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AIMS AND SCOPE

The aim of the Journal is to advance the research and practice in structural engineering
through the application of computational methods. The Journal will publish original papers and
educational articles of general value to the field that will bridge the gap between high-performance
construction materials, large-scale engineering systems and advanced methods of analysis.

The scope of the Journal includes papers on computer methods in the areas of structural
engineering, civil engineering materials and problems concerned with multiple physical processes
interacting at multiple spatial and temporal scales. The Journal is intended to be of interest and use to
researches and practitioners in academic, governmental and industrial communities.
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OBLIAA MHOOPMALIUA O XXYPHAIE

International Journal for Computational Civil and Structural Engineering
(MeskAyHAPOAHBII J)KYPHAA IO PACYETY TPAXKAAHCKHX M CTPOUTEABHBIX KOHCTPYKIIHI)

MesxayHnapoanblii HayuHbli :kypHaa “International Journal for Computational Civil and
Structural Engineering (MexayHapoaHblii ;KypHAJI M0 pacyeTy rpaxIaHCKUX U CTPOUTEIbHBIX
xoHcTpykuuii)” (IJCCSE) sBnsercs BeayiuM HayuyHbIM NEPUOAMUECKUM U31aHUEM I10 HAIIPABJICHUIO
«MHXKeHepHble U TEXHUUECKUE HayKny, n3aaBaeMbIM, HaunHas ¢ 1999 rona (ISSN 2588-0195 (Online);
ISSN 2587-9618 (Print) Continues ISSN 1524-5845). B »xypHayie Ha BBICOKOM Hay4YHO-TEXHHYECKOM
YPOBHE paccMaTpUBAIOTCS IPOOIEMbI YHCIEHHOTO U KOMIIBIOTEPHOT'O MOICTMPOBAHUS B CTPOUTEIIHCTBE,
aKTyaJIbHble BOIPOCHI pa3pabOTKH, UCCIEIOBAHNUS, Pa3BUTHS, BepU(UKalluK, anpodaluy U MpUIIoAKe-
HUI YHUCICHHBIX, YACIEHHO-aHATUTUYECKUX METO0B, TPOrPAMMHO-aITOPUTMUYECKOTO 00eCIeUueHHS
U BBINIOJIHEHNS AaBTOMATU3UPOBAHHOTO IPOEKTUPOBAHMS, MOHUTOPHHTA M KOMIUIEKCHOTO HAyKOEMKOIO
PacyeTHO-TEOPETUYECKOTO U HKCTIEPUMEHTAIILHOTO 000CHOBAaHUS HANPSKEHHO-AEPOPMUPOBAHHOTO (U
WHOTO0) COCTOSIHUS, POYHOCTH, yCTOWIMBOCTH, HA/ICKHOCTH U OE30MTaCHOCTH OTBETCTBEHHBIX OOBEKTOB
IPa’KAAHCKOTO U MPOMBIIIJIEHHOTO CTPOUTENILCTBA, SHEPTeTHKH, MAILIMHOCTPOSHHUS, TPAHCTIOpTa, OHO-
TEXHOJIOTMI U JPYTUX BHICOKOTEXHOJIIOTUYHBIX OTPaCIIeH.

B penakiirioHHbII cOBET *KypHasa BXOIAT U3BECTHBIE POCCUICKNE U 3apyOeKHbIE IeATeNTN HAyKU
Y TEXHUKH (B TOM YHUCJIE aKaIEMUKH, YJICHBI-KOPPECIIOHIEHThI, THOCTPAHHBIE YWIEHBI, IOYETHBIE YIECHBI
1 cCOBeTHUKH PoccHiicKol akaaeMuu apXUTEKTYPhl U CTPOUTEILHBIX HayK). OCHOBHON KPUTEPH OT-
6opa crareil A1 MyOIMKaLUK B )KypHaJe — UX BBICOKHI HayYHBIH YPOBEHb, COOTBETCTBHE KOTOPOMY
OTIPEJIEINISIETCS B XOA€ BBICOKOKBATH(D)UIIMPOBAHHOTO PELECH3UPOBAHUS U OObEKTUBHON SKCIEPTHU3BI,
MOCTYMAIOLIUX B PEIAaKIIMIO MaTEPUAIIOB.

Kyprnan exooum 6 Ilepeuers BAK P® gedywux peyenzupyemvix HaAyuyHvlX U30aHUll, 8 KOMOPbLX
O0JHCHBL ObIMb ONYOIUKOBANHBI OCHOBHbIE HAYYHbBLE PE3YIbIMamsl OUCCEPMAaYULl Ha COUCKAHUE YUEeHOU
cmenenu KaHouoama HayK, Ha COUCKAHUe Y4eHol cmeneHu 0OKmopa HAayK 10 HAyYHBIM CIEIHallb-
HOCTSIM M COOTBETCTBYIOIIUM UM OTPACIISIM HAYKH:

* 01.02.04 — Mexanuka 1e(OopMUPYyEMOro TBEPAOIO Tela (TEXHUUECKHE HAayKH),

05.13.18 — MareMaTnueckoe MOJIETIMPOBAHUE YUCICHHBIE METOJIBI U KOMIUJIEKCHI TPOTPaMM
(TeXHUUYECKHUE HAYKH),

05.23.01 — CtpouTenbHble KOHCTPYKLNH, 3AAHUS U COOPYKEHHUS (TEXHUUECKUE HAYKH),
05.23.02 — OcHoBanus 1 (HyHIAMEHTBI, TTOJI3EMHBIC COOPY)KCHHS (TEXHUUCCKHIE HAYKH),
05.23.05 — CrpoutenbHble MaTepUAIIbI U U3/AENIUs (TEXHUUYECKUE HAYKH),

05.23.07 — I'mapoTeXHUUECKOE CTPOUTEILCTBO (TEXHUUECKUE HAYKH),

* 05.23.17 — CrpoutenbHas MexaHHKa (TEXHUYECKHE HAYKH).

B Poccuiickoit @enepanmu )KypHaJl HHIEKCUpYeTCs: POCCUIICKMM MHIEKCOM HAy4HOI'O LIUTH-
posanus (PUHLI).

JKypuan exooum 6 6a3zy oannwix Russian Science Citation Index (RSCI), nonnocmuio unmezpu-
posannyio ¢ naameopmoil Web of Science. ypHan nmeet MeXTyHapOIHBINA CTATyC U BBHICHUIAETCS B
BeylMe ONOMMOTEKH U HAyYHbIE OPTaHU3AlUN MUpA.

N3narenn xypHana — Mzoamenbcmeo Accoyuayuu cmpoumenshvix 8blCUUX V4eOHbIX 3a6e-
oenuti /ACB/ (Poccus, . Mocksa) u 1o 2017 rona Mzoamenvckuii oom Begell House Inc. (CUIA, 1.
Heto-Mopk). OpuImanbHbIMK TapTHEPAME H3aHNs ABIACTCA Poccuiickas akademus apxumeKkmypbl
u cmpoumenvhuix Hayk (PAACH), ocyiiecTBistomnas HayyHOe KypUpOBaHue U3aHust, u Hayuno-uc-
cnedosamenvckuul yenmp Cma/{uO (3A0 HULL CtaluO).

Lenu :kypHaia — IeMOHCTPUPOBATH B MyOIHKAIMSIX POCCUICKOMY U MEXIYHAPOIHOMY IPO-
(eccroHaNIbHOMY COOOIIECTBY HOBEHUIIHE TOCTHKEHHS HAYKH B 00JaCTH BHIYUCIUTEIBHBIX METOI0B
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peuieHus GyHIaMEHTAIbHBIX U MPUKIAIHBIX TEXHUUYECKUX 3ajay, MPEK/e BCEro B 00JaCTH CTPOU-
TEJbCTBA.

3agaum KypHaJa:

* IPEI0CTABJICHNE POCCUMCKUM U 3apyOeKHBIM YUEHBIM U CIIELIUATUCTaM BO3MOXKHOCTH ITyOIH-
KOBATh PE3YJIbTaThl CBOUX MCCIIEA0BAHUM;

* IpUBJICUEHUE BHUMAHHUS K HamOosee aKTyalbHbIM, IEPCIEKTUBHBIM, ITPOPBIBHBIM U MHTE-
PECHBIM HAIPABJICHUSAM PA3BUTHUS U MIPUIOKEHUH YMCICHHBIX Y YMCICHHO-aHATUTHYECKIX METOJIOB
pemieHus pyHIaMEHTaIbHBIX U MPUKIIAJIHBIX TEXHUYECKUX 3a71a4, COBEPILIEHCTBOBAHMSI TEXHOJIOT U
MaTeMaTUYeCKOTO, KOMITBIOTEPHOTO MOJECINPOBAHMS, Pa3padOTK U BepH(PHUKALUU PeaTn3yIOLIero
[IPOrpaMMHO-aJITOPUTMHUYECKOTO 0OecIIeueH s,

* obecrieueHre 0OMEeHa MHEHUSIMHU MEX/1y UCCIIEI0BATEIIMU U3 PA3HBIX PETMOHOB U TOCYAAPCTB.

Temaruka sxxypHaJa. K paccMoTpeHnio 1 myOIMKaluy B )KypHaJie IPUHUMAIOTCS aHATUTHUECKIE
MaTepHalbl, HayqHbIe CTaTbU, 0030pPbl, PELIEH3UU U OT3bIBbI HA HAy4HbIe yOIUKalMK 10 (yHIaMeH-
TAJbHBIM U IPUKJIAJHBIM BOIIPOCAM TEXHUYECKHUX HAYK, IPEXK/Ie BCETo B 00IACTH CTPOUTENHCTBA. B
KypHaJIe TaKKe MMyOIUKYyI0TCsl UH(OPMAIIMOHHbIE MaTepHalibl, OCBEILAIOIUE HAyYHbIE MEPOIIPUSITUS
U MepesioBble TOCTHXKeHUs Poccriickol akaleMUM apXUTEKTypbl U CTPOUTENbHBIX HayK, HAy4HO-00-
pa3oBaTEIbHBIX U IPOEKTHO-KOHCTPYKTOPCKUX OpraHU3aLi.

Tematnka crateil, IpUHUMaeMBbIX K IMyOJIMKAIMKU B )KypHaJle, COOTBETCTBYET €ro Ha3BaHUIO U
OXBAaThIBAET HAIIPABJICHUS HAyYHbIX UCCIIEIOBAaHUN B 001aCTH pa3pabOTKH, UCCIIEAOBAHUS U MTPHUIIO-
KECHUH YUCIICHHBIX U YUCICHHO-aHATUTHYECKUX METOA0B, IPOTPAMMHOTO 00€CTIeYeHHSI, TEXHOIOT Ui
KOMITbIOTEPHOTO MOJICJIMPOBAHHUS B PELICHUH MTPUKIIAIHBIX 33/1a4 B 00JIaCTH CTPOUTENBCTBA, & TAKXKE
COOTBETCTBYIOLIME MPOPHUIbHBIE CIEIUATbHOCTH, MPEICTABICHHbIE B JUCCEPTALIMOHHBIX COBETaX
pOoMIBHBIX 00Pa30BATENBHBIX OPraHU3AIMAX BBICIIEr0 0Opa3oBaHusl.

Penaknuonnasi moautuka. [lomurrka penakimoHHONW KOJUIETHH KypHaia 0a3upyeTcs Ha Co-
BPEMEHHBIX IOPUIMYECKUX TPEOOBAHUSAX B OTHOLIEHHWH aBTOPCKOTO IPaBa, 3aKOHHOCTH, IUIaruara
U KJIEBETHI, U3JIOKEHHBIX B 3aKoHonarenbCcTBe Poccuiickont denepanuu, U STHYECKUX MPUHIMUIIAX,
MOJ/IEP’KUBAEMBIX COOOILIECTBOM BEAYIIMX U3/aTelel HayuHOW NEePUOAUKH.

3a nybnukayuto cmameti naama ¢ asmopos He e3vimaemcs. Ilyonukayus cmameii 8 HcypHae
becniamuas. Ha TIaTHOM OCHOBE B JKypHaJIe MOTYT OBITh OITyOJIMKOBAHBI MaTepHajbl PEKIAMHOTO
XapakTepa, UMEIoIIUe MPsIMOe OTHOLIEHHUE K TEMaTHKe XKypHaJa.

XKypnai npeaocTaBisieT HENOCPEACTBEHHBIN OTKPBITBIN TOCTYII K CBOEMY KOHTEHTY, MUCXO/Is U3
CJIEYIOILETO MPUHIIMIA: CBOOOIHBIN OTKPBITHIM JOCTYII K pe3y/bTaTaM UCCIIEJOBAHUN CIOCOOCTBYET
YBEJIUYEHUIO II00aTbHOT0 0OMEHa 3HaHUSAMH.

HupexcupoBanue. [lyOnukaimy B KypHaie BXOIST B CUCTEMBI PACYE€TOB MHJICKCOB IIUTUPOBAHUS
aBTOPOB U JKypHAJIOB. «MHIEKC IUTUPOBAaHUS» — YHCIIOBOM NOKA3aTellb, XapaKTEpU3YIOLHI 3HAYMMOCTb
JIAHHOM CTaThU ¥ BEIYUCIISIOLIMICS HAa OCHOBE MOCIIETYOIIMX ITyOMKALINA, CChUTAFOLMXCS Ha TAHHYHO PaloTy.

ABTtopam. [Ipexne ueM HarpaBUTh CTAaThIO B PENAKIMIO XKypHajia, aBTOPaM CIIEAYET O3Ha-
KOMHTBCSI CO BCEMHM MarepuajaMu, pa3MelIeHHbIMH B pasjeiax caiiTa *ypHaja (MHTEpHET-CaiT
Poccuiickoit akageMun apXuTeKTypbl U cTpouTeabHbIX Hayk (http://raasn.ru); monpasnen «M3nanus
PAACH» nunu uarepHet-caidT M3narenscrBa ACB (http://iasv.ru); moapazaen «Kypuan [JCCSE»): ¢
OCHOBHOU MH(OpMaImei o XypHase, ero mejisiMHi 1 3aJadaMi, COCTAaBOM PEIAKIIMOHHOW KOJIJIETUH
U PEJAaKLIMOHHOIO COBETA, PEAAKIIMOHHOM MOJIUTHUKOM, TOPSAIKOM PELIEH3UPOBAHMsI HAIIPABIIIEMbIX B
KYpHaJ cTarel, CBEACHUSIMHU O COONIONCHUH PENaKIIMOHHONW 3TUKHU, O MOJUTHKE aBTOPCKOTO MpaBa
U JIMLEH3UPOBaHMs, O MPEICTaBICHUH KypHaJla B NHPOPMALIMOHHBIX CUCTeMaX (MHIEKCUPOBAHUN),
nHpopMaLueil 0 HOANUCKE Ha KypHaJl, KOHTAKTHBIMU JaHHBIMU U 1p. JKypHan paboTaeT no JuueH-
3un Creative Commons tuma cc by-nc-sa (Attribution Non-Commercial Share Alike) — Jlnnensus «C
yKkazaHueM aBTopcTBa — Hexommepueckas — Kormumedry.
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PeuenzupoBanue. Bce HayuHble cTaThy, MOCTYNUBIINE B PENAKIMIO JKypHaia, MPOXOAST
o0s13aTeIbHOE JIBOMHOE CIIeToe PelieH3MpOBaHUE (PELIEH3EHT HE 3HACT aBTOPOB PYKOIHCH, aBTOPHI
PYKOIKCH HE 3HAIO PEIICH3EHTOB).

3auMcTBOBaHUS M Muaruar. PenakimoHHasi KOIJIETHs KypHala MpH pacCMOTPEHHUH CTaThU
MIPOBOJIUT MPOBEPKY MaTepuaja C MOMOIIBI0 CUCTEMBI «AHTHILIAruaT». B ciiyuae oOHapykeHus
MHOTOYHCIICHHBIX 3aMMCTBOBAaHUI peAaKIus JeUCTBYeT B cooTBeTCcTBHH ¢ npaBuiiamu COPE.

Moanucka. XXypuan 3apeructpupoBan B denepanbHOM areHTCTBE MO CPEACTBAM MAacCCOBOU
nH(OPMAIH U OXpaHbl KyJIbTypHOT0 Hacnenus Poccuiickoii @eneparun. Muaekc B o0mepoccuiickom
katasnore POCITEUATD — 18076.

[To Bompocam NOAMMCKU Ha MEXIyHapOIHBIH Hay4yHbIH ypHan “International Journal for
Computational Civil and Structural Engineering (MexayHapoaHbIHi )KypHaJI IO pacyeTy rpa)IaHCKHX
U CTPOUTEILHBIX KOHCTPYKINI)” oOpamaiitech B AreHTcTBO «Pocneuars» (OduimaabHbIi cCaiT B
cetu UHTepHeT: http://Www.rosp.ru/) uim B u3areabCcTBO ACCOIIMAIIMN CTPOUTEIHHBIX By30B (ACB)
B COOTBETCTBHH CO CIIECAYIONIMMH KOHTAKTHBIMH JTAHHBIMH:

000 «H30amenvcmseo ACB»

KOpunnaeckuii anpec: 129337, Poccus, . Mocksa, SIpocnaBckoe 1., 1. 26, oduc 705;

®dakruueckuit aapec: 129337, Poccus, . Mocksa, SIpocnasckoe 1., a. 19, kopm. 1, 5 atax,

oduc 12 (TL Cone Moin);

Tenedonst: +7 (925) 084-74-24, +7 (926) 010-91-33;

HNutepuer-caliT: www.iasv.ru. Aapec 3JIeKTpOHHOM MOYTHL: 1asv(@iasv.ru.

KonrakTHas undopmauus. [To Bcem Bonpocam paboThl peIaKIMU, PELIEH3UPOBAHNUS, COTIACO-
BaHUs NIPABKU TEKCTOB U IyOIMKALIMU CTATeH CleAyeT 00pamarbes K INIaBHOMY PEaKTOpy JKypHaa
yneny-koppecnonaeHty PAACH Cuoopogy Baraoumupy Huxonaesuuy (ampeca 3IeKTPOHHON MOYTHI:
sidorov.vladimir@gmail.com, sidorov(@iasv.ru, iasv(@iasv.ru, sidorov(@raasn.ru) Wiu K TEXHHYECKOMY
penakropy xkypHaina coBeTHUKy PAACH Kaiimykogy Tatimypasy bampa3zosuuy (agpeca 31eKTpOHHOU
nouTthl: tkaytukov@gmail.com; kaytukov(@raasn.ru). Kpome Toro, no ykazanHbIM BOIIpocam, a TaKxke
10 BOTIPOCaM pa3MelIeHHs B )KypHaJle PEKIaMHBIX MaTepHaioB MOKHO 00paIliaThCs K TeHEpaIbHOMY
mupektopy OO0 «MznarensctBo ACB» Huxumunoti Haoescoe Cepeeesne (anpeca 31€KTPOHHOMN 110-
YThI: 1asv(@iasv.ru, nsnikitina@mail.ru, ijjccse@iasv.ru).

KypHaa cranoBuTcs TexHoJornuHee. MznarensctBo ACB ¢ centsi0pst 2016 rona sBusercs
yiieHoM MeXIyHaponHOW acconmanuu u3aareneil HayuHnoil nuteparypsl (Publishers International
Linking Association (PILA)), ocymecTtBistomnieid cBow aesarenbHocTh Ha miaTdopme CrossRef.
OpuUruHaIBHBIM CTaThsIM, MyOIMKyeMbIM B JKypHaisle, OydyT NpPUCBAauBaThCs YHUKaJIbHbIE HOMeEpa
(manexcel DOI — Digital Object Identifier), uTo 3HaYUTENBHO OOIETYUT MOMCK METATAHHBIX U MECTO-
HaXOXKJEHHE MOJTHOTEKCTOBOTO IpousseneHus. DOI —3To cuctema onpeaeneHuss HAayYHOro KOHTEHTa
B cetu HTEpHET.

C okTs16pst 2016 roma cTa BO3MOXKEH MTPUEM CTaTEH HA PACCMOTPEHUE U PELICH3UPOBAHUE Yepe3
OHJIaMH cucteMy npuemMa ctareit Open Journal Systems Ha caiiTe )KypHaiia (3J€KTpOHHAsS PEAAKIINS):
http://ijccse.iasv.ru/index.php/IJCCSE.

ABTOp IMEET BO3MOKHOCTb CIIC/IUTH 32 MPOABIKEHHEM CTAaThH B PEIAKIIMH KypHAJIa B INTHOM
kabunere Open Journal Systems 1 moay4yarb COOTBETCTBYIOIINE YBEIOMIIECHHS 10 AJIEKTPOHHOM MOYTE.

B ¢deBpane 2018 roga »xypnan Ob1 3apeructpuponat B Directory of open access journals (DOAJ)
(3TO OIMH M3 CaMBIX U3BECTHBIX TIOMCKOBBIX CEPBUCOB B MUPE, KOTOPHIN MPEAOCTABISCT OTKPBITHIN
JOCTYI K MarepuaiaM U WHICKCHPYET HE TOJBKO 3aroJIOBKH KYpHAJOB, HO M HAy4YHBIE CTaThH), B
centsaope 2018 rona BxiroueH B mpoxykTsl EBSCO Publishing.

B HOs16pe 2020 roma xypHall Hayasl MHIAEKCUPOBATHCS B MEXKTYHApPOIHOM 6a3e Scopus.
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MODELING OF THE SUBWAY DYNAMIC INFLUANCE ON THE
GROUND STRUCTURE

Maria S. Barabash, Bogdan Y. Pysarevskiy
«LIRA SAPR» Ltd, Kiev, UKRAINE
National Aviation University, Kiev, UKRAINE

Abstract: The article discusses a new approach to modeling the behavior of structures under the influence of dynamic
loads, including loads from ground and underground transport. The approach is to apply the direct integration method, as
well as the SBFEM method to calculate the forces in load-bearing building structures under dynamic influences, taking
into account a number of factors - the damping properties of the subgrade, physical nonlinearity of soils and the passage
of waves in the soil space. The article presents the main theoretical premises, the results of a numerical experiment of a
real monolithic building, built in the zone of influence of the subway.

Keywords: dynamic influences, finite elements, structural modeling, internal forces, vibration acceleration, vibration
velocity, subway, vibration, soil, boundary conditions, design, dynamic characteristics, damping

MOJIEJITUPOBAHUE JUHAMUWYECKOI'O BO3JIEMCTBUSI
METPOITIOJIMTEHA HA HASBEMHOE COOPY/KEHMUE

M.C. bapabaw, b.IO. ITucapesckuii
00O «JIMPA CAIIP», r. Kues, YKPAHA
HarmonaneHsblit aBHalinoHHbINA yHUBEpcUTeT, T. Kue, YKPANHA

AHHoTauus: B crarbe paccMaTpuBaeTCsl HOBBIM MOAXOM K MOJACIMPOBAHUIO MOBEICHUS KOHCTPYKIMH MPH BIUSHUU
JMHAMUYECKUX Harpy3okK, B TOM 4MCJI€ M Harpy30K OT Ha3¢MHOIO M MOA3EMHOro TpaHcnopra. [loaxoxn 3axirouaercs B
MIPUMEHEHUH METO/Ia IPSIMOTO HHTETPUPOBaHNS, a Takxke MeTosia SBFEM i1t BRIYMCIEHHS YCHUITHIA B HECYIIIUX CTPOUTEIb-
HBIX KOHCTPYKITUSIX TIPH JTHHAMHUYECKHUX BO3CHCTBHSX C YIETOM psaa (aKTOPOB - 1eMI(PHUPYIONINX CBOICTB TPYHTOBOTO
OCHOBaHUS, PU3NUECKON HETMHEHHOCTH TPYHTOB M IIPOXOXKICHHSI BOJIH B TPYHTOBOM IIPOCTPAHCTBE. B cTaThe mpuBoOASTCS
OCHOBHBIE TEOPETUYECKUE NPEATIOCHUIKH, IPUBOASATCS PE3yAbTAThl YUCIEHHOIO HKCIIEPUMEHTA PEaIbHOIO MOHOJIUTHOIO
3/1aHUs, IOCTPOCHHOI'O B 30HE BIUSHUS METPOIIOIUTEHA.

KuroueBble €10Ba: TUHAMUYECKHE BO3/ICHCTBHA, KOHEUHBIC IEMEHTHI, MOJICTUPOBAHNE KOHCTPYKIMI, BHyTPCHHNE
YCHITHSI, BUOPOYCKOPEHHSI, BHOPOCKOPOCTH, METPOIIOIUTEH, BUOpAIHs, TPYHT, TPaHIHYHBIC YCIOBUS, IPOCKTHPOBAHUE,
JMHAMHYECKHE XapaKTePUCTUKH, IeMI(pHUPOBAHNE

In recent decades, the world has experienced
urbanization and intense urban growth. At the
same time, in order to unload the traffic flow in
cities, underground space is being developed and
new metro lines are being built. However, the
underground is a source of increased vibration
and noise levels. As a rule, new tunnels are laid
in the formed urban development, which causes
an increase in vibration and noise in buildings
and structures adjacent or located above metro
lines, as well as new construction is carried

out near existing metro stations and tunnels.
Constantly acting vibration loads from the
movement of the subway affect the physical and
mechanical properties of soils and the bearing
capacity of structures in operation, erected and
reconstructed buildings and structures [1]. It is
not possible to provide a complete and reliable
assessment of these actions only by instrumental
methods.

Therefore, it is very important to develop complex
numerical modeling tools that will allow obtaining
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objective and comprehensive information about
the actual stress-strain state (SSS) of load-bearing
structures of buildings and structures under
vibration effects. In the future, this will make it
possible to develop a set of measures to counteract
vibration effects in order to prevent damage and
further destruction of structures.

The purpose

The purpose of the article is to assess the effect
of vibration loads on the stress-strain state of the
bearing structures of buildings and structures.

In addition, a methodology for modeling the
behavior of buildings under the constant
influence of the subway is presented.

Formulation of the problem

When designing buildings and structures of
increased responsibility, regulatory documents
regulate the calculation of the system "ground
part - foundation - foundation" for dynamic
effects. This problem can be solved by
numerical modeling methods, which make it
possible to take into account such factors as the
damping properties of the subgrade, physical
nonlinearity of soils and the passage of waves in
an infinite half-space of the subgrade.

The development of new calculation methods
for dynamic effects and the improvement of
existing ones are especially important in the
design of multi-storey buildings.

Direct integration of equations of motion
(method of central differences)

Calculation under the influence of dynamic
loads is based on solving differential equations:

Mii(t) + Cii(t) + Ka(t) = g(t)

g0 =" (v ()~ 30, (v (1)

(1)

where M, C, K are — accordingly matrices of
masses, damping and system stiffness
respectively;
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2)

a@0).a(@4()  are  vectors of  nodal
displacements, velocities and accelerations at
the moment of time ¢;

g(t) are loads corresponding to the moment in
time ¢.
For accelerations at time t, using the method of
central differences, we can write the expression
in the following form:

_ (it + At =2a(t) +a(t - Ar)

#) At

€)

The calculation error by formula (3) is of the
order of At*, and the following expressions are

used to calculate velocities and displacements
with errors of the same order:

_a(t+An—a(t—Ar)

(1) ;
2At
a(t) = a(t+At) 42r i(t—At) ' @)

Substituting expressions (4) into expression (1)
and determining the vector
i(t+ At)+i(t—At), we obtain the following

equation:

{Z‘;j +§t+K}(ﬁ(t+At)+ﬁ(t—At)) =
(5)
2
= Z(q(z‘) + A]g u(t)+ Acta’(t — At)j

In the process of performing the calculation,
displacements at the control points of the
building are determined with a gradual
application of a dynamic load to the building:

M C K
—t+——+—— [(u(t+At) =
{Atz 2At 2}@!( )

oM
—QU}+Aﬁlﬂﬂ— (6)
—{M2—C+K}u(z—m)

AC oA 2
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Obtained displacements #(f+Af) can be
determined taking in account previously found
displacement 7 (¢) and 7 (¢ — At) from equations
(1,2).

After entering the initial parameters of the
computational model and calculating the mass
matrix, the subroutine for calculating the total
vector of forces and the critical time step is
launched. Based on the obtained vector, the
calculation of nodal accelerations, velocities and

displacements is carried out.

Damping factor accounting when calculating
structures for dynamic effects

The damping matrix [C] in the Rayleigh model
[2] is defined as a linear combination of the
system stiffness matrix [K] and the system mass
matrix [M]:

(€= plK]+alm] (7

where a is a mass proportionality factor (C-1);

f is a proportionality factor (C).

The orthogonal transformation of the damping
matrix (7) brings the matrix [C] to the form:

250, =a+ ﬂa)iz )

Let us divide (9) by and express the
dependence of the damping coefficient on
frequency in the form:

g =2 P2 ©)

In order to determine the Rayleigh coefficients,
a modal analysis of the structure (or its part) is
carried out and by specifying empirical damping
coefficients for the material at the two lowest
natural frequencies, the coefficients are
determined by the formulas:

_ 2§i§ja)ia)j 251'5]‘

- ’ = )
S0, +¢,0, S0, +&,0,

(10)
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where w,®; are natural frequencies;
&,&, 1s a modal damping for the first and second

natural modes, given as a percentage of the
critical damping.

Modeling the passage of waves in an infinite
half-space of a subgrade

There are two general approaches to solving this
problem - the direct method and the subsystem
method.

The inconsistency of the problem under
consideration lies in the fact that the propagation
of waves occurs in an infinite half-space, and a
limited section of a soil half-space can be included
in a specific calculation. Both methods differ in
the boundary conditions imposed on the
boundaries of the soil half-space. In the direct
method, constraints are imposed on the boundaries
of the selected area, which cause the reflection of
waves and the return of energy. In order to reduce
the influence of this negative factor, it is necessary
to increase the size of the allocated area so that the
waves reach the boundaries less than the time of
the dynamic impact. This technique is ineffective,
since it requires a significant increase in the time
of the problem being solved, especially for three-
dimensional problems.

In the subsystem method, two parts working
together are modeled as two substructures, which
are separated by a generalized interaction line.
One part includes a building and a foundation
with additional boundary conditions, this part can
have non-linearity in both structure models and
soil models. The other part includes the rest of the
soil, which stretches indefinitely (Fig. 1).

The combination of the two subsystems is
carried out using the interaction vector rs(f)
acting in both directions - on the building and
on the soil massif. The interaction vector in the
direct dynamic problem is represented as a
convolution vector:

r () = [ M} (0 -1)ldr, (11)
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where M, (t) is acceleration response matrix.

Index b denotes nodes lying on the interaction line,
which belong to both the structure and the ground.

model

Figure 1. Schematic representation of the
subsystem method

The equations of motion in the problem of
integration in time can be written as:

|:Mss Msb :|{u5 (t)} + |:Css Csb :|{us (t)} +
Mbs Mbb ub (Z) Cbs Cbb ub (t)
|:Kss Ksb :Hus (t)} {ps (t)} { O }
+ = -
K, K, |(u,(®) P, (0) 1, (2)
where K, C and M are matrices of stiffness,

damping and mass of the structure, respectively,
u(t) and 7(t) are vectors of displacements,

(12)

velocities and accelerations;
p(t) is vector of forces that act directly on the

structure. The index s denotes the nodes
belonging to the structure. To solve this
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equation, you need to know the vector of forces
of interaction between the soil and the structure
ro(f). In other words, you need to define the

| M)
acceleration response matrix = » V.
Equation of SBFEM [3] takes the form:

j‘[mw(r—t)][mw(z')]dr+

. ‘e 13
+tJ‘[m°°(r)]dT+[e1]“.[mw(r)]dtdr+ (13)
+[e' ]T':[;[[mw(‘r)]dtd‘r—t;[ez]H(t)—t[mO]H(t) =0,
where H(t) is Heaviside function
b )= (w1 [~ 0)ivT) (14)

Methodology for the formation of calculation
schemes in which there are limitless areas
The finite element design scheme of a limited
part of the model is formed according to
standard rules (limited subsystem).

No boundary conditions are imposed on the
bounded subsystem. Both the structure model
and the foundation model can have linear and
physically non-linear elements. There may be
additional links in a limited subsystem.

Next, a finite element diagram of the
unlimited part of the model is formed. To do
this, along the line of delimitation of the
limited and unlimited parts, finite elements
are installed, with the help of which infinity is
modeled. Depending on the type of system,
these can be two-node, three-node, or four-
node elements. In the LIRA-SAPR software
package, these are finite elements FE - 67, FE
- 68 and FE - 69.

Then the system loads are simulated. The load
can only be applied to a limited subsystem. The
load can be static or dynamic.

Further work - the calculation and analysis of
the calculation results are carried out according
to the usual scheme.
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Algorithm for assessing the dynamic
influence of the subway on the supporting
structures

Fig. 2 shows a block diagram of the algorithm
for assessing the dynamic influence of the
subway on the supporting structures:

1. A computational model of the building is
formed and its calculation for the given
influences is carried out in a linear setting, as a
result of which the following are determined:
the values of the concentrated masses at each
level along the height; frequency and period of
natural oscillations; ordinates of natural
vibration modes; the magnitude of inertial
forces at each height level; and also the design
calculation is performed, the areas of
reinforcement  for  reinforced  concrete
structures are selected.

2. A numerical soil model is created based on
geological survey data. The dynamic
characteristics of the soil are modeled using
finite elements (FE) 281-284, namely the
physically nonlinear rectangular, triangular and
universal rectangular FE of the plane problem
(soil). This FE is designed to simulate the one-
sided work of the soil in compression, taking
into account shear according to the planar
deformation scheme.

3. Further, the linear computational model is
transformed into a physically nonlinear one. To
take into account the effect of damping, the
Rayleigh coefficients for materials of
construction and soil are determined and set.
Boundary finite elements FE-67 in the
foundation model are set, creating an infinite
soil mass. This type of FE is intended for
modeling a flat endless soil massif located
outside the design model. This function is
implemented to prevent the effect of reflection
when imposing boundary conditions on the
ground and in accordance with the Mohr-
Coulomb law. It is used in a nonlinear stepper
processor for calculating mine workings and
tunnel penetrations.

4. The loading history of the design model is
formed, which sequentially includes full
vertical load; horizontal dynamic forces are
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added step by step. General dynamic actions in
the system are formed from the coordinated
matrix of masses of static actions using the
“Dynamics in time” module in the LIRA-
SAPR software package.

5. To take into account the influence of the
time factor on the propagation of vibrations,
the "Dynamics in time" module is used. The
load is modeled using a graph of dynamic
vibration accelerations generalized over the
entire frequency range. The accelerogram of
actions, the step and the integration time are set,
on the basis of which the minimum number of
moments will be obtained, for each of which
the results will be generated.

Numerical experiment in SP LIRA-SAPR

A number of numerical experiments have been
carried out in the LIRA-SAPR software
package [4]. They prove the reliability of the
fact of the influence of the underground, both
shallow and deep, on the supporting structures
of various buildings and structures.

The article presents the results of one of the
experiments - the calculation of a high-rise
building on the influence of the shallow
underground [5], taking into account the real
geological situation using the PC "LIRA-
SAPR". The preliminary assessment and
analysis of the vibration effects of the subway
on a high-rise building were carried out in a
linear and non-linear formulation, as well as
taking into account the modeling of the real
work of the soil massif and unlimited FE.

For the numerical experiment, a 27-storey
monolithic building was taken as a basis (Fig.
3), which is located near the Svyatoshino-
Brovarskaya line of the Kiev metro, which is
shallow. Concrete class C25 / 30, working
reinforcement class A400C. The thickness of
the monolithic floor is 200 mm, the thickness
of the vertical supporting structures is 300 mm.
The foundation is a solid monolithic reinforced
concrete slab on a pile field.

The calculation was carried out taking into
account wind and snow loads according to the
construction area. Long-term and short-term
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loads on the floor slabs of typical floors, as
well as the attic floor, are taken into account.

In the course of the study, a number of
calculations were carried out taking into account

the nonlinear properties of the soil, taking into
account the different frequency ranges caused
by the movement of trains.

[ Comprehensive assessment of vibration impact from subway trains on the structure of buildings and structures ]
{ ! v
[ Influence models1 ] [ Structural models ] [ Soil models ]

v M4
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Figure 2. Algorithm for assessing vibration influence

The soil is modeled by flat, physically nonlinear
finite elements. For the most accurate
assessment of the vibration impact of the metro,
we used sensor data from the measurement
point, which was located directly at the base of
the rail. The method of numerical simulation of
dynamic loads in time in the LIRA-SAPR
software package provides for setting the
actions in the form of an accelerogram of
vibration accelerations. For each moment in
time, the equation is solved:

i
Y a=Asin(w, 1)+ A4, sin(o,,1,,,)
n=0

(15)
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A, =V -v,o, =2rv (16)
where A; is vibration acceleration, w; is cyclic
frequency, which are calculated for each
frequency from 2 Hz to 100 Hz - time point
from 0 to 15 s, step 0.1 s.

The obtained results of dynamic vibration
acceleration are set in the form of load
accelerogram (Fig. 4) in the LIRA-SAPR
software package.

Two types of models were investigated - a
model with boundary conditions imposed along
the perimeter of a limited soil massif (model 1)
and a model using unlimited FE (model 2) [6].
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Figure 5. Vibration velocities at the control point (A) of the upper floor: a) model 1; b) model 2
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Normative documents [7] regulate that the
vibration load transmitted through the soil to the
supporting structures of a building or structure
(for example, when a track or metro station is
located nearby) should not adversely affect the
mechanical safety of the supporting and
enclosing structures of a building during its life
cycle. The estimated value, in accordance with
Standard of RF GOST R 52892, is the peak
value of the vibration velocity of vibrations at
the control points. In our case, this is the top

point of the building. The building in question
belongs to the 2nd category of structures -

“Residential buildings and buildings of similar
design or purpose” . The limiting values of the
peak vibration velocity of vibrations for such
buildings is within 5 mm / s. For this numerical
experiment, we see that the vibration velocities
correspond to the normative ones. However, this
is not always the case.
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Figure 6. Longitudinal forces in the column from dynamic load: a) model 1; b) model 2

As a result of the calculation, data were
obtained from which it can be seen, firstly, that
the movement of the subway car creates
vibration velocity and vibration acceleration at
the control point on the top floor. And, secondly,
we can track the damping of vibrations and
dissipation of energy and, as a consequence, a
decrease in internal forces in the column when
using limitless ("transparent") FE, which we see
in Figure 6.
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Conclusions

A numerical modeling tool has been developed
that allows one to assess the influence of the
subway on building structures, taking into
account many factors.

A method for numerical modeling of the
processes of deformation and destruction of
structures of buildings and structures under
vibration influences of the underground has
been developed and theoretically substantiated.
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A mathematical and numerical model of vibration
impact has been created, taking into account the
time factor and the infinity of the soil mass.

A variant of modeling the system "source of
vibration loads-soil-base-load-bearing structures
of the building" is proposed.

A technique was proposed and implemented in
SP LIRA-SAPR, which takes into account the
continuous passage of a wave into an infinite
region under dynamic influences.

The main recommendations are the use of damping
devices in the construction of buildings in the
zone of influence of the metro and the adoption
of measures to reduce the level of penetrating
vibration.
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SIMULATION OF AERODYNAMIC INSTABILITY
OF BUILDING STRUCTURES ON THE EXAMPLE
OF A BRIDGE SECTION.
PART 2: SOLUTION OF THE PROBLEM IN A COUPLED
AEROELASTIC FORMULATION AND COMPARISON WITH
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Abstract: In this paper, we study aerodynamic instability using the example of a two-dimensional problem of flow around
a simplified section of a flexible suspension bridge (on the Tacoma River, USA). A direct dynamic coupled calculation was
performed to determine the critical speed of manifestation of aerodynamic instability. The results obtained were compared
with the results of engineering estimates presented in [40]. This example shows that to solve such problems it is possible
to use the lighter des turbulence model instead of the les turbulence model and, therefore, a coarser mesh. In contrast to
existing engineering techniques, direct numerical modeling of the interaction between the structure and the air flow allows
one to take into account the reverse effect of the structure on the flow, as well as the mutual influence of several types of
aerodynamic instability.

Keywords: aerodynamic instability, galloping, divergence, FSI, URANS SST turbulence model, DES SST turbulence
model

MOJIEJIUPOBAHUE ADPOIUHAMHUYECKOU
HEYCTOWMYUBOCTHU CTPOUTEJBHBIX KOHCTPYKIIUHA
HA MIPUMEPE CEYEHUS MOCTA.

YACTD 2: PEHLIEHUE 3AJIAUM B CBSIBAHHOM
ADPOYIIPYTOM TIOCTAHOBKE
N CONMOCTABJIIEHUE C UH)KEHEPHBIMU OLIEHKAMU

A.M. Berocmouxuii **3, H.H. Agpanacvesa **, H.IO. Hezposzosa %, O.C. I'opauesckuii **

YHayuno-uccnenosarenbckuii entp CraJlnO, . Mockea, POCCUS
2 HartoHaITbHBIN HCCIIEI0BATebCKHIT MOCKOBCKHIT TOCYIapCTBEHHBIN CTPOUTENBHBIN YHUBEpCHTET, T. Mocksa, POCCU S
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AHHoTanusi: B Hacrosmei paborte uccieayercss a3poanHaMHUUEcKasi HEYCTOIHUMBOCTD HA TMPUMEpe IBYMEPHON 3a1aqn
00TeKaHMs YIPOIIEHHOTO CeYeHMsI THOKOTO mojBecHoro MocTa (Ha peke Takoma, CLIA). BeimonHeH npsmoit auHamu-
YECKHI CBA3aHHBIN pacdeT IS ONPEAEICHIUSI KPUTHUECKOW CKOPOCTH TPOSIBIICHUS a3POANHAMUYECKOH HEYCTOHUNBOCTH.
[onydeHHBIE pe3ynbTaThl CPABHUBAINCH C PE3YJIbTaTaMU MH)XKEHEPHBIX OICHOK, IpexacTaBieHHbIX B [40]. Ha nanHoM
IIpUMepe MOKa3aHo, YTO VISl PEIICHNUS MOAOOHBIX 3a/1a4 MOXKHO HCIIOIb30BaTh O0JIEe «JIETKYI0» MOJIENb TypOyJICHTHOCTH
DES Bmecto monenu typOynenTHoctu LES 1, ciienoBarensHo, 6oinee rpy0Oyro ceTKy. B omimune oT cyecTByOMmMNX HHKe-
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Simulation of Aerodynamic Instability of Building Structures on the Example of a Bridge Section. Part 2: Solution of
the Problem in a Coupled Aeroelastic Formulation and Comparison with Engineering Estimates

HEPHBIX METOAUK, IIPAMOE YUCIICHHOC MOACIIMPOBAHUE B3aMMOJICHCTBHS KOHCTPYKIIMN WU BO3AYIIHOTO IMMOTOKA ITO3BOJISACT
Y4€CTh 06paTHO€ BJIMAHUE KOHCTPYKIUU Ha IMMOTOK, 4 TAK)KE B3AUMHOE€ BIIMAHNUE HECKOJIBKUX BUI0OB aBpO,Z[HHaMH‘IeCKOﬁ

HEYCTOMUYUBOCTH.

KoroueBble cj10Ba: a3poiiHAMHUYECKasi HEYCTOHUMBOCTD, TAIONIMPOBAaHKE, AUBeprennys, FSI, Moxens TypOyneHTHOCTH
URANS SST, monens Typoyneatnocta DES SST

1. INTRODUCTION

Long span and flexible structures such as bridges
with long spans are highly sensitive to wind
influences. Such structures are susceptible to
aeroelastic phenomena. Over the past 150 years,
many such cases have been known and described.
Until the 1940s, the wind load was considered
secondary and even its static component was
not taken into account. This continued until the
most famous destruction of the Tacoma Narrows
Bridge in the United States. Almost from the
very beginning of construction work, problems
with the stability of the bridge began to appear,
even in light winds. The bridge immediately
gained a reputation as an unstable structure. Due
to the fact that the windy weather of the bridge
swayed, he was given the nickname "Galloping
Gertie”. Numerous attempts were made to
stabilize the structure, but they could not solve
this problem — on November 7, 1940, a collapse
occurred as a result of the increasing vibrations
of the bridge deck in the air stream. This disaster
marked the beginning of an intensive and
purposeful study of the interaction of flexible
structures with wind flow. The first fundamental
scientific works on this topic appeared, namely
the works of Theodor von Karman [1], Alan
Garnett Davenport [2-3], Barshtein M.F. [4],
Simiu [5], Scanlan [5-8], Den Hartog [9].
Based on these studies, engineering methods
for assessing the occurrence of aerodynamic
instability were developed and introduced into
regulatory documents [10-12].

In a number of cases, the issues of wind flow
around unique buildings and structures during
their design are solved experimentally. For this,
the testing of models in laboratory conditions
is widely used, as a rule, in wind tunnels (WT).
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Experimental studies of the assessment of the
aerodynamic characteristics of structures were
carried out by such scientists as M.I. Kazakevich
[11], S.M. Gorlin [12], Alan Davenport [2, 15],
A. Kareem [16], B. Blocken [17] and others.

The experimental approach, which was practically
uncontested 20-30 years ago, has a number of
serious drawbacks. A correct analysis of the
mutual influence of the air flow and the structure
is practically impossible in an experiment in a
wind tunnel due to the difficulty of observing
the similarity of a scale model of a deformable
structure. Almost all modern experimental
studies are based on the assumption that the
structure behaves as an absolutely rigid body, and
fluctuations in the flow and damping are imitated
by “springs”. In this case, the reverse effect of the
deformed structure on the structure of the air flow
has been repeatedly confirmed. Failure to take
into account the reverse effect can lead to both
an overestimation of the critical wind speeds (at
best), and their underestimation (in the worst case).
Due to the rapid development of mathematical
modeling, numerical methods and implementing
software systems against the background of
an impressive growth in computing power,
another approach has been actively developing
in recent years — mathematical (numerical)
modeling, free from the limitations of physical
(experimental) modeling methods. Today it is
possible to carry out a direct numerical solution
of related problems of aero-hydroelasticity
and directly simulate the phenomena of
aerodynamic instability without resorting
to numerous serious assumptions adopted
in experimental methods. As a result, more
accurate assessments of the criteria for the
occurrence of aerodynamic instability of unique
and especially critical flexible structures are
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obtained and, as a consequence, their mechanical
safety is increased. Among the works devoted
to the numerical modeling of the phenomena of
aeroelasticity, one can single out [18-38].
Despite the advantages of direct numerical
modeling, it also has disadvantages. The main
one is high computational complexity. Although,
along with the further progress of algorithms and
computer technology, this drawback will be more
and more overcome, now it seems relevant to
develop a universal and more economical approach
to assessing the aerodynamic stability of structures.
The purpose of this study is to develop a universal
approach to assessing the aerodynamic instability
of bridge structures in an unsteady wind flow using
a preliminary engineering estimate and subsequent
direct mathematical (numerical) modeling of
the structure's behavior in a coupled aeroelastic
formulation.

2. FORMULATION OF THE PROBLEM

The problem of interaction of a simplified section
of a bridge on the Tacoma River with an air flow
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Figure 1. Geometric parameters of the section.

is considered. This problem was presented by a
team of scientists from China at an international
conference (The Seventh International Colloquium
on Bluff Body Aerodynamics and Applications
(BBAAY) Shanghai, China; September 2-6, 2012).
They presented their results in [39], which describes
their method for solving the problem using the
ANSYS Fluent software package in a related setting
with the author's software package. The geometric
parameters of the section are shown in Fig. 1.
When modeling the dynamic behavior of the
elastic section, the scheme shown in Fig. 2.
The parameters of the material are presented in
Table 1. The parameters of elastic connections
with linear damping are taken from [39] and are
also displayed in the table. In the Ox direction,
the geometric center of the section is fixed. A
torsional elastic link was applied to the entire
Cross section on average.
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Figure 2. Design model.

Table 1. Material parameters

Material parameters Parameters of the elastic model of the bridge section
. Linear weight, kg / m 4250
Density p, kg / m? 1300 —
yp X Moment of inertia, kgm / m 177 730
Elastic modulus E, Pa 2.1-10% | Vertical relative damping 0.005
POISSON'S ratio v 0.16 Relative damping by torsional degree of 0.005
freedom
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Air with constant properties at a temperature of
25°C is considered.

In the course of solving the problem in a related
formulation, the following parameters were
determined:

» vertical displacements y,(¢) of point 1 and y,(z)
of point 2 (Fig. 1), the position of which changes
over time due to wind action on the structure;

« angle of rotation 6(¢), which is calculated as
follows:

8=arcsin(~é-5-)—) Q)

L/2

where Ay =y, — y, is vertical displacements of
point 1 and point 2, respectively.

In order to solve the problem, the ANSY'S software
package was used. To simulate the fluid — structure
interaction (FSI), the “2-way FSI” simulation
mode was used — two-way transfer of calculated
data between various independent modules in the
form of displacements (on the one hand) and loads
(on the other side).

3. NUMERICAL SIMULATION
METHODOLOGY

3.1. Numerical CFD Setup

The entire computational air domain was divided
into finite volumes using the ANSYS Meshing
module. Variants of computational grids with

Eloment sizs
in volame; 0,04 m Element slze
: in volume: 0.4m

l First layer thickness: Je-5 m [ES28
Number of layars: 15
Growth rale: 2.5

Llement size on the surface: 0.0Z m

Figure 3. Calculation grid for CFD model:
Model 4 (381 894 FE).

\Volume 17, Issue 3, 2021

indication of the variable parameters were
considered in [40]. Model 4 was chosen to
simulate the behavior of air (Fig. 3).

The INLET condition (U=V, ,V=W=0, where U,
V, W are the components of the velocity vector, V.
is a given constant flow velocity) with a horizontal
directional flow velocity uniformly distributed
along the height is specified as a boundary
condition at the input. On the face opposite
from the entrance, “soft” boundary conditions
“Opening” were set with the averaged relative
pressure equal to zero. On the surface of the
streamlined body, the “liquid-structure” interface
condition was applied. Symmetry conditions were
set on the other faces of the computational domain.
Zero flow rate was taken as the initial conditions
for the problem.

Since the flow is turbulent at typical Reynolds
numbers of ~ 108 for this problem, the turbulence
model must be used to close the Navier-Stokes
equations. In this paper, two turbulence models
are considered: URANS k- SST and DES SST.

3.2. Numerical CSD Setup

For the Computational Structural Dynamics model
(CSD model), a structured finite element model
of a bridge section with an element size of 0.05
m was created (Fig. 4).

Figure 4. Computational grid for CSD model:
Model 4 (10 913 nodes).

In order to simulate the plane problem, both
sides of the section are fixed along the O_ axis,
which coincides with the axis of the bridge. The
movements of the center point are limited along the
O, axis directed along the wind flow (there are no
oscillations in the direction of the flow). The elastic
vertical link was modeled by a single spring with
damping, one end of which is fixed at the central
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point of the section, and the other is motionless (see
the parameters of the vertical link in Table 1). The
elastic torsional bond is modeled through the so-
called Remote Displacement mechanism, when the
angle of rotation of the entire section is calculated
as the average value of the angles of rotation of all
mesh nodes, and, accordingly, this angle and its rate
of change cause elastic and viscous components of
the reactions, respectively (see the parameters of
the torsional bond in Table 1).

3.3. Coupling conditions

The time step size for CFD and CSD solvers is
At =0.02 s. The physical calculation time is 80 s.
To ensure the convergence and stability of the
solution at each associated time step, it is necessary
to set the following calculation parameters:

— the maximum number of iterations at each
associated step (maximum number of stagger
iterations);

— criterion of convergence for loads and
displacements;

Is the under relaxation factor for calculating loads and
displacements at each iteration of the associated step:

LLE H

p=9,taop,,*t9,) )
where ¢ _ is the value of the variable calculated at
the current iteration, e is the value of the variable
calculated at the previous iteration, o is the relaxation
coefficient (by default it is 0.75), ¢ is the corrected
value of the desired value at the current iteration.

In this study, the loads were assigned a constant
coefficient of lower relaxation a = 0.5, while
displacements were transferred without lower
relaxation. To achieve the convergence criterion,
5 FSI sub-iterations were assigned (the maximum
number of iterations at each related step) and the
convergence criterion for loads and displacements
was set equal to 10-3.

4. RESULTS

4.1. Results of solving the problem taking in
account coupling conditions

Below are the results of solving the problem in a
coupled aeroelastic formulation. In fig. 5 shows
the obtained graphs of the dependences of the
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Figure 5. DES SST model: Graphs versus time t, s at different speeds
a - vertical movement of point 1, m, b - angle of rotation 3, °
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vertical dynamic displacement of point 1 and the
angle of rotation 9 on time t for flow velocities of
8 m/sand 10 m /s for the DES SST turbulence
model. Fig. 6 presents graphs of the dependences
of the vertical displacement of point 1 and the
angle of rotation $ on time t for flow velocities
V. equalto 10 m/s, 12 m/sand 15 m/s for the
URANS &-o SST turbulence model. Fig. 7 shows
the velocity fields at different times for the DES
SST turbulence model at a flow velocity of 10 m/
s. Fig. 8 presents velocity fields at different times
for the URANS SST turbulence model at a flow
velocity of 15m/s.

Based on the results of calculations in a coupled
formulation for different flow rates, the vertical
displacement of point 1 and the angle of rotation
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g from time t were obtained. Loss of stability
was determined by an infinitely increasing
displacement and / or angle of rotation. Table 2
shows a comparison of the critical velocity values
in [39] (experimental and numerical simulation
results) and this study.

Comparing the results, it can be noted that the
value of the critical velocity for the URANS
k-o SST turbulence model is overestimated, in
contrast to the results presented in [39]. This is
partly due to the fact that this turbulence model
can underestimate the pulsation components
of aerodynamic loads, as well as thin out the
frequency spectrum, which in turn did not show
aerodynamic instability for speeds of 10 m /s
and 12 m/s. For the DES SST turbulence model,
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Figure 6. Model URANS k- SST: Graphs versus time t, s at different speeds
a — vertical movement of point 1, m; b — angle of rotation 9, °
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model)
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URANS k- SST)

Volume 17, Issue 3, 2021 31



Alexander M. Belostotsky, Irina N. Afanasyeva, Irina Yu. Negrozova, Oleg S. Goryachevsky

the result was similar to the numerical simulation
result in [39], where the LES turbulence model
was used. The critical speeds can be clarified by
additional calculations, but this does not affect the
conclusions of this study.

4.2. Comparison of Engineering Estimates and
Direct Coupled Calculation

Comparison of the results of direct coupled
calculation and engineering estimates [40]
revealed the following.

For the DES SST turbulence model:

— according to the engineering estimate of the
divergence occurrence [40], at O ° the critical speed
is 7.91 m/s. The related calculation showed that
at an input flow velocity of 8 m / s there was no
unlimited increase in the angle of rotation of the
section - it was observed at a speed of 10 m /'s;
— according to an engineering assessment of the
occurrence of galloping [40], this phenomenon

Table 2. Comparison of the results obtained
in the related FSI setting with the results [39]

V ., m/s
Experiment [39] 11.5
FSI [39] 10
FSI (turbulence model URANS 15
SST)
FSI (turbulence model DES SST) 10
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should occur at a cross-sectional angle of rotation
equal to 10° at a flow velocity of 9.77 m / s.
From the graphs of the dependence of the angle
of rotation of the section 9, © and the vertical
displacement of point 1, m, on time t, s at an input
flow rate of 10 m / s, it can be seen that when
the angle of rotation of the section approaches
10° (time 38—47 sec) significant jump in vertical
displacement. This indicates a possible galloping
effect at this moment. Nevertheless, further
vertical vibrations of the structure returned to a
stable mode (with a rapid increase in the amplitude
of the rotation angle). This indicates a complex
mutual influence of two aerodynamic instabilities,
in which they may not arise, taking into account
the vibrations of the structure along other degrees
of freedom. In this calculated variant, divergence
prevails over galloping.

For the turbulence model URANS k- SST:

— according to an engineering estimate of the
occurrence of divergence [40], at 0 ° the critical
speed was 17.18 m / s. A related calculation
showed that even at an input flow velocity of 15
m /s, an unlimited increase in the angle of rotation
of the section was observed;

— according to an engineering estimate of the
occurrence of galloping [40], at a cross-sectional
angle of rotation equal to 8 © at a flow velocity of
5.76 m / s, we should observe this phenomenon.
If we look at the graphs of the dependence of the
angle of rotation of the section 3, © and the vertical
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Figure 9. Turbulence model DES SST, V, = 10 m /s: Graphs of dependence on time t, s (a) rotation
angle 8, °; (b) vertical movement of point 1, m
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Figure 10. Turbulence model URANS k- SST, V., = 15 m /s: Graphs of dependence on time t, s (a)
rotation angle 8, °; (b) vertical movement of point 1, m

displacement of point 1, m on time t, s at an input
flow velocity of 15 m /s, we can see that the angle
of rotation of the section equal to 8 ° is reached
at the moment of time 68.4 s. Therefore, at about
this point in time, galloping should be observed.
Indeed, at about this moment in time, there is a
sharp increase in the amplitude of the vertical
displacement of point 1 (the center of the section).

5. CONCLUSION

On the considered two-dimensional problem
of aeroelasticity, it is shown that it is quite
acceptable to use a lighter, in comparison with
LES, DES turbulence model and a coarser mesh
(in comparison with “reference” numerical
solutions). This will allow in the near future to take
an important step towards a full 3D computational
model with reasonable computing power.

Also, a test problem with a Tacoma bridge section
showed that, although engineering techniques
provide estimates of the possible occurrence of
aerodynamic instability, they do not take into
account the reverse effect of the structure on the
flow and the mutual influence of several types of
aerodynamic instability. Comparison of the results
showed that such inaccuracies both underestimate
and overestimate the calculated critical wind flow
velocities, which can have detrimental practical
consequences.
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Abstract: The article compares the requirements for calculating the snow load on the coatings of buildings and structures
in accordance with the regulations of technically developed countries and associations — Russia, the European Union,
Canada and the United States. It was revealed that in these norms the general approaches, the subtleties of calculating the
coefficients, the set of standard coatings and the schemes of the form coefficient proposed for them differ significantly.
This situation reflects the general problem of determining snow loads — at the moment there is no recognized unified
scientifically grounded approach to determining snow loads on coatings of even the simplest form. The difference in the
normative schemes of snow loads is clearly demonstrated by the example of a three-level roof.

Keywords: snow loads, regulatory documents, physical modeling, mathematical modeling

CPABHEHUME HOPMATUBHBIX TOKYMEHTOB PA3JIMYHbIX
CTPAH B YACTHU HASHAYEHUSA CHEI'OBBIX HAI'PY3OK
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AnHotanust: B crarbe cpaBHUBaIOTCS TpeOOBaHMS K pacu€Ty CHErOBOM HArpy3Kd Ha MOKPBITHS 3[0aHUI U COOpPYKEHHUN
B COOTBETCTBUH C HOPMATHBHBIMHU JOKYMEHTaMU TEXHMYECKH Pa3BHUTBHIX CTpaH M oObenuHeHui — Poccun, EBpocorosa,
Kanast u CIIA. BpisiBiIeHO, UTO B 9TUX HOPMAaX 3HAYUTENILHO OTIIMYAIOTCS OOLIHE ITOX0/bl, TOHKOCTH BBIYMCIICHNUS KO-
3¢ PUIEHTOB, HA0OP CTAHAAPTHBIX MOKPBITHHI U TIpeyIaraeMble /it HUX cxeMbl koaddurmenta popmel. Takas curyanms
OTpakaeT OOIIYI0 POOIeMy ONpe/Ie/ICHNsI CHETOBBIX HArPY30K — Ha JIaHHbI MOMEHT OTCYTCTBYET IIPU3HAHHBIN €ANHBIN
Hay4yHO 000CHOBAHHBIN ITOJXO/ K ONPEAEICHUIO CHETOBBIX HAIPy30K Ha TIOKPBITUS JAaxke npocTeieit popmel. Pazmuune
B HOPMATHBHBIX CXEMaX CHETOBBIX HArpy30K HAIVISIIHO MPOJEMOHCTPUPOBAHO HA IIPUMEPE TPEXYPOBHEBON KPOBIIH.

KiroueBrble cjioBa: CHEroOBbIE HarpyskKu, HOpMaTuBHbIC JOKYMCHTbI, (1)I/I3I/I‘{GCKOC MOJCIINPOBAHUC,
MAaTEMATU4YC€CKOC MOACIUPOBAHNEC

INTRODUCTION physical modeling in wind tunnel or water

flumes, regulated by the normative documents

The problem of determining the distribution of
snow loads on roofs of various shapes does not
lose its relevance to the present day. Very few
full-scale tests are carried out all over the
world, which does not allow obtaining new
load arrangements or clarifying old ones. The

\Volume 17, Issue 3, 2021

of all technically developed countries, makes it
possible to simulate only single snow storms,
and the problem of simulating the natural phe-
nomenon of snow accumulation and scale mod-
els remains unsolvable. Progress in the direction
of determining the snow loads on the roofs of
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structures is currently observed only in the field
of mathematical (numerical) modeling [7].
Despite the development of a large number of
mathematical models, their algorithmic and soft-
ware implementations, the normative documents
regarding the determination of snow loads remain
conservative and for the most part do not allow
the possibility of mathematical modeling.

The conservatism of the norms often causes de-
signers, constructors and other participants in the
construction process to misunderstand that all the
problems have already been solved, and the provi-
sions set out in the norms are unshakable. The
purpose of this article is to show that the regula-
tions in different countries and schemes for the
distribution of snow loads, even for the simplest
roofs, differ qualitatively and quantitatively.

COMPARISON OF BASIC PROVISIONS

This section compares the main provisions of
regulatory documents in terms of determining
snow loads according to the standards of Russia
(SP 20.13330.2016 [1]), the European Union
(EN 1991-1-3 [2]), Canada (National Building
Code of Canada [3]) and USA (ASCE / SEI 7-
16: Snow Loads [4]).

Similar provisions of the norms:

1) the calculation of the load is carried out ac-
cording to the same principle - multiplying the
characteristic value of snow load on the ground
by various coefficients (drift, thermal, etc.), in-
cluding the snow load shape coefficientof the
snow cover of the earth to the snow load on the
cover (or several such coefficients).

2) there are maps of snow zoning of varying de-
grees of detail to determine the characteristic
value of snow load on the ground.

3) to determine the coefficient (or coefficients)
of the shape, there are load arrangements for the
following roofs:

* monopitch and pitched;

* dome and cylindrical;

40

e multi-level;

» multi-span (sawtooth, etc.)

4) To determine snow loads on other types of
roofs that are not regulated by standards, it is
recommended to carry out research in satisfying
the requirements of wind tunnels [5].

Miscellaneous provisions of the norms:

Each regulatory document has its own set of calcu-
lated values, and not all of them can be found anal-
ogous; the detailing of zoning maps varies greatly;
some norms allow the use of numerical modeling
for calculating snow loads, others do not stipulate
or directly prohibit due to some circumstances. Al-
so, in some standards there are load arrangements
for the transfer coefficients in addition to the above.
Let's consider in more detail each of these provi-
sions for each of the mentioned documents.

1) Bulding Code of Russia SP 20.13330.2016
"Loads and actions" (with amendment 3) [1]
give the following formula for calculating the
standard value of the snow load:

S = pceceSy, (1)
where u is the shape coefficient, which takes into
account the transition from the weight of the
snow cover of the earth to the snow load on the
roof, ce is the exposure coefficient, ¢ is the ther-
mal coefficient, Sg is nominal weight of snow
cover per square meter of surface. In order to
obtain the design load, this expression is multi-
plied by the load safety factor ys, usually equal
to 1.4. Amendment 3 in some cases allowed a
decrease in the value of the c. coefficient based
on climatic data for the construction site.

Differences from other documents:

In Russian standards, an increase in snow load
for roofs abutting and close to taller construc-
tion works is considered separately for the
windward and leeward sides, while the concept
of wind direction itself is absent. There are also
load arrangements for specific roofs, which, from
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the point of view of other documents, are even
redundant. Much attention has been paid to roof
lanterns, as there are separate load arrangements
presented for longitudal and transversal lanterns
in the norms. Also, a special load arrangement
for a roof abutting two taller construction works
is shown, as well as for arched roofs and vaulted
roofs.

Numerical Simulation:
In contrast to wind loads [6], the Russian stand-
ards do not say anything about the numerical
modeling of snow loads.

2) Eurocode [2] identifies three types of snow
load: for persistent / transient design situations
(s1), for the accidental design situations, where
exceptional snow load is the accidental action
(s2), and for the accidental design situations,
where exceptional snow drift is the accidental
action (s3), and gives the following formulas for
calculating the values of each of them:

S1 = UCeCeSk, Sz = UCeCeSaa, S3 = USk, (2)
where u is the snow load shape coefficient, Ce 1s the
exposure coefficient, C: is the thermal coeffi-
cient, sk is the characteristic value of snow load
on the ground, saa=2sx.

Differences from other documents:

Similar to Russian standards, an increase in
snow load for roofs abutting and close to taller
construction works is considered separately for
the windward and leeward sides, while the
concept of wind direction itself is absent.

Numerical Simulation:

Unlike Russian and Canadian standards, Eurocode
allows the use of numerical modeling to refine the
shape coefficient along with physical modeling,
however, it does not contain any specific require-
ments for the methods that should be used.

3) National Building Code of Canada [3] gives

the following formula for calculating the stand-
ard value of the snow load:

\Volume 17, Issue 3, 2021

S = I;55(C, €y, CsCy), 3)
where /s is importance factor for snow load, Ss is
1-in-50-year ground snow load, C» is the basic
roof snow load factor, Cy is the wind exposure
factor, Cs is the slope factor, C, is the accumula-
tion factor. Togethers C», Cs and C. are analo-
gous to u from the Building Code of Russia and
the Eurocode.

Differences from other documents:

In the Canadian standards, wind directions are
clearