], according to which the stiffness 
matrix was reshaped at each step of the solution 
according to the current level of SSS and the 
orientation of the overload vector. 
As measures for leveling the roll of a buried 
structure can be chosen the method of regulation of 
ground resistance by electroosmosis or the transfer 
of horizontal pressure on the ground, based on 
immersion in an array of soil elastic shell, in which 
by special technology creates excessive pressure, 
transmitted through the walls of the shell on the 
ground [11]. The elastic casings are placed to some 
depth along the wall of the buried structure on the 
outer side. Then pressure is transferred to the inner 
cavity of the shell, which is transferred to the wall 
of the structure on one side and to the ground on the 
other side. 
The calculation scheme is a soil mass measuring 
296.0 m (horizontal) by 115, 0 m (vertical). In the 
central part of the scheme is a rigid buried 
structure having a length of 50.0 m in plan and is 
buried at 45.0 m. 
The computational scheme is discretized into 246 
quadrangular isoparametric elements. The total 
number of nodes was 282. The computational 
domain is represented by two groups of elements 
with different deformation characteristics. The 
elements of the first group (rigid buried structure) 

are represented by an elastic material with an 
elastic modulus E=30000.0MPa and Poisson's 
coefficient V=0.18.  
The surrounding structure space is represented 
by a group of linearly deformable elements No. 2 
with strain modulus E=30.0 MPa and Poisson's 
coefficient V=0.33. 
In solving the problem, it is assumed that the 
structure has an initial roll, as shown in Fig. 6 
(left to right). To correct for uneven subsidence 
on the right side of the structure is applied 
additional load intensity Q on the section of 
length L = 12.5 m. 
The load Q in the solved problems was taken 
equal to 0.3; 0.6 and 0.9 MPa. 
Numerical solution of geotechnical problems 
allowed to obtain the following results. Moving the 
contour of the dip well in a continuous elastic 
medium while adjusting the action of the lateral 
additional load Q and simultaneously adjusting the 
soil resistance on the lateral surface provided 
predicted prevention of rolls when sinking in 
heterogeneous soils. The displacements of the 
structure according to the solution of the nonlinear 
problem are shown in Figure 6. The greatest 
prevention of absolute horizontal displacement at a 
load of Q=0.9 MPa is as follows: 
1st series of calculations - 48 cm; 2nd series of 
calculations - 67 cm; 3rd series of calculations - 
80 cm; 4th series of calculations - 16 cm. 
 

 
 

Figure 6. Contour displacement of the dip well 
in a solid elastic medium under the action of 

lateral load: Q=0.3; 0.6; 0.9 (MPa) 
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Figure 7. Influence of horizontal displacements 

of manhole walls Uk on ground surface 
settlements under roll 

 
Figure 8. Influence of Uk value control on 
ground surface settlement in the mode of 

controlled structure landing 
 
For all solved problems, without the application 
of geotechnical regulation methods, the 
irregularity of sinking of the lowered structure 
was observed: vertical movements (raising (+); 
lowering (-)) of the left and right contour of the 
buried structure with the corresponding sign is 
given below: 
Series 1 calculations -3.2 and +27.5 cm; Series 2 
calculations -12.5 and +36.4 cm; Series 3 
calculations -25.7 and +41.1cm; Series 4 
calculations -3.2 and +15.9cm. 
When the zones with a reduced deformation 
modulus are taken into account in the 
calculations (the drilling zone), the horizontal 

displacement of the upper part of the structure 
has increased almost 2 times. 
By comparing the results for different sizes of the 
drilling area, it can be seen that for the same E*, 
the increase in size by 2 times leads to a 
displacement increase of about 15-30%. 
The geometric dimensions and configuration of 
the SSS control zones were selected by analyzing 
the displacement calculation data (Figure 7, 8). 
When solving the nonlinear problem (4th series 
of calculations), the displacements were obtained 
significantly less than when solving elastic 
problems. This fact can be explained by the 
considerable deformation heterogeneity in the 
soil surrounding the buried structure when 
solving the non-linear problem. The strain 
modulus when solving a nonlinear problem 
depends significantly on the stress state. Because 
of this, the strain modulus increases with depth. 
We also note that for the nonlinear solution there 
was no drilling zone, as well as the thixotropic 
jacket located around the structure was not 
modeled 
 
3.2 Modeling of conditionally instantaneous 
failure of a massive shell when it is immersed 
in an inhomogeneous soil medium 
Using the software package Autodesk Robot 
Structural Analysis Professional [12], we 
analyzed the performance of the casing structure 
during its sudden uncontrolled slip (fall) to the 
bottom of an open soil cavity from a height of 1.3 
- 1.5 m at angles of deviation from the vertical 
axis of 0.5°-5°. 
In developing the calculation model (Figure 9) it 
was taken into account that the structure of the 
shell consists of two cylinders stacked on each 
other: Upper cylinder: outer radius R = 36 m, 
inner radius R = 30.5 m, height  = 46 m; 
Lower cylinder: outer radius R = 36 m, inner 
radius R = 30 m, height  = 25 m. Thus, the 
outer diameter of the shell was D = 72 m, the 
height of the shell was  = 71 m. Concrete class 
B30. 
To simulate the magnitude of the impact force at 
failure of the shell in the model, the cylinder fell 
from a height  = 150-250cm. under the action 

Modeling and Monitoring of Structural Safety of Long-Operating Underground Structures of the Sewage System in the 
Conditions of Increasing Anthropogenic Actions in Order to Provide Sustainable Lifecycle of Engineering Infrastructure 
of the Megacity (the Experience of St. Petersburg)



104 International Journal for Computational Civil and Structural Engineering

of its own weight with an angle of inclination of 
0.5 °-5 ° on the compliant soil (clay greenish-
gray:  = 21 °, C = 0,04 MPa, E = 19 MPa). 
Spatial shell design scheme was modeled: weight 
G = 210000 t; number of knots 16944; volume 
finite elements 12496; number of static degrees 
of freedom: 50828; number of loads 27; free fall 
acceleration g = 9.81 m/kV.s; fall time 
t=  t=0.30-0.54 sec. Because of the 
angle of the slope, the frictional forces were 
applied at the top of the well on one side and at 
the bottom on the opposite side. 
 

 
Figure 9. Schematics of calculation models and 
submersible shell simulation results at different 
angles of its deviation from the vertical axis: a - 
static support at roll; b,c - failure and slippage 

at deviation from the vertical axis (roll), 
respectively: calculation form "N4" at  

 (n=0.56, -limited VAT), 
calculation form "N22" at   

(n=1.94,  4cm-limited SSS) 
 
During the analysis of the shell's deflectivity, we 
used the coefficient of forbidden state n, defined 
as the ratio of the equivalent stress of the shell 
structure according to Mises to the ultimate 
resistance of concrete of class B30. 
Since the simulation of the stalling processes at 
different deflection angles of the shell from the -

-axis and the drop heights -  was performed 
in a rather large range, Figure 9 shows only 
fragments of the calculated forms "NN4 and 22" 
and the most characteristic results that were taken 
for analysis. The total calculation table of the 
integration results of the motion equations of the 
shell at stall (fall) at velocity VZ, VX, VY 
(cm/sec), acceleration AZ, AX, AY (cm/sec2) 
and displacement UZ, UX, UY (cm) was 186385 
lines. 
 

 
Figure 10. Area of maximum permissible values 

of conditionally instantaneous landings 
(failures)  of the shell with diameter D=61m, 
height  weight G=210000t, at various 
angles of deviation of the structure from the 

vertical axis  (concrete class B30;  =  C 
= 0,04 MPa, E = 19 MPa) 

 
According to the results of modeling (Figure 
10), the acceptable parameters of the spatial 
position of the shell and the range of its 
conditionally instantaneous disruptions, 
providing up to the limit value of the shell's SSS 
were established. 
The simulation results show that for large-sized 
shells, the recommendations of normative 
documents have limited application and need to 
be confirmed by computational modeling. 
 
 
4. MODELING AND MONITORING OF 
POTENTIALLY DANGEROUS PARTS OF 
SEWAGE TUNNELS 

 
4.1 The methods of studying potentially 
dangerous parts of sewage tunnels 
The most interesting from the point of view of 
studying potentially dangerous sections of 
sewer tunnels is the system and network of 
tunnel collectors of St. Petersburg, which, with 
an undeveloped redundancy scheme, has a 
length of about 275 km. The system of sewer 
tunnels consists of pipelines with a diameter of 
1.2 to 5.6 m and a depth of 8 to 70 m. Most (up 
to 75%) of the waste line length is located in 
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the central historical part of the city in 
extremely difficult technogenic and 
engineering-geological conditions. The main 
part of the territory is covered by a stratum of 
Quaternary deposits (Q) that are unstable to 
technogenic impacts. Among the latter, it 
should be especially noted water-saturated clay 
soils belonging to lake-sea, lake-glacial and 
moraine deposits. Up to a depth of 30-120 m, 
soil strata are represented by silty sands of 
medium density, water-saturated -11  

-  j=27-30°; silty plastic sandy 
loam -5  -0.02  j=12-17°; 
silty layered fluid plastic loams -8  

-0.025  j=10-16° [13]. Long-term 
waste line operation in these conditions 
negatively affects their technical condition. 
This factor is especially true for the continuously 
operating tunnel sewer collectors under the 
conditions of increasing man-induced impacts, 
first of all, to static from the large-sized 
complexes under construction in the influence 
zone with a developed underground part (see 
Figure. 11) and vibro-dynamic from the 
construction and transport equipment [14]. To 
identify the potentially dangerous areas, 
instrumental surveys of tunnels are carried out 
using a special technique. Technical instrumental 
surveys included: full-scale tachymetric survey 
of the spatial position of the tunnel in the 
intervals between mines, scanning the inner 
surface conditions of the tunnel with an 
assessment of its continuity with a GPR; taking 
cores and carrying out tests using the pull-off 
method with scanning to determine the strength 
characteristics of concrete, taking samples for 
chemical and biochemical analyzes, assessing 
the degree of corrosion and reinforcement by 
non-destructive methods, vibro-dynamic testing 
of vibrations of internal tunnel structures from 
external and construction vibration effects [15]. 
The uniqueness of the observation materials for 
the tunnels’ state lies in the fact that the technical 
inspection of the structures has been carried out 
for a long time from the end of the 70s up to the 
present (2021). During this period, the same 
reservoir intervals have been surveyed for 

several times. At the same time, as a rule, after 
the examination, their conditions were monitored 
for several years. Thus, it became possible to 
trace the dynamics of the defects’ development. 
 

 
Figure 11. Scheme of a potentially dangerous 
section of a sewer tunnel in the zone with man-

induced impacts from a complex under 
construction in St. Petersburg 

The observation time range was divided into 3 
periods: 
) 70-80s; b) 80-2000s; c) 2000-2020s. The most 

typical revealed defects affecting the operational 
reliability and bearing capacity of the tunnel were 
grouped into 7 classes: d1 - shrinkage cracks in 
the concrete jacket; d2 - signs of gas corrosion; 
d3 - drip leaks; d4 - force cracks in the arch and 
on the lateral surface of the tunnel; d5 - signs of 
biological corrosion of concrete; d6 - 
reinforcement corrosion, tray abrasion; d7- the 
presence of pressure leaks. 
Analysis of the defects’ development 
manifestation and dynamics structure show that 
in the initial period of the tunnel collectors’ 
operation, defects were observed in the form of 
shrinkage cracks in the concrete jacket with the 
manifestation of drip leaks and signs of gas 
corrosion. The nature of the defects prevailing in 
the first 15-20 years of the tunnels’ operation and 
their influence on the bearing capacity and 
operational reliability of structures can be taken 
as insignificant, and their technological state can 
be recognized as workable according to the RF 
“GOST” and “BC” regulations. 
Defect-free waste line functioning in these 
conditions requires a calculated justification of 
the structural safety of the tunnel and monitoring 
its technical condition when choosing a method 
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and a mode of carrying out the measures to 
restore the bearing capacity and operational 
reliability of the structure. 
Within the framework of this study, we faced the 
task of the safe level external anthropogenic 
impacts’ geotechnical provision on the tunnel 
structure, taking into account its residual bearing 
capacity. 

 
4.2 Modeling, monitoring and geotechnical 
substantiation of protective measures for 
potentially dangerous parts of deep sewage 
tunnel 
The measures to protect potentially dangerous 
sections of tunnel collectors and ensure their 
reliability and structural safety were proposed on 

the basis of modeling and determining the 
boundary of the defect-free joint operation of the 
system “source of impact – geo-mass - sewer 
tunnel”, but the main requirement that they must 
certainly meet, is the possibility of preventive 
use, justified by geotechnical and design 
calculations. 
The results of geotechnical modeling to ensure 
the waste line structural safety typical for a large 
city with a developed engineering and transport 
infrastructure under difficult engineering and 
geological conditions of construction and 
operation are presented below (Table 1) as one of 
the examples [16]. 
 

 
Table 1. The results of the calculation substantiation of geotechnical measures to protect 

potentially dangerous sections of tunnels from unacceptable impacts 
 

Characte of 
technogenic 

impacts 
Geotechnical and structural measures 

Arrangement of a protective screen made of fixed soil to prevent the foundation pit bottom 
from elevation 

Unloading the soil 
mass when 
trenching the 
excavation for the 
tunnel 

Vertical deformations of the soil 
mass after the excavation of the 
construction pit, without 
preliminary fixing - 37mm 

Vertical deformations of the soil 
mass after excavation of a 
construction pit with soil fixing 
above the collector using Jet 
Grouting technology (3.0 m thick) - 
3.2 mm 

  

Calculation option 
Construction stage Collector 

deformation, 
mm.  

Without Propping -  +37  

Propping the foundation pit using Jet Grouting 
technology. Power 2.0m.  

soil reinforcement -2.1  

excavation +10.1  
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Propping the foundation pit using Jet Grouting 
technology. Power 3.0m. 

soil reinforcement -3.0  

excavation  +3.6  

Propping the soils above the collector using Jet 
Grouting technology. Power 2.0m. 

soil reinforcement -2.6  

excavation  +8.3  

Propping the soils above the collector using Jet 
Grouting technology. Power 3.0m. 

soil reinforcement -2.9  

excavation +3.2  

Structural waste line reinforcement winding technology to increase the maximum permissible 
tunnel displacements  

Increasing the zone of 
maximum permissible 
waste line 
displacements with 
one-sided unloading of 
the soil mass during the 
embankment 
reconstruction. 

General calculated displacements 
during excavation under the 
protection of sheet piling 

General calculated 
displacements during 
excavation with the device of a 
geotechnical barrier 

  
Additional horizontal deformations 
of the collector were 54mm  

Additional horizontal 
deformations of the collector 
were 7mm 

Structural waste line reinforcement by lining and spiral-wound technology to restore the 
bearing capacity of the tunnel to the design level 

Increase in static 
and dynamic loads 
on waste line from 
the action of heavy 
vehicles and trams 

 
 

Condition of a 
potentially 
dangerous waste 
line area before 
renovation 

Structural scheme and 
solution to strengthen the 
tunnel section  

Technical condition 
of the tunnel after 
restoration and repair 
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The second example of the numerical 
implementation of measures to protect the 
collector from external influences is the 
potentially hazardous area noted above (see 
Figure 11). 
The customer set the task to ensure the safe 
operation of a sewer collector located in soft 
soils, near which the construction of a high-rise 
building had started. 
The modeling task was to determine the 
permissible horizontal displacements of the 
tunnel sections when performing work near the 
structure. 
For normal operation of the collector tunnel, it is 
necessary to exclude the formation of cracks in 
the structure of the lining caused by its 
displacement towards the pit during the work. 
The criterion for the structure safety is the 
maximum permissible tensile stresses of concrete 
at the characteristic points of the lining.  
The design of the collector tunnel lining is a two-
layer cylinder. The outer layer is a prefabricated 
reinforced concrete structure made of tubing. The 
inner layer is a monolithic reinforced concrete 
jacket (see Figure 12). 
 

 
 

Figure 12. Design of the collector tunnel
potentially dangerous section’s lining 

 
The tunnel sections with different lengths of the 
influence zone and the structure reinforcement 
degree were modeled (see Figure 13). 
Geotechnical calculations simulated the 
measures to reduce the impact on the 
displacement of the tunnel using a wall in the 
ground between the tunnel and the wall under 
construction in the ground made of low-modulus 
material. 
 
 

  

   
 
b)  

 
 

Figure 13. Fragment of the calculated 
potentially dangerous section of the collector 

with a length of 18 m: a) with loads and elastic 
rebound; b) the transcendent SSS tunnel zones: 

1 - in the middle; 2 - at the ends of the 
displacement section 

 
Numerical calculations were used to obtain the 
permissible displacement values of the lining, 
taking into account the presence of a screen made 
of low modulus material and depending on the 
tunnel deformable section length. Carrying out of 
work related to man-induced impacts, the project 
provided monitoring the tunnel and geo-massif 
structure [17]. 
The calculation substantiation of geotechnical 
protective measures was carried out according 
to the algorithm: collection of loads and 
impacts, determination of physical and 
mechanical characteristics, determination by 
geotechnical calculations of the permissible 
level of external anthropogenic impacts on the 
tunnel, taking into account its residual bearing 
capacity. Figure 14.a shows fragments of the 
tunnels’ maximum permissible displacements 
computational modeling results (before the 
application of protective measures and after the 
implementation of protective measures) and 
Figure 14.b shows the data of monitoring 
observations. 
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a)

 
b) 

 
Figure 14. Maximum permissible displacement 
of a tunnel falling into the zone of man-induced 
influences: a) calculated values of the maximum 

permissible displacement of sewer tunnels 
D=1.5 and D=2.5 before (1.3) and after (2.4) 

strengthening the structure using winding 
technology; b) data of monitoring control by the 
inclinometers readings to prevent exceeding the 

maximum permissible displacement of the 
tunnel D=2.5m with the length of the 

deformable section 70m 

To ensure the bearing capacity of the tunnel, the 
SATURN winding method was used, developed 
and adapted for the specific conditions of St. 
Petersburg: intervals between mines up to 1000m 
and more; irregularity of the working section 
along the length of the collector associated with 
the dynamic influences and subsidence of the 
tunnel in weak thixotropic soils. The sewage 
tunnel with inter-shaft spacing up to 850m and 
diameters D= 2,5 m and D= 1,5 m is embedded 
at the depth down to 17 m, it has been operating 
for more than 40 years and, according to the 

survey results, had a wear rate of more than 79%, 
subsidence at the intersection of streets up to 25 
mm. Based on the GPR scanning results, it was 
found everywhere that the concrete jacket was 
peeled off from the tubing lining with the 
formation of pressure leaks. The scope of work 
operations included: tunnel cleaning and surface 
preparation; structural bonding of the concrete 
jacket and tubing lining by injecting SikaDur; 
reinforcement of the surface of the vault with 
structural reinforcement with SikaWrap carbon 
fiber; lining the surface of the tunnel with a 
winding profile made of PVC; polymer cement 
mortar injection (Pcomp=65MP ) into the annular 
space for structural bonding of the shell made of 
PVC with tunnel construction. 
This method was applied to make a geotechnical 
prediction of dangerous parts of tunnels long-
operating in difficult soil conditions (see figure 
15), the numerical modeling defined a rational 
method of geotechnical protection of these 
sections in order to provide their structural safety 
at growing anthropogenic and dynamic actions. 
 

 
Figure 15. Geotechnical prediction of 

potentially dangerous sections of sewage 
tunnels in St. Petersburg which require 

protection of structural safety 
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According to the monitoring carried out on the 
restored potentially dangerous sections of the 
tunnel, it was established: vibration dynamic 
tests of the tunnel before and after repair showed 
the changes in the period of natural collector 
vibrations of 0.54 s. up to 0.19 s. so, by 58%, and 
the amplitude of natural vibrations decreased 
from A = 300 µm to A = 15 µm, i.e., by almost 
double. This indicates the structure integrity 
restoration and the joint work of its layers during 
continuous operation. 

  
 

5. CONCLUSIONS 
  

Difficult engineering and geological conditions 
and the increasing influence of technogenic 
factors have led to the wear of long-operated 
tunnel collectors in large cities of Russia up to 
66%. For St. Petersburg, characterized by 
vibration-resistant enclosing waste line massifs 
of soils, the level of wear reaches 83% with a 
high dynamic of development up to 1.5 hours 2% 
per year. 
Potentially dangerous sections of the tunnels 
have been identified by the methods of 
diagnostics and modeling of technical 
conditions 
Proposed and geotechnically sound waste line 
protection methods, including technologies of 
structural reinforcement and rehabilitation in 
the conditions of wastewater transportation, 
accompanied by a monitoring system, ensure 
structural waste line safety and their 
operational reliability. 
Methods for ensuring structural safety 
developed and substantiated by waste line 
geotechnical modeling are recommended for 
use in large cities with difficult soil conditions, 
with heavily worn-out sewers with potentially 
dangerous sections of tunnels and, as a result, 
to increase their reliability during long-term 
operation in conditions of urban infrastructure 
development. 

  
This work was supported by a grant of 
RAACS No. 2020-SN-7.4.1. 
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Abstract. The problem of mathematical modeling of unsteady seismic waves in an elastic half-plane with a ver-
tical rectangular cavity filled with water is considered. The problem of modeling problems of the transition peri-
od is an actual scientific problem. A quasi-regular approach is proposed to solve a system of linear ordinary dif-
ferential equations of the second order in displacements with initial conditions and to approximate the region un-
der study. The method is based on the schemes: a point, a line and a plane. An algorithm and a set of programs 
for solving flat (two-dimensional) problems that allow obtaining a stress-strain state in complex objects have 
been developed. To assess the reliability of the developed methodology, algorithm and software package, the 
problem of the effect of a plane longitudinal wave in the form of a Heaviside function on an elastic half-plane 
was solved. The numerical solution corresponds quantitatively to the analytical solution. The problem of mathe-
matical modeling of unsteady elastic stress waves in a half-plane with a cavity filled with water (the ratio of 
width to height is one to ten) under seismic influence is solved. A system of equations consisting of 8016008 un-
knowns is solved. Contour stresses and components of the stress tensor are obtained in the characteristic areas of 
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1. STATEMENT OF THE PROBLEM OF 
NONSTATIONARY WAVE EFFECTS IN 
DEFORMABLE BODIES 
 
Unsteady elastic stress waves propagating in a 
deformable body interact with each other [1–8, 
15–16, 18–29, 31].  
After several passes and reflection of stress 
waves in the body, the process of propagation of 
disturbances becomes steady, the body is in os-
cillatory motion [1–8, 15–16, 18–29, 31].  
The formulation of some problems of deforma-
ble solid mechanics is given in the following 
works [1–31]. 
In [9–13], some information is given about the 
formulation, analysis and technology for devel-
oping optimal algorithms for numerical model-
ing of structural mechanics problems. 
The application of the considered numerical 
method, algorithm and software package for 
solving non-stationary wave problems in de-
formable bodies is given in the following works 
[7–8, 18 –29, 31].  
Verification (evaluation of accuracy and relia-
bility) of the considered numerical method, al-
gorithm and software package is given in the 
following works [7–8, 18–21, 23–29, 31]. 
To solve the problem of modeling elastic un-
steady stress waves in deformable regions of 
complex shape, we consider a certain body  in 
a rectangular cartesian coordinate system XOY , 
to which at the initial moment of time 0=t  a 
mechanical non-stationary pulse effect is report-
ed [1, 3–5, 7–8, 18–19].   
Suppose that a certain body  is made of a ho-
mogeneous isotropic material obeying the elas-
tic Hooke law for small elastic deformations  
[1, 3–5, 7–8, 18–19].    

The exact equations of the two-dimensional 
(plane stress state) dynamic theory of elasticity 
have the following form [1, 3–5, 7–8, 18–19] 
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xy += , )(),( Syx ,    (1) 

 
where: x , y     xy  – components of the 
elastic stress tensor; x ,  y     xy  – compo-
nents of the elastic strain tensor; u  and v   –  
components of the vector of elastic displace-
ments along the axes OX  and OY  accordingly; 

 – material density; 
)-1(

= 2
E

Cp  – the ve-

locity of the longitudinal elastic wave; 

)+1(2=
E

Cs – the velocity of the transverse 

elastic wave;  – Poisson's ratio; E  – modulus 
of elasticity; )( 21 SSS  – the boundary con-
tour of the body . 
System (1) in the area occupied by the body , 
should integrate under initial and boundary con-
ditions [1, 3–5, 7–8, 18–19].    
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2. DEVELOPMENT OF THE METHOD-
OLOGY AND ALGORITHM 
 
To solve a two-dimensional plane dynamic 
problem of the theory of elasticity with initial 
and boundary conditions (1), we use the finite 
element method in displacements [7–8, 19].  
The problem is solved by the method of end-to-
end counting, without highlighting gaps [7–8, 
18–19].  
The main relations of the finite element method 
are obtained using the principle of possible dis-
placements [7–8, 18–19].  
Taking into account the definition of the stiff-
ness matrix, the inertia vector and the vector of 
external forces for the body , we write down 
the approximate value of the equation of motion 
in the theory of elasticity [7–8, 18–19] 
 

RKH =+ , 
          00= =t , 00= =t               (2) 

 
where: H – diagonal inertia matrix;  – stiff-
ness matrix;   – vector of nodal elastic dis-
placements;  – vector of nodal elastic dis-
placement velocities;  – vector of nodal elas-
tic accelerations; R – vector of external nodal 
elastic forces. 
Thus, using the finite element method, a linear 
problem with initial and boundary conditions 
(1) was led to a linear Cauchy problem (2). 
We determine the elastic contour stress at the 
boundary of the region free from loads [7–8, 18–19]. 
 

 
 

Figure 1. Contour end element with two node 
points 

 
Using the degeneracy of a rectangular finite ele-
ment with four nodal points, we obtain a contour 
finite element with two nodal points (fig. 1). 

When turning the axis x on corner  counter-
clockwise, we get an elastic contour stress k  
in the center of gravity of a contour finite ele-
ment with two nodal points [7–8, 18–19] 
 

+cos)-)))((-1(2/((= 21
2 uuaEk  

)sin)-(+ 21 vv                     (3) 
 
To integrate equation (2) with a finite element 
version of the Galerkin method, we reduce it to 
the following form [7–8, 18–19] 
 

 RK
dt
d

H =+ , =
dt
d

.              (4) 

 
Integrating the relation (4) over the time coordi-
nate using a finite-element version of the Ga-
lerkin method, we obtain an explicit two-layer 
scheme for internal and boundary node points 
[7–8, 18–19] 
 

)+-(+= 1-
1+ iiii RKHt , 

                       1+1+ += iii t .                (5) 
 

The main relations of the finite element method in 
displacements are obtained using the principle of 
possible displacements and a finite element ver-
sion of the Galerkin method [7–8, 18–19].  
The general theory of numerical equations of 
mathematical physics requires for this purpose 
the imposition of certain conditions on the ratio 
of steps along the time coordinate t  and by 
spatial coordinates, namely [7–8, 18–19] 
 

p

i
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l
kt
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=  ,...)3,2,1=(i ,          (6) 

 
where: l  – the length of the side of the end 
element. 
The results of the numerical experiment showed 
that at k = 0,5 the stability of the explicit two-layer 
scheme for internal and boundary node points on 
quasi-regular grids is ensured [7–8, 18–19]. 
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For the study area consisting of materials with 
different physical properties, the minimum step 
along the time coordinate is selected (6). 
On the basis of the finite element method in dis-
placements, a technique is developed, an algo-
rithm is developed and a set of programs is com-
piled for solving two-dimensional wave problems 
of the dynamic theory of elasticity [7–8, 18–19]. 
 
 
3. LONGITUDINAL WAVES IN AN 
ELASTIC HALF-PLANE WHEN EX-
POSED AS A HEAVISIDE FUNCTION 
 
The problem of the effect of a flat longitudinal 
wave in the form of a Heaviside function (fig. 3) 
on an elastic half-plane (fig. 2) is considered to 
assess the physical reliability and mathematical 
accuracy [7–8, 18–19]. 
 

 
 

Figure 2. Statement of the problem of propaga-
tion of plane longitudinal waves in the form of a 

Heaviside function in an elastic half-plane 
 

The calculations were carried out for the follow-
ing units of measurement: kilogram-force (kgf); 
centimeter (cm); second (s). The following as-
sumptions were made for switching to other 
units of measurement: 1 kgf/cm2 
kgf s2/cm4 9 kg/m3. 
On the boundary of the half-plane AB  (fig. 2) a 
normal voltage y  is applied, which at 

11n0 ( ttn /= ) changes linearly from 0  
to P , and at 11n  is equal to P  ( 0=P , 

=0 -0,1 MPa (-1 kgf/cm2)). Boundary condi-

tions for a contour BCDA  on 0>t  
0==== vuvu . Reflected waves from the 

contour BCDA  they do not reach the studied 
points when 1000 n .    
The calculations were carried out with the fol-
lowing initial data: yxH == ; t = 1,393 10-

6 s; E  = 3,15 10 4 MPa (3,15 10 5 kgf/cm2); = 
0,2; = 0,255 104 kg/m3 (0,255 10-5 kgf s2/cm4); 

pC = 3587 m/s; sC = 2269 m/s.  
The studied computational domain has 14762  
nodal points. A system of equations consisting 
of  59048  unknowns is solved.  
The calculation results are obtained at character-
istic points B10-1B  (fig. 2).   
As an example, a change in the normal voltage 
is given y  ( 0/= yy ) ( fig. 4) in time n  
at the point 1B  (1 – numerical solution; 2 –
analytical solution).     

 

 
 

Figure 3. Impact in the form of a Heaviside 
function 

 
 

Figure 4. Change in elastic normal stress y  (the 
problem of propagation of plane longitudinal 

waves in the form of a Heaviside function in an 
elastic half-plane) in time tt /  at the point 1B :
1 – numerical solution; 2 – analytical solution  
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In this case, you can use the conditions on the 
plane wave front, which are described in the pa-
per [5]. 
At the front of a plane longitudinal wave, there 
are the following analytical dependences for a 
plane stress state 0-=y . From here we see 
that the exact solution of the problem corre-
sponds to the impact 0  (fig.  3).   
 
 
4. MODELING OF STRESS WAVES IN A 
HALF-PLANE WITH A LIQUID-FILLED 
CAVITY (THE RATIO OF WIDTH TO 
HEIGHT IS ONE TO TEN) IN CASE OF 
SEISMIC IMPACT 
 
The problem of the impact of a plane longitudi-
nal unsteady seismic wave (fig. 6) parallel to the 
free surface of an elastic half-plane, with a cavi-
ty filled with water (the ratio of width to height 
is one to ten) is considered (fig. 5). 
The problem under consideration was solved for 
the first time by V.K. Musayev using the devel-
oped methodology, algorithm and software 
package [7–8, 18–19].  
The calculations were carried out for the follow-
ing units of measurement: kilogram-force (kgf); 
centimeter (cm); second (s). The following as-
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units of measurement: 1 kgf/cm2 
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0  before P , and when 11n  is equal to 
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Boundary conditions for a contour GHIA  on 
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Reflected waves from the contour GHIA  they 
do not reach the studied points when 

10000 n .  
Contour ABEFG  free from loads, except for the 
point F .   
The calculations were carried out with the fol-
lowing initial data. 

For the region ABCDEFGHI : yxH == ; 
=t -6 s; =E 3,1 4 5 

kgf/cm2); 2,0= ; = 4 kg/m3 

-5 kgf s2/cm4); =pC  3587 m/s; 
=sC 2269 m/s.  

For the region BEDC : yxH == ; t  = 
3,268 10-6 s; = 1,045 103  / 3 (1,045 10-6  

2/ 4); pC = 1530 / . 
 

 
 

Figure 5. Statement of the problem of the effect 
of a plane longitudinal seismic wave on an elas-
tic half-plane with a cavity filled with water (the 

ratio of width to height is one to ten) 
 

 
 

Figure 6. Impact in the form of a Heaviside 
function 
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Figure 7. Changing the elastic contour stress 
k  in time tt /  at the point 1A : 1 – in a prob-

lem without a cavity; 2 – in the problem with a 
cavity filled with water (the ratio of width to 

height is one to ten) 
 

 
 

Figure 8. Changing the elastic contour stress 
k  in time tt /  at the point 2A : 1 – in a prob-

lem without a cavity; 2 – in the problem with a 
cavity filled with water (the ratio of width to 

height is one to ten) 
 

When calculating, the minimum time step is 
taken t  = 1,393 10-6 s. 
At the boundary of materials with different 
properties, the conditions of continuity of dis-
placements are assumed. 
The studied computational domain has 
2004002 nodal points. A system of equations 
consisting of 8016008  unknowns is solved. 
As an example, fig. 7-11 shows the change in 
the elastic contour stress k ( 0/= kk ) in 
time n in points A5-1A  ( . 5), located on the 
free surface of an elastic half-plane: 1 – in the 
problem without a cavity; 2 – in the problem 
with a cavity filled with water (the ratio of 
width to height is one to ten).  

 
 

Figure  9. Changing the elastic contour stress 
k  in time tt /  at the point 3A : 1 – in a prob-

lem without a cavity; 2 – in the problem with a 
cavity filled with water (the ratio of width to 

height is one to ten) 
 

 
 

Figure 10. Changing the elastic contour stress 
k  in time tt /  at the point 4A : 1 – in a prob-

lem without a cavity; 2 – in the problem with a 
cavity filled with water (the ratio of width to 

height is one to ten) 
 

 
 

Figure 11. Changing the elastic contour stress 
k  in time tt /  at the point 5A : 1 – in a prob-

lem without a cavity; 2 – in the problem with a 
cavity filled with water (the ratio of width to 

height is one to ten) 
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The distance between the points: 1A  and 2A  is 
H ; 2A  and 3A  are H ; 3A  and 4A  are H ; A4 
and 5A  are H ; 5A  and 6A  are H ; 6A  and 

7A  are H ; 7A  and 8A  are H ; 8A  and 9A  
are H ; 9A  and 10A  are H ) 

 
 

5. CONCLUSIONS 
 

1. On the basis of the finite element method, a 
methodology, an algorithm and a set of pro-
grams for solving linear two-dimensional plane 
problems have been developed, which allow 
solving complex problems with non-stationary 
wave effects on complex objects. The main re-
lations of the finite element method are ob-
tained using the principle of possible displace-
ments. The elasticity matrix is expressed in 
terms of the velocity of longitudinal waves, the 
velocity of transverse waves and the density. 

2. A linear dynamic problem with initial and 
boundary conditions in the form of partial 
differential equations, for solving problems 
under wave effects, using the finite element 
method in displacements, is reduced to a sys-
tem of linear ordinary differential equations 
with initial conditions, which is solved by an 
explicit two-layer scheme. 

3. To predict the seismic safety of an object, under 
non-stationary wave effects, numerical model-
ing of the equations of mechanics of a deforma-
ble solid is used. A method, algorithm and a set 
of programs for solving linear two-dimensional 
(flat) problems for solving problems of safety in 
terms of bearing capacity (strength) in multi-
phase deformable bodies under non-stationary 
wave influences have been developed. 

4. The area under study is divided by spatial 
variables into triangular and rectangular fi-
nite elements of the first order. According to 
the time variable, the area under study is di-
vided into linear finite elements of the first 
order. Two displacements and two velocities 
of displacements at the node of the finite el-
ement are taken as the main unknowns. 

5. A system with an infinite number of un-
knowns is reduced to a system with a finite 

number of unknowns. A quasi-regular ap-
proach is proposed to solve a system of linear 
ordinary differential equations of the second 
order in displacements with initial conditions 
and to approximate the region under study. 
The method is based on the schemes: a point, 
a line and a plane. 

6. The problem of the effect of a plane longitudinal 
wave in the form of a Heaviside function on an 
elastic half-plane is solved. The computational 
domain under study has 14762 nodal points and 
14520 finite elements. A system of equations 
consisting of 59048  unknowns is solved. A 
comparison was made with the results of the an-
alytical solution, which showed that the discrep-
ancy for the maximum compressive elastic 
normal stress y  is %8,2 . 

7. The problem of mathematical modeling of un-
steady elastic stress waves in a half-plane with a 
cavity filled with water (the ratio of width to 
height is one to ten) under seismic influence is 
solved. At the boundary of materials with dif-
ferent properties, the conditions of continuity of 
displacements are assumed. The studied compu-
tational domain has 2004002  nodal points. A 
system of equations consisting of 8016008 un-
knowns is solved. A cavity filled with water, 
with a width-to-height ratio of one to ten, reduc-
es the value of the elastic contour stress on the 
free surface of the elastic half-plane under non-
stationary wave seismic influences. 
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INTRODUCTION 
 
For massive monolithic structures, which 
include foundation slabs, the problem of early 
cracking at the construction stage is relevant. 
This problem primarily arises because of 
uneven heating of structures, which in turn is 
due to the internal heat release of concrete 
during hardening and heat exchange with the 
environment [1-4]. 
Predicting the risk of early cracking is possible 
using computer simulation methods.  
When modeling rectangular in plane massive 
foundation slabs, as a rule, a quarter of the 
structure is considered together with the soil 
massif [5] (Fig. 1).  
 

 
Figure 1. Calculation scheme of the foundation 

 
The temperature field is determined from the 
solution of the differential equation of heat 
conduction [6]: 
 

2 2 2

2 2 2 ,T T T TQ c
x y z t

 (1) 

 
where  is the coefficient of thermal 
conductivity, T is the temperature, Q is the 
density of internal heat sources (W/m3),  is the 
material density, c is the specific heat, t is the 
time. 
In the presence of convective heat exchange 
with the environment (on the upper and side 
surfaces of the foundation, the upper surface of 
the soil), the boundary conditions are written as: 

0,T h T T
n

 (2) 

 
where n is the surface normal, h is the heat 
transfer coefficient, T  is the ambient 
temperature. 
On the side surfaces of the soil mass at a 
sufficient distance from the foundation, the 
temperature can be considered given: 
 

.gT t f t  (3) 
 
The thermal conductivity coefficient and the 
specific heat capacity of concrete in equation (1) 
are generally functions of time. However, this 
factor cannot be taken into account in existing 
software systems (ANSYS, Abaqus, etc.) 
According to [7], the thermal conductivity 
coefficient  is the function of the hydration 
degree : 
 

1.33 0.33 .  (4) 
 
The hydration degree is determined from the 
differential equation [8]: 
 

exp ,aEf
t RT

 (5) 

 
where Ea is the activation energy, R is the 
universal gas constant. 
For the function f( ), the empirical formula can 
be used [8]: 
 

 
0

exp ,m A nf
n m

  (6) 

 
Here A0, m, n0 and n  are the material constants 
depending on the type of cement. 
When modeling the stress-strain state, it is 
necessary to take into account the dependence 
of the strength and deformation characteristics 
of concrete on time. One of the few authors that 
take this factor into account is T.C. Nguyen [9-
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11]. For the elastic modulus, an explicit 
dependence on time is taken in the form 
 

0( ) (1 ).atE t E e  (7) 
 
Formula (6) is not the only option for describing 
the dependence of the elastic modulus on time. 
Some other formulas can be found, for example, 
in [12, 13]. 
However, this approach is rather simplified, 
since the physical and mechanical 
characteristics of concrete at each point depend 
not only on the hardening time, but also on the 
history of temperature changes over time. More 
perfect is the concept of expressing the physical 
and mechanical characteristics of concrete 
through the degree of its maturity DM [14], 
determined by the integral: 
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The ultimate compressive strength of concrete 
at time t can be determined by the empirical 
formula [15]: 
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where 28R  is the strength of concrete at the age 
of 28 days (MPa), /T DM t , t is the age of 
concrete in hours.  
The elastic modulus of concrete E (MPa) at time 
t can be represented as a function of the 
compressive strength Rb at time t [16]: 
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Accounting for the degree of maturity of 
concrete by standard means of the existing finite 
element software is also very difficult. In 
addition, since the temperature is different at 

each point of the structure, the modulus of 
elasticity becomes a function not only of time, 
but also of coordinates. Thus, the problem of the 
mechanics of an inhomogeneous body takes 
place. 
In addition to taking into account the 
dependence of material characteristics on time, 
the determination of the stress-strain state of 
massive monolithic structures in the process of 
erection requires taking into account creep 
deformations and contraction shrinkage. 
The purpose of this work is to develop a 
methodology for calculating the stress-strain 
state of massive monolithic foundation slabs in 
the process of construction, taking into account 
the above factors. A simplified technique is 
proposed, which, based on the characteristic 
features of the stress-strain state, makes it 
possible to reduce a three-dimensional problem 
to a one-dimensional one. 
 
 
DERIVATION OF THE RESOLVING 
EQUATIONS  
 
Finite element modeling of the temperature field 
in a three-dimensional formulation shows that 
for massive foundation slabs, with the exception 
of the edges, the temperature distribution is one-
dimensional, i.e. the temperature does not 
depend on the x, y coordinates, and is a function 
of the z coordinate only. (Fig. 2) 
 

 
Figure 2. Temperature distribution in the 

foundation slab due to internal heat release of 
concrete during construction 

 
Simulation of the stress-strain state in a three-
dimensional setting shows that, with the 
exception of the edges, the stresses z , xz , xy  
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foundation slab due to internal heat release of 
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Simulation of the stress-strain state in a three-
dimensional setting shows that, with the 
exception of the edges, the stresses z , xz , xy  

and yz  are close to zero, and the stresses x  
and y  are approximately equal to each other, 
even if the sides of the foundation are not equal 
to each other (Fig. 3-7).  
 

 
Figure 3. Stress z  distribution 

 

 
Figure 4. Stress xy  distribution 

 

 
Figure 5. Stress yz  distribution 

 

 
Figure 6. Stress xz distribution 

 
Figure 7. Stress distribution for x (top) and y  

(bottom) 
 
Total deformations x  and y , with the 
exception of the edges, are almost constant 
throughout the thickness of the slab, equal to 
each other and do not depend on the coordinates 
x and y (Fig. 8) 
 

 
Figure 8. Total strain distribution for x (top) 

and y (bottom) 
 
Based on these features, we propose the 
simplified method for calculating the stress-
strain state.  
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In a biaxial stress state, the relationship between 
stresses and strains can be represented as: 
 

1 ( ) ;

1 ( ) ,

x x y f

y y x f

E

E

 (11) 

 
Here, the modulus of elasticity is taken as a 
function of coordinates, f  are the forced 
deformations, representing the sum of 
temperature deformations, contraction shrinkage 
deformations and creep strains: 
 

.f sh crT  (12) 
 
At x y  and x y , expressing 
stresses from (11) in terms of strains, we obtain: 
 

( ).
1 f

E  (13) 

 
We assume that the soil under foundation slab 
does not prevent the free expansion of the 
foundation in the directions x and y. The value 
can be found from the condition that the axial 
forces 0 :x yN N N   
 

0

0,
h

N dz  (14) 

 
where h  is the foundation slab thickness. 
Substituting (13) into (14), we get: 
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h h
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From (15) it is possible to find : 
 

0

0

( ) ( )
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h

f

h

E z z dz

E z dz
 (16) 

The proposed approach also makes it possible to 
take into account the reinforcement of the 
structure in the case when the coefficients of 
reinforcement along the x and y axes are the 
same.  
The deformation of the i-th reinforcement layer 
can be written as: 
 

,
, , ,s i

s i s s i
s

T
E

 (17) 

 
where s  is the coefficient of linear thermal 
expansion of steel, sE  is the modulus of 
elasticity of steel. 
We express from (17) the stress in the 
reinforcement and take into account that the 
reinforcement    and   concrete    work   together  
( ,s i ): 
 

, ,( ).s i s s s iE T  (18) 
 
The axial force represents the sum of the forces 
perceived by the reinforcement and concrete: 
 

, ,
0

0,
h

s i s iN dz A  (19) 

 
where ,s iA  is the cross-sectional area of the 
reinforcement of the i-th layer per 1 meter of the 
length of the slab. 
Substituting (13) and (18) into (19), we obtain 
the following formula for : 
 

, ,
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CALCULATION ALGORITHM 
 
The first step in calculating the stress-strain state 
of foundation slabs is to determine the 
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CALCULATION ALGORITHM 
 
The first step in calculating the stress-strain state 
of foundation slabs is to determine the 

temperature field. As mentioned earlier, with the 
exception of the edges of the foundation slab, the 
temperature distribution is one-dimensional, and 
to determine the function ( , )T z t , instead of 
equation (1), one can use the equation: 
 

2

2( , ) .T Tz t Q c
z t

 (17) 

 
To solve equation (17), a grid in z and t is 
introduced. When solving this equation by the 
finite element method, the problem is reduced to 
a system of differential equations 
 

T
0,  C K T F

t  
(18) 

 
where [ ]C  is the damping matrix, [ ]K  is the 
thermal conductivity matrix, { }F  is the load vector.  
The integration of system (18) is carried out 
together with the solution of differential 
equation (5) using the Euler method or other 
difference schemes. 
Further, at each time step, the stress-strain state 
is calculated. 
Contraction shrinkage sh  is determined by the 
empirical formula [17]: 
 

50.2 2 1) 00(sh B alnt t b ,   (17) 
 
where B is the concrete class (MPa), a and b  
are the empirical coefficients 
For quick hardening concrete 0.31a  and 

0.4b , for slow hardening concrete  0.41a  
and 0.85b . 
To determine creep strains, a viscoelastic model 
of hereditary aging of concrete is used [13]. In 
the case of a biaxial stress state, the creep law is 
written as: 
 

0

1 ( ( ) ( ))
( )

( , )( ( ) ( )) .

x x y

t

x y

t t
E t

d
 (19) 

The measure of creep was used in the form: 
 

( )( )( , ) (1 ),
( )

t

E t
 

0.785
18000( )  , 0.05 .

( )
d ys

E
a  

(20) 

 
From (18), the creep deformation, taking into 
account the equality of stresses x  and y  can 
be written as: 
 

0

( , )(1 ) ( ) .
t

cr d  (21) 

 
The stress calculation is carried out step by 
step. The creep strains in the next step are 
determined from the strains and stresses in the 
previous step. If the forced deformation f  in 
each node is known at the current step, one 
can find the value  using formula (20). And 
then the stress in each node can be calculated 
using formula (11). 
 
 
RESULTS AND DISCUSSION 
 
To test the developed technique, a test problem 
was solved for a foundation slab with 
dimensions a = 8 m, b = 10 m, Hf  = 2 m. The 
initial temperature of the concrete mix, the 
ambient temperature, and the initial temperature 
of the soil were assumed to be the same and 
equal to 10.5 0C for simplicity. B25 class 
concrete was assumed with thermophysical 
properties:  = 2.67 W/(m·0C),  = 2500 
kg/m3, c = 1000 J/(kg·0C). Thermal properties 
of the soil were:  = 1.5 W/(m·0C),  = 1600 
kg/m3, c = 1875 J/(kg·0C). Heat transfer 
coefficients on the upper surface of the soil and  
on the top of the foundation were 25 W/(m2·0C) 
and 4.5 W/(m2·0C) respectively. The time 
interval from 0 to 72 hours was considered. 
Thermal expansion coefficient of concrete was 

 = 10-5 1/0C. 
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We have used for concrete the time dependence 
of the density of internal sources which is 
shown in Fig. 9. 
 

 
Figure 9. Dependence of the density of internal 

heat sources of concrete on time 
 
The comparison was carried out with the 
solution in the ANSYS software package in a 
three-dimensional formulation. When 
calculating in ANSYS, the modulus of elasticity 
of concrete was assumed to be constant in time 
and equal to 2.45×104 MPa, which 
corresponded to the average value of the 
modulus of elasticity over the thickness of the 
slab at the age of 72 hours. 
Figure 10 shows the change in time of the 
maximum temperature in the foundation and 
the temperature on the upper surface, obtained 
from the solution of a one-dimensional 
problem, taking into account the dependence 
of the thermal conductivity coefficient on the 
degree of hydration. The dashed lines 
correspond to the solution in the ANSYS 
software package in a three-dimensional 
setting at a constant thermal conductivity 
coefficient. From the graphs presented, it can 
be seen that, firstly, the conditions on the side 
surfaces of the foundation do not affect the 
temperature distribution in the center, and, 
secondly, the change in the thermal 
conductivity coefficient over time can be 
neglected. 

 
Figure 10. Time change of temperatures in the 

foundation 
 

Fig. 11 and 12 show the change in time of stresses 
x  in the center of the foundation at the upper and 

lower surfaces respectively (at points with the 
highest tensile stresses). Curve 1 corresponds to the 
solution according to the author's method at a 
constant modulus of elasticity without taking into 
account creep and contraction shrinkage. Curve 2 
corresponds to the solution taking into account the 
dependence of the elasticity modulus on the degree 
of concrete maturity, but without taking into 
account creep and contraction shrinkage. Curve 3 
takes into account the dependence of the elastic 
modulus on time, creep, and contraction shrinkage. 
Curve 4 was plotted taking into account the factors 
listed above and a reinforcement factor of 2%. The 
dashed line shows the solution in the ANSYS 
software package. 
 

 
Figure 11. Change in stresses x at the upper 

surface of the foundation 
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dependence of the elasticity modulus on the degree 
of concrete maturity, but without taking into 
account creep and contraction shrinkage. Curve 3 
takes into account the dependence of the elastic 
modulus on time, creep, and contraction shrinkage. 
Curve 4 was plotted taking into account the factors 
listed above and a reinforcement factor of 2%. The 
dashed line shows the solution in the ANSYS 
software package. 
 

 
Figure 11. Change in stresses x at the upper 

surface of the foundation 

 
Figure 12. Stress x change at the bottom 

surface of the foundation 
 
Figures 11-12 show the following: 
1. The results obtained with E = const 
according to the author's method and in the 
ANSYS software package differ slightly. 
2. Neglecting the dependence of the elasticity 
modulus of concrete on the degree of its 
maturity leads to an overestimation of stresses 
in concrete. 
3. Neglect of the concrete creep also leads to 
overestimation of stresses. 
4. When reinforcement is taken into account, 
the stresses in concrete at the stage of 
construction are higher, which, firstly, can be 
explained by the presence of a small difference 
between the coefficients of linear thermal 
expansion of steel and concrete ( s  = 1.15·10-5 
and b  = 1·10-5), and secondly by the 
contraction shrinkage of concrete. 
5. With the accepted initial data, the tensile 
stresses in concrete during the curing process 
can reach almost 3 MPa. Similar results were 
obtained earlier in the works [14,18]. 
Obviously, concretes of mass classes (B25-B35) 
are not able to withstand such stresses, 
especially at the stage of structure formation, 
and measures are needed to reduce the risk of 
early cracking. Such measures include the 
regulation of the kinetics of heat release of 
concrete [19, 20] and the parameters of heat 

transfer on surfaces [21], the installation of 
cooling systems [22], etc. 
 
 
CONCLUSIONS 
 
A simplified, but at the same time effective 
method for determining the stress-strain state of 
massive monolithic foundation slabs during the 
construction process was proposed. 
It was shown that the problem of calculating 
thermal stresses in massive monolithic 
foundation slabs can be reduced to a one-
dimensional one without compromising the 
accuracy of the results. 
The developed technique was tested by 
comparison with the results of calculations in 
the ANSYS software package in a three-
dimensional formulation. The discrepancy 
between the results is insignificant. 
The proposed method makes it possible to take 
into account the dependence of the modulus of 
elasticity of concrete on the degree of its 
maturity, creep, contraction shrinkage, and 
reinforcement coefficient. 
It has been established that neglect of creep and 
changes in the modulus of elasticity of concrete 
over time leads to overestimated stress values. 
The contraction shrinkage of concrete and the 
difference in the coefficients of linear thermal 
expansion of concrete and reinforcement lead to 
the fact that with an increase in the coefficient 
of reinforcement, the stresses in concrete at the 
stage of construction increase. 
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FORMATION OF COMPUTATIONAL SCHEMES  
OF ADDITIONAL TARGETED CONSTRAINTS THAT 

REGULATE THE FREQUENCY SPECTRUM OF NATURAL 
OSCILLATIONS OF ELASTIC SYSTEMS WITH A FINITE 

NUMBER OF DEGREES OF MASS FREEDOM, THE 
DIRECTIONS OF MOVEMENT OF WHICH ARE PARALLEL, 

BUT DO NOT LIE IN THE SAME PLANE 
PART 2: THE FIRST SAMPLE OF ANALYSIS 
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Abstract: For some elastic systems with a finite number of degrees of freedom of masses, in which the direc-
tions of mass movement are parallel and lie in the same plane (for example, rods), special methods have been 
developed for creating additional constraints, the introduction of each of which purposefully increases the value 
of only one natural frequency and does not change any from the natural modes. The method of forming a matrix 
of additional stiffness coefficients that characterize such targeted constraint in this problem can also be applied 
when solving a similar problem for elastic systems with a finite number of degrees of mass freedom, in which 
the directions of mass movement are parallel, but do not lie in the same plane (for example, plates). At the same 
time, for such systems, only the requirements for the design schemes of additional targeted constraints are for-
mulated, and not the methods for their creation. The distinctive paper is devoted to solution of corresponding 
sample of plate analysis with the use of approach that allows researcher to create computational schemes for ad-
ditional targeted constraints for such systems. 
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THE FIRST SAMPLE 
 
Let us consider a hinged rectangular plate [4, 
10-14, 19, 20] 6 m by 6 m in size, carrying con-
centrated masses (Fig. 1a [4]) 
 

,1000]1[ kgm  ,1100]2[ kgm  
,1150]3[ kgm  kgm 1200]4[ . 

 
The thickness of the plate is 0.12 m. The modu-
lus of elasticity of the plate material 
 

PamNE  1024/ 1024 929 . 
 
Poisson's ratio 2.00 . 
We choose the main system of the displacement 
method (Fig. 1b) [17], form the corresponding 
system of equations (1) from the paper [4] (ma-
trices ],[ kirA , ][imM ). From equation 
(2) given in [4], we determine the eigenfrequen-
cies and eigenmodes of the plate vibrations. The 
values of the eigenfrequencies of the plate and 
the coordinates of the eigenmodes correspond-
ing to them are given in Table 1 (columns are 
the eigenfrequencies and coordinates of the 
eigenmodes). 
Assume that it is required to increase the value 
of the first frequency of natural oscillations up 
to 100 s-1 (or up to 100 Hz, respectively). To do 
this, in accordance with formulas (7), (8), (9) 
given in [4], we form a matrix of additional 
stiffness coefficients (4) (see [4]). All the data 
necessary to use dependencies (7), (8), (9) from 
[4] are given in Table 1. After forming the ma-
trix of additional stiffness factors, taking into 
account their influence, we determine from 
equation (10) given in [4], the modified spec-

trum eigenfrequencies and their corresponding 
vibration modes [1-6, 13]. The modified spec-
trum of natural frequencies and their corre-
sponding forms are shown in Table 2. 
It can be seen from the table that taking into ac-
count the additional stiffness factors did not 
change any of the modes of natural oscillations 
of the plate, but only increased the value of one 
of the frequencies from 61.6965 s-1 to the speci-
fied value of 100 s-1. 
The generalized targeted constraint must corre-
spond to the matrix of additional stiffness coef-
ficients. 
One of the variants of the computational scheme 
of the targeted constraint is shown in Figure 1a 
and Figure 1b. The accepted version is once 
statically indeterminate and does not contain 
additional racks. Thus, its geometry is deter-
mined only by the lengths of the main vertical 
members, that is, by the values ][ilst . 
As noted above, now the problem is reduced to 
finding in the computation scheme of targeted 
constraint the lengths of the main vertical mem-
bers )4,..,2,1(][ iilst  from the conditions for 
the occurrence of forces 4 .., ,1   ],[ iiNst  in 
them, the ratios between which will be propor-
tional to the ratios between the forces 

4 .., ,1   ],1,[][][0 iivimiR . The values ][im  
are shown in the initial data of the distinctive 
sample, and the values ]1,[iv  are given in the 
first column of Table 1 and Table 2. The forces 
are shown in Table 3. 
In order to use the algorithm for the formation 
of the computational scheme of targeted con-
straint, researcher must firstly select the base 
vertical member and set its length. For the base 
we will take the vertical member of the first 
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vibration modes [1-6, 13]. The modified spec-
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sponding forms are shown in Table 2. 
It can be seen from the table that taking into ac-
count the additional stiffness factors did not 
change any of the modes of natural oscillations 
of the plate, but only increased the value of one 
of the frequencies from 61.6965 s-1 to the speci-
fied value of 100 s-1. 
The generalized targeted constraint must corre-
spond to the matrix of additional stiffness coef-
ficients. 
One of the variants of the computational scheme 
of the targeted constraint is shown in Figure 1a 
and Figure 1b. The accepted version is once 
statically indeterminate and does not contain 
additional racks. Thus, its geometry is deter-
mined only by the lengths of the main vertical 
members, that is, by the values ][ilst . 
As noted above, now the problem is reduced to 
finding in the computation scheme of targeted 
constraint the lengths of the main vertical mem-
bers )4,..,2,1(][ iilst  from the conditions for 
the occurrence of forces 4 .., ,1   ],[ iiNst  in 
them, the ratios between which will be propor-
tional to the ratios between the forces 

4 .., ,1   ],1,[][][0 iivimiR . The values ][im  
are shown in the initial data of the distinctive 
sample, and the values ]1,[iv  are given in the 
first column of Table 1 and Table 2. The forces 
are shown in Table 3. 
In order to use the algorithm for the formation 
of the computational scheme of targeted con-
straint, researcher must firstly select the base 
vertical member and set its length. For the base 
we will take the vertical member of the first 

node and set mlst 45.2]1[ . We will take the 
initial values of other variable lengths 

mlst 30.2]2[ , mlst 00.2]3[ , mlst 6.2]4[ .  

 
Table 1. Values of eigenfrequencies (natural vibration frequencies) of the plate  

and coordinates of their corresponding eigenmodes (natural modes) (the first example). 
 61.6965 141.4295 146.2905 205.4514 

1 0.4908 0.0001 0.7080 -0.5893 
2 0.4965 -0.7093 0.0895 0.5154 
3 0.5058 -0.0676 -0.7003 -0.4432 
4 0.5068 0.7016 0.0181 0.4367 

 
Table 2. Modified frequency spectrum of natural vibrations of the plate  

and coordinates, corresponding to them natural forms (the first example). 
 100.00 141.4295 146.2905 250.00 

1 0.4908 0.0001 0.7080 -0.5893 
2 0.4965 -0.7093 0.0895 0.5154 
3 0.5058 -0.0676 -0.7003 -0.4432 
4 0.5068 0.7016 0.0181 0.4367 

 

a)  b)  
Figure 1. The first sample: variant of the computational targeted constraint: 

a) three-dimensional visualization; b) top view. 
 

Table 3. To the analysis of the targeted constraint in the computational scheme (the first example). 
i  1 2 3 4 

][im  1000 1100 1150 1200 
]1,[iv  0.4908 0.4965 0.5058 0.5068 
][0 iR  490.7597 546.1499 581.6800 608.1056 

 
It is also necessary to set the force in one of the 
vertical members. Let's accept 
 

kgRN st 7597.490]1[]1[ 0 . 
 

To find the minimum of the objective function 
(12), described in [4], the method of steepest 
descent in the space of varying lengths of verti-
cal members 4 ,3 ,2   ],[ iilst  was used. The 
formation of the computational scheme of the 

Formation of Computational Schemes of Additional Targeted Constraints that Regulate the Frequency Spectrum of 
Natural Oscillations of Elastic Systems with a Finite Number of Degrees of Mass Freedom, the Directions of Movement 
of Which are Parallel, But do Not Lie in the Same Plane. Part 2: the First Sample of Analysis
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targeted constraint according to the above men-
tioned algorithm was carried out without re-
strictions on the length of the vertical members. 

Equilibrium equations were constructed for 
nodes located at the tops of the vertical mem-
bers.  

 
Table 4. The lengths of vertical members of targeted constraint and corresponding forces in them  

(the first sample). 
4500.2]1[0stl  7597.490]1[stN  7680.3]4 ,8[pl  1761.747]4 ,8[pN  
3855.2]2[stl  1499.546]2[stN  7948.2]3 ,9[pl  1850.554]3 ,9[pN  
9521.1]3[stl  6800.581]3[stN  0010.2]2 ,1[pl  7919.396]2 ,1[pN  
4896.2]4[stl  1056.608]4[stN  0464.2]3 ,2[pl  7875.405]3 ,2[pN  
7420.3]1 ,5[pl  0097.742]1 ,5[pN  0710.2]4 ,3[pl  6569.410]4 ,3[pN  
7001.3]2 ,6[pl  6948.733]2 ,6[pN  0004.2]4 ,1[pl  6633.396]4 ,1[pN  
7948.2]3 ,7[pl  1850.554]3 ,7[pN    

 

 
Figure 2. The first sample: parameters of targeted constraint. 

 
The found lengths of the vertical members of 
targeted constraint and the forces in them are 
shown in Table 4. 
From Table 4 it can be seen that the forces in 
the vertical member by absolute values coincide 
with the forces ][0 iR . This circumstance con-
firms the minimum of the objective function 
(12) [7-9, 15, 16, 18, 21-23] from [4] and the 
fulfillment of the requirement that the ratios be-
tween the forces ][iNst  are proportional to the 
ratios between the values ][0 iR . 

The cross-sectional areas of the vertical mem-
bers of targeted constraint can be found from 
the condition that its stiffness coincides with the 
stiffness determined by the matrix of additional 
coefficients (4) from [4]. These conditions are 
realized by dependencies (9), (14), (15) from 
[4]. Since there are no additional vertical mem-
bers in the computational scheme of the targeted 
constraint, then in (14) from [4] only the values  
 

][][ iFiFst ,   ][][ jFjFP  
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][][ iFiFst ,   ][][ jFjFP  
 

remain, and in the brackets of expression (15) 
from [4] we have only the first two terms. 
When minimizing the volume of the material of 
the targeted constraint from [4], researcher nor-
mally consider the case when, according to the 
design conditions 
 

2][i ,   1][i . 
 
All vertical members are solid round rods. The 
modulus of elasticity of the material of the ver-
tical members in equal to PaE 111006.2 . 
Then, using (13), (14), (15) and (16) from [4], 
we obtain 
 

200057357.0][ miFst ,   mDst 0.027024 , 
200028678.0][ miFp , mDp 0.0191088 , 

3012467.0 mVSV , 
 
where stD  and pD  are respectively, the diame-
ters of the rods of the vertical members and 
belts of targeted constraint. 
As noted above, when the length of the base 
vertical member changes, the ratios between the 
lengths of the base vertical members do not 
change, that is, the values 1  and 2  (see [4]) 
remain constant. Therefore, when changing the 
length of the base vertical member, the greatest 
length remains at the vertical member of the 
fourth node, and the smallest at the vertical 
member of the third node. Thus, when minimiz-
ing the function SVV  (see [4]), the values  

 
9841.0]4[/]1[1 stst ll ; 
551.1]3[/]1[2 stst ll , 

 
computed with the use of data from Table 4 do 
not change. Figure 2 shows the dependences of 
the lengths ]3[stl  and ]4[stl  on the change in the 
length of the base vertical member ]1[0stl . 
On Figure 2 also shows in the direction of the y-
axis the restrictions  
 

4,3,2,1,5.1][3 imilm st  

on the expression (17) from [4], and in the di-
rection of the abscissa shows the range of per-
missible values of variable length ]1[0stl  accord-
ing to the expression (18) from [4]. 
The targeted constraint was formed at an arbi-
trarily chosen value of the length of the base 
vertical member lst 45.2]1[ . By varying the 
length of the base vertical member ]1[0stl , the 
researcher can use the one-dimensional search 
method to achieve the minimization of material 
consumption when creating targeted constraint. 
In this case, the values of variable length should 
be chosen in the range of admissible values 
(17), (18) from [4]. Table 5 lists seven options 
for choosing the length of the base vertical 
member. For each option, the values of the 
lengths of the remaining racks and the amount 
of sighting material are given SVV . 
Let's consider three options for forming re-
strictions on the lengths of the vertical members 
and, accordingly, the area of admissible values 
of the length of the base vertical member ]1[0stl . 
variable while minimizing the amount of sight-
ing material: 
 
1) 4 ,3 ,2 ,1   ,5.1][3 imilst  (17) from [1];  

lm st 8826.1]1[9523.2 0  (18) from [1]; 
2) ilm st 5.1][1848.2  (17) from [1]; 

lm st 8826.1]1[15.2 0  (18) from [1]; 
3) milm st 1.2][3  (17) from [1];  

mlm st 6356.2]1[ 2.9523 0  (18) from [1]. 
 
In all variants, cases were considered when, ac-
cording to the design conditions, we have 
 

2][i ,  1][i . 
 
On Figure 3 shows a graph of the change in the 
volume of material of targeted constraint de-
pending on the length of the base vertical mem-
ber ]1[0stl . Figure 3 also shows the ranges of 
acceptable values of the variable value of the 
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three above options. In each area, the minimum 
volume values SVV  are marked. 
The results of minimizing the volume for the 
first version of the restrictions are shown in the 
fourth row of Table 5. Here, the minimum value 

30.01247 mVSV  for mlst 45.2]1[0  is within 

the range of acceptable values ]1[0stl , that is, the 
global extremum is found. The areas and diame-
ters of the sections of the vertical members of 
targeted constraint are equal to 
 

 
 

Table 4. The parameters of targeted constraint (the first sample). 
No. ]1[0stl  ]2[stl  ]3[stl  ]4[stl  SVV  
1 1 0.9737 0.7968 1.0162 0.02495 
2 1.5 1.4606 1.1952 1.5242 0.01567 
3 2.15 2.0934 1.7131 2.1848 0.01268 
4 2.45 2.3855 1.9521 2.4896 0.01247 
5 2.6356 2.5662 2.1000 2.6782 0.01254 
6 3.0 2.9211 2.3904 3.0485 0.01300 
7 3.25 3.1645 2.5896 3.3025 0.01351 

 

 
Figure 5. The graph of the change in the volume of material of the targeted constraint  

depending on the length of the base vertical member. 
 

20.0005734 mFst , mDst 0.0270 , 
20.0002868 mFp , mDp 0.0191 . 

 

The results of the second variant are presented 
in the third row of Table 5. The minimum value 

301268.0 mVSV  is on the border of the range 
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three above options. In each area, the minimum 
volume values SVV  are marked. 
The results of minimizing the volume for the 
first version of the restrictions are shown in the 
fourth row of Table 5. Here, the minimum value 

30.01247 mVSV  for mlst 45.2]1[0  is within 

the range of acceptable values ]1[0stl , that is, the 
global extremum is found. The areas and diame-
ters of the sections of the vertical members of 
targeted constraint are equal to 
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2 1.5 1.4606 1.1952 1.5242 0.01567 
3 2.15 2.0934 1.7131 2.1848 0.01268 
4 2.45 2.3855 1.9521 2.4896 0.01247 
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6 3.0 2.9211 2.3904 3.0485 0.01300 
7 3.25 3.1645 2.5896 3.3025 0.01351 

 

 
Figure 5. The graph of the change in the volume of material of the targeted constraint  

depending on the length of the base vertical member. 
 

20.0005734 mFst , mDst 0.0270 , 
20.0002868 mFp , mDp 0.0191 . 

 

The results of the second variant are presented 
in the third row of Table 5. The minimum value 

301268.0 mVSV  is on the border of the range 

of acceptable values ]1[0stl , that is, the boundary 
optimum is found at mlst 15.2]1[0 . The areas 
and diameters of the sections of the vertical 
members of targeted constraints are equal to  
 

20.0006295 mFst , mDst 0.02381 , 
20.0003148 mFp , mDp 0.02002 . 

 
The results of the third variant are presented in 
the fifth row of Table 5. The minimum value 

301254.0 mVSV  is on the border of the range 
of acceptable values ]1[0stl , that is, the boundary 
optimum is found at mlst 635.2]1[0 . The areas 
and diameters of the sections of the vertical 
members of targeted constraints are equal to  
 

20.0005513mFst , mDst 0.02649 , 
20.0002756 mFp , mDp 0.01873 . 

 
The results obtained were checked (verified) 
with the use of “LIRA-SAPR” software pack-
age. The eigenfrequencies and coordinates of 
the vibration modes of the plate with impact 
coupling, obtained using LIRA-SAPR [8], coin-
cided with the data in Table 2. 
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NORMAL VIBRATIONS OF SAGGING CONDUCTORS 
OF OVERHEAD POWER LINES 
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Abstract. The phenomenon of self-excitation of thermomechanical vibrations of current-carrying conductors, 
experimentally discovered by academician A.F. Ioffe, is of practical interest as a possible explanation of the 
phenomenon of galloping conductors of overhead power transmission lines (OHL) – low-frequency vibrations 
with frequencies of ~ 1 Hz and with amplitudes of the order of the static conductor sagging. To build the theoret-
ical foundations of this phenomenon, as a special class of self-oscillating systems, it is necessary, first of all, a 
model of conductor vibrations in the OHL span. With regard to the most studied type of conductor vibrations, 
high-frequency aeolian vibration, excited by sign-alternating aerodynamic forces from the Karman vortex street, 
the classical model of a straight string is reasonably applied. However, to study low-frequency vibrations of the 
galloping type, it is necessary to take into account the effect of sagging of the conductor, the associated elastic 
tension and, in some cases, the nonlinear nature of the vibrations. The article presents two models for calculating 
the natural vibrations of sagging conductors (cables) within the framework of the technical theory of flexible 
threads, assuming the constancy of the tension force along the length. The first model describes linear oscilla-
tions of an elastic conductor in the sagging plane. For a system of equations with respect to the displacement 
components given in natural coordinates, an exact solution of the Sturm-Liouville problem with estimates of the 
frequency ranges arising is obtained. The second model describes nonlinear vibrations of an elastic conductor in 
the sagging plane and pendulum vibrations accompanied by an exit from it. The solution of the problem is based 
on the principle of possible displacements using the Ritz method. The structure of the frequency spectrum and 
the natural forms of transverse vibrations are studied. The developed models are intended for further investiga-
tion of thermomechanical vibrations of conductor and flexible cable systems. 
 

Keywords: sagging conductor, cable, flexible elastic thread, frequencies and modes of normal vibrations, 
Ritz method, spectrum structure 
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INTRODUCTION 
 
Works [1-5] are devoted to the construction of a 
theory explaining the self-excitation of thermo-
mechanical self-oscillations of a conductor that 
heats up when included in an electrical circuit. 
In [5], there are indications of the repetition of 
the experiment of A.F. Ioffe. A practical interest 
is the question of whether the self-excitation of 
thermomechanical vibrations is related to the 
phenomenon of the conductor galloping – low-
frequency vibrations with frequencies of ~ 1 Hz 
and with amplitudes of the order of the static 
sagging [6,7]. 
In the cited works, such an assumption was 
made, but it has not yet received reasonable 
confirmation: there is no transfer of the effect, 
modeled theoretically and observed in a labora-
tory model, to the full-scale OHL conductors. 
The purpose of this work is to study the normal 
frequencies and modes of a conductor in the 
OHL span, necessary for the mathematical 
model to determine the conditions for self-
excitation of the galloping of full-scale conduc-
tors, based on the thermo-mechanical model. 
 
 
1. A MODEL OF COUPLED LONGITUDI-
NAL-TRANSVERSE VIBRATIONS OF A 
CONDUCTOR IN THE SAGGING PLANE 
 
The natural oscillations of an OHL conductor in 
the plane of its sagging in a homogeneous field 
of gravity are considered. The conductor is con-
sidered as a flexible elastic heavy thread. The 

coordinate system and the selected natural basis 
are shown in Figure 1. 
 
 
 
 
 
 
 
 
Conductor parameters: l  – the distance between 
the suspension points (span length); m – linear 
mass; B – tensile stiffness; 0T  – static tension; 

0k , f  – the curvature of the static curve and its 
sag. By mp g  denote the vertical linear load, 
where g is the vector of gravity acceleration. 
With small sag ( )f l , which is typical for 
most spans of OHL, tension 0T B  and curva-
ture 2

0 8 /k f l  can be considered constant 
along the length and related by the ratio: 
 

2
0 0/ /8T mg k mgl f . 

 
Conductor oscillation equation 
 

( ) + p ( + ) = 0

  
represent in projections onto the associated ba-
sis, using the Frenet formulas for a flat curve 
 

= 0, 
+ = 0.             (1) 

Figure 1. Orientation of the natural basis in 
the coordinate system Oxz
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z 
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l  

Airat A. Valiullin, Alexander N. Danilin, Valery A. Feldshteyn



149Volume 18, Issue 3, 2022

-

 
 

 
 

 
INTRODUCTION 
 
Works [1-5] are devoted to the construction of a 
theory explaining the self-excitation of thermo-
mechanical self-oscillations of a conductor that 
heats up when included in an electrical circuit. 
In [5], there are indications of the repetition of 
the experiment of A.F. Ioffe. A practical interest 
is the question of whether the self-excitation of 
thermomechanical vibrations is related to the 
phenomenon of the conductor galloping – low-
frequency vibrations with frequencies of ~ 1 Hz 
and with amplitudes of the order of the static 
sagging [6,7]. 
In the cited works, such an assumption was 
made, but it has not yet received reasonable 
confirmation: there is no transfer of the effect, 
modeled theoretically and observed in a labora-
tory model, to the full-scale OHL conductors. 
The purpose of this work is to study the normal 
frequencies and modes of a conductor in the 
OHL span, necessary for the mathematical 
model to determine the conditions for self-
excitation of the galloping of full-scale conduc-
tors, based on the thermo-mechanical model. 
 
 
1. A MODEL OF COUPLED LONGITUDI-
NAL-TRANSVERSE VIBRATIONS OF A 
CONDUCTOR IN THE SAGGING PLANE 
 
The natural oscillations of an OHL conductor in 
the plane of its sagging in a homogeneous field 
of gravity are considered. The conductor is con-
sidered as a flexible elastic heavy thread. The 

coordinate system and the selected natural basis 
are shown in Figure 1. 
 
 
 
 
 
 
 
 
Conductor parameters: l  – the distance between 
the suspension points (span length); m – linear 
mass; B – tensile stiffness; 0T  – static tension; 

0k , f  – the curvature of the static curve and its 
sag. By mp g  denote the vertical linear load, 
where g is the vector of gravity acceleration. 
With small sag ( )f l , which is typical for 
most spans of OHL, tension 0T B  and curva-
ture 2

0 8 /k f l  can be considered constant 
along the length and related by the ratio: 
 

2
0 0/ /8T mg k mgl f . 

 
Conductor oscillation equation 
 

( ) + p ( + ) = 0

  
represent in projections onto the associated ba-
sis, using the Frenet formulas for a flat curve 
 

= 0, 
+ = 0.             (1) 

Figure 1. Orientation of the natural basis in 
the coordinate system Oxz

f 
z 

x  
 

l  

During vibrations, the conductor has an addi-
tional elongation deformation = + , in-
crements of curvature 0k k w  and tension 

= + . Substituting these values into (1), 
limiting ourselves to a linear approximation and 
excluding time by substitution i tu ue , 

i tw we , we obtain 
 

2
0

2 2
0 0 0

,Bu Bk w m u
T w Bk u Bk w m w

 

0, : 0.x l u w  
 
Here and below, the dashes denote the derivative 
with respect to the arc coordinate s, which, due to 
the flatness of the sag curve, is identified with the 
x coordinate on the horizontal projection. 
Let us pass to dimensionless variables, choosing 
as the scales of length and frequency, respec-
tively l  and 0T m l : 
 

2

2

,

,

u w u

w u w w          (2) 

 
where indicated: 0T B , 0 8k l f l . The 
parameter  represents the deformation of the 
conductor elongation in the state of equilibrium 
and can be considered small. Note that equa-
tions (1) are similar to the equations of vibra-
tions of an elongated cylindrical shell (panel 
with curvature 0k ) with a vanishingly small 
bending stiffness [8]. The parameter  defines 
the connection between the longitudinal and 
transverse displacements of the wire section. At 
small values of this parameter, which are char-
acteristic of a strongly stretched wire, system 
(2) breaks up into two independent equations: 
longitudinal vibrations of the rod and transverse 
vibrations of the string. 
Assuming in (2) ,i x i xu Ue w We , let's 
move on to the system 

2 2

2
2 2

0,

0.

U i W
i U W

       (4) 

 
Let's write an equation for determining wave-
numbers  with respect to 2z : 
 

2 2 4 2 21 0z z .   (5) 
 

At  (conditionally large frequencies) 
the roots 1, 2 0z  and all wavenumbers are real. 

At  (relatively low frequencies) 
1 20,    0z z ; in this case, one pair of wave-

numbers is real, the other is imaginary. The fre-
quency ,cr  that delimits the low- and 
high-frequency regions is further called critical. 
From (4) follow the relationship between the 
displacement components (distribution coeffi-
cients) for each ( 1,...,4)k k : 
 

2 2
k

k k k k
k

iU W W i .          (6) 

 
In the general case, the roots of equation (5) are:  
 

2

1,2

2 2

22

1
2

41 1 .
2 1

z
        (7) 

 
Let's first consider the high-frequency range: 

. Given the strong inequality, we as-
sume that 
 

22 2 2 21 4 / 1 1 2 / . 
 

It follows that 
 

2 2
1z , 2 2

2z  
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and the wavenumbers and distribution coeffi-
cients are equal to: 
 

1,2 1 3,4 2

1,2 1 3,4 2

, ;
, .m

               (8) 

 
Here the notations are used: 
 

2 2 2 2
1 2

1 1 2 2

, ,
, .

. 

 
The general solution of system (2), taking into 
account correlation (6), has the form: 
 

         
4 4

1 1
,k ki x i x

k k k
k k

w A e u A ie         (9) 

 
or in trigonometric form: 
 

1 1 2 1

3 2 4 2

1 1 1 2 1 1

3 2 2 4 2 2

cos sin
cos sin ,

sin cos
sin cos .

w B x B x
B x B x

u B x B x
B x B x

 

 
Subjecting the obtained solution to boundary 
conditions, we come to a homogeneous system 
of equations with respect to: kB : 
 

       

1 3

1 1 2 1

3 2 4 2

2 1 4 2

1 1 1 2 1 1

3 2 2 4 2 2

0,
cos sin

cos sin 0,
0,

sin cos
sin cos 0.

B B
B B

B B
B B

B B
B B

    (10) 

 
The condition for the existence of a nontrivial 
solution gives the frequency equation –  
 

    1 1 2 1 2

2 2
1 2 1 2

2 1 cos cos
sin sin 0.

 (11) 

Assuming 2 1B  and defining the remaining 
integration constants from the first three equa-
tions of system (10), we represent the eigen-
functions (normal modes) in the form: 
 

1 1 1
2

1 1 1 1

1 ,

   .

w x x

u x x
       (12) 

 
It is indicated here: 
 

1 2 1 1 2

1 1 2

1 1 2

1 2 1 1 1

sin sin ,
 cos cos ,

sin sin ,
,  (1) (1).

x x x

x x x

x x x
 

 
Consider the low-frequency range, when 

/ . In this case, the wavenumbers and 
distribution coefficients are equal to 
 

1,2 1 3,4 3

1,2 1 3,4 2

,   ;
,  .

i
im

 

 
where now: 2 2

2 , 2 2 / . 
The general solution (9) takes the form: 
 

1 1 2 1

3 2 4 2

1 1 1 2 1 1

3 2 2 4 2 2

cos sin
ch sh ,

sin cos
sh ch .

w B x B x
B x B x

u B x B x
B x B x

 

 
Frequency equation is 
 

 2 1 2 1 2

2 2
1 2 1 2

2 1 cos ch
sin sh 0.

   (13) 

 
Note that the boundary frequency /b  
simultaneously satisfies both frequency equa-
tions (11)  (13) and, therefore, is a natural fre-
quency. Native functions: 
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Figure 2. Natural frequency spectra for various 

and 310  
 

 
 

Figure 3. Characteristic forms of transverse vi-
brations of the lower (n=0, 1) and upper (n=3, 

5) harmonics; here 0.35 , 310 ,  
 critical frequency 11.07cr  

 
It is indicated here:  
 

2 2 1 1 2

2 2 1

2 2 1

1 1 1

sin sh ,
 ch cos ,    

sh sin ;
    = 1 / 1 .

x x x

x x x

x x x
 

 
Note that for small sag 0 , the high-
frequency equation (11) transforms into 

1 2sin sin 0  and the spectrum splits into 

groups of quasi-transverse (string) and quasi-
longitudinal frequencies: n n  and 

/n n . 
The low-frequency equation (13) takes the form 

1 2sin sh 0  and defines only transverse fre-
quencies. For high harmonics, string asymptotic 
is manifested for all, not necessarily small val-
ues . The spectrum features are characterized 
by Figure 2, which shows the frequencies of the 
modes corresponding to the harmonics with a 
number n calculated for different  and 

310 . 
The structure of the spectrum, which is quite 
complex in the low-frequency region, becomes 
regular with the growth of the harmonic number. 
The forms of vibrations in the low-frequency re-
gion differ significantly from the forms of trans-
verse vibrations of a string and a beam: the differ-
ence is that the amplitudes of adjacent half-waves 
(of different signs) vary greatly in amplitude, 
which is not typical for a string. This difference 
decreases with the growth of the harmonic num-
ber, as follows from the graphs in Figure 3, and 
for high harmonics, the shapes do not differ from 
the shapes of the string. 
 
 
2. MODEL OF SPATIAL VIBRATIONS 
 
Let's introduce the coordinate system Oxyz , di-
recting the axis Ox  through the conductor fix-
ing points, as shown in Figure 2. 
 

 
Figure 4. Parameters of static (0) and dynamic 
(1) states: a) displacements and components of 
the external load (a); lengths of the initial and 

current states (b) 

n

n
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Let ( , )u x t , ( , )v x t , ( , )w x t  be the displacements 
of the points of the conductor axial line along 
the axes Ox , Oy , and Oz  respectively. As be-
fore, the conductor is considered as a weighty 
elastic thread, fixed at the ends in a stretched 
state. Denote by yp  the given lateral linear load 
in the plane Oxy , by zp mg  the linear load of 
gravity forces in the plane Oxz . 
The positive directions of the entered values are 
shown in the Figure 4 a). Figure 4 (b) shows: l  
– span length; 0l  – the conductor length in the 
span without elastic deformation at normal tem-
perature; 1l  – the length of the stretched conduc-
tor; initial elongation –  
 

0 (1 )l T l ,               (15) 

 
where T is the increment of temperature relative 
to its normal value,  is the coefficient of line-
ar thermal expansion. 
Neglecting the longitudinal inertial forces, we 
assume that the tensile force T and tensile stiff-
ness B are constant along the conductor length. 
It follows that the deformation of the conductor 
is also constant along the length, i.e. 

( , ) ( )x t t . Using this assumption, we deter-
mine the longitudinal deformation in a quadratic 
approximation. It's obvious that 
 

22 2 2
1

2 2 2 21 .
dl dx du dv dw

u v w dx
. 

 
Here and below, primes denote the derivative 
with respect to x. Neglecting the square of a 
small value du , we have 
 

2 2
1 1 2dl u v w dx; . 

 
Expanding the last expression into a Taylor se-
ries and restricting ourselves to the first two 
terms, we obtain 
 

2 2
1

11
2

dl u v w dx . 

 
Integrating the last expression by x gives 
 

2 2
1 1 0

0

1
2

l

l l u u v w dx . 

 
This makes it possible to determine the defor-
mation of the conductor elongation in the form 
 

1 0 1

0 0 0

2 2

0 00

1 .
2

l

l l l l
l l l

v w dx
l l

          (16) 

 
where  is determined by expression (15) and 
it is taken into account that at the fixing points 

0 1 0u u . 
 
2.1. Nonlinear vibration equations 
We will obtain the conductor vibration equa-
tions based on the principle of possible dis-
placements in generalized coordinates with non-
linear elastic forces [9-11]: 
 

0p inU A A .            (17) 
 

where U  is the variation of the potential ener-
gy of the system; pA , inA  are the variation of 
the work of external and inertial forces. It is as-
sumed that the initial configuration is known 
from the solution of static equilibrium equa-
tions. 
We will search for displacements using the Ritz 
method: 
 

0( , ) ( ) sin ,

( , ) ( )sin .

i i
i

i
j

w i xw x t q q t
l l

v j xv x t r t
l l

  (18) 
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0( , ) ( ) sin ,

( , ) ( )sin .

i i
i

i
j

w i xw x t q q t
l l

v j xv x t r t
l l

  (18) 

where 0iq  are the generalized coordinates of the 
static (initial) state; iq , ir  are generalized coor-
dinates describing the dynamic process. 
Let us determine the axial deformation by for-
mula (16) in the form: 
 

2
22

0
0

2 2

0

2

.

i i
i

j
j

l i q q
l

j r
l

      (19) 

 
Then the potential energy of longitudinal de-
formation and its variation are respectively 
equal to 
 

20 ;
2

.i j
i ji j

l B

q r
q r

       (20) 

 
Here: 
 

2

0 0

2

0

,
2

; ,
2

i i
i i

j
j j

i
l T lT q q

q q
j

l T lT r T B
r r

 

 
where the deformation  is determined by the 
nonlinear expression (19). 
We now write down the variations of the work 
of inertial and external forces: 
 

=
2

+ , 

= ( + ) + ,   (21) 
 
using the notations 

0

0 0

1 cos1 ; ,

sin , sin .

i

l l

i y j z

im m Q lm g
l i

i x j xQ p dx R p dx
l l

. 

 
The equations of spatial oscillations of the con-
ductor follow from the variational principle of 
possible displacements (17) taking into account 
expressions (20), (21). As a result, we have 
 

+ ( ) ( + ) = 2( + ), 

+ ( ) = 2 ; 
, = 1,2,3, . . ..                  (22) 

 
Let's omit the terms in the first equation, the 
sum of which turns to zero due to static condi-
tions. To do this, we will write the longitudinal 
deformation in the form (19) as the sum of the 
static and dynamic components: 
 

0( ) ( )dt t ,                  (23) 
 
where  
 

2
2 2

0 0
0 0

2
2 2 2 2

0
0

,
2

2 .
2

i
i

d i i i j
i j

l i q
l l

l i q q q j r
l

 

 
Substituting expression (23) into the first equa-
tion of system (22), we obtain nonlinear equa-
tions of spatial vibrations of the wire in the 
form: 
 

+ ( ) ( + ) = 2 , 

+ ( ) = 2 ; 

, = 1,2,3, . . ., 
 
where  is determined by formula (23). Passing 
to the quantities 
 

2 ; 2 , 2 ji
i j

RB Qt Q R
m l B B

, 
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we obtain the final form of the equations in di-
mensionless form: 
 

2
2
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2
2

2

,

;

, 1,2,3,....

i
i d i i

j
j j

d q Q i q q
d

d r
R j r

d
i j

     (24) 

 
2.2. Solution of the static problem 
In this case, instead of expressions (18), (19) we 
have 
 

0 0

2
2

0 0
0 0

( ) sin ;

.
2

k
k

k
k

k xw x q
l

l kq
l l

. 

 
The equilibrium equation follows from (22): 
 

2
2 2

0 0
( ) 1 1 cos

2 k
kl T k q l m g k

k
, 

 
whence it follows that 0 0kq  at 2,4,6, ...k . 
We rewrite the last equation in the form: 
 

0 2
0

2 ( 1,3,5, ...)
2 k

k l m gq k
Nk

 

 
and substitute in the expression for deformation 
(24). As a result, we get 
 

2

0 2 4
1,3,...0 0 0

2 1
k

l l m g
l EF k l

, 

 
whence it follows that the deformation 0  is de-
termined from the solution of the cubic equation 

3 2
0 0 0b d , where 

 
2

2 4
1,3,...0 0

2 10, 0
k

l l m gb d
l l B k

, 

the solution of which is found by the Cardano 
formula. 
As an example, a wire fixed at the ends with the 
characteristics given in Table 1 is considered. 
Table 2 shows the results of calculations for  

1,3,...,9n . 
 
2.3. Natural vibrations 
The linearization of equations (24) leads to a 
system of linear equations 
 

2
2

0 02

2
2

02

0,

0; , 1,2,3,...,

i
d i i
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d q i q q
d
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j r i j
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    (25)                   

 
where 0 , 0iq  are determined from the solution 

of a static problem; 
2

2
0

0 2d i i
i

l i q q
l

. 

Equations (25) will be written in matrix form by 
introducing column vectors 
 

1 ... T
nq qq , 1 ... T

mr rr  
 
and a diagonal matrix  with elements 2

ii i . 
For simplicity, we will assume that n m . Then 
instead of equations (25) we have two unrelated 
matrix equations 
 

2 2

2 20, 0q rd d
d d

q rq r ,   (26) 

 
where 
 

2
2 2

0 0
0

, ;
2

q T rl
l

q q  

 
 – unit matrix. 

The solution of equations (26) is represented as 
 

q = A , r = C ; 

= .                      (27)                   
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Substituting expressions (27) into equations (25) 
leads to two unrelated systems of algebraic 
equations 

( )A = 0, ( )C = 0, (28) 
 
Since the matrix r  is diagonal, the eigenval-
ues of the second equation are the values =

( ) . Then the frequency spectrum of the 
natural vibrations of the conductor in the hori-
zontal direction is a sequence = , 

1,2,...,j n . 
From the condition of non-triviality of the solu-
tion of the first equation of system (28), a fre-
quency equation follows for determining the 
frequency spectrum of natural vibrations in the 
vertical direction: 
 

= 0. 
 

The vibration modes A are determined from the 
solution of the first equation (28) with the nor-
malization condition 1TA A . The vibration 
modes C are trivial as a sequence 1 0...0 , 

0 1...0 , …, 0 0...1 . 
As an example, consider a conductor with char-
acteristics from Table 1 for 5n . The solution 
of the static problem is given in Table 2. The 
calculation results are shown in Table 3.  
The first frequency of horizontal oscillations 
can be estimated using the equation of oscilla-
tions of a physical pendulum 2 2J d dt M , 
where J is the moment of inertia of the sag-
ging conductor about the axis Ox , M is the 
total moment of the gravitational load. 
 

 

 
 

 

Table 1. Conductor parameters 

Tensile stiffness 67.3 10 NB  
Linear mass 0.23kg mm  
Conductor length 0 21 ml  
Span length 20 ml  
Gravity acceleration 29.81 m sg  

Table 2.  Results of solving a static problem 

n 1 3 5 7 9 
D 186.59 10  186.67 10  186.68 10  186.68 10  186.68 10  

0  65.88 10  65.92 10  65.92 10  65.92 10  65.92 10  
01q  0.14236  0.14149  0.14138  0.14135  0.14134  
03q  - 0.00524  0.00523  0.00523  0.00523  
05q  - - 0.00113  0.00113  0.00113  
07q  - - - 0.00041  0.00041  
09q  - - - - 0.00019  
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Using the expansion 
 

0 0( ) sink
k

w x q k x l , 

 
we get 
 

= , = , 
 

where = , ,... , = , ,... . 
 

For the angle of rotation of the pendulum (sag-
ging wire) in the form sinA t  from the 
condition of non-triviality of the solution of the 
equation of vibrations, we obtain a formula for 
calculating the circular frequency of oscillations 

=  or in Hertz  = . 
The calculation for the above example gives the 
value 0.333f , which is completely con-
sistent with the first oscillation frequency in the 
horizontal direction 0.335f . 
 
 
CONCLUSION 
 
When constructing the theory of self-excitation 
of conductor vibrations, classified in operational 
OHL practice as a galloping, it is necessary to 
proceed from the model of a flexible heavy 
thread that performs spatial vibrations. Gallop-
ing modes are observed in the frequency range 
of the order of 1 Hz, which in the typical OHL 

spans correspond to the first 1-3 harmonics [6, 
7]. Model experiments have shown [5] that vi-
brations in the vertical plane, which excite par-
ametric vibrations with exit from the sag plane, 
are essential for such processes. The model of 
self-excitation should be based on the data of 
the modal analysis of the system as its basic 
characteristics. 
The methods developed and described in the 
article for calculating the natural frequencies 
and vibration modes of the OHL conductors re-
flect the features of the conductors that deter-
mine their tendency to self-excitation of vibra-
tions. It is shown that in the frequency domain 
of interest, transverse stretching vibrations and 
pendulum vibrations are essential; longitudinal 
elastic waves do not play a significant role.  
The developed methods of modal analysis of 
conductor vibrations will be used in the con-
struction of a model of self-excitation of vibra-
tions of OHL conductors of both thermome-
chanical and aerodynamic nature. 
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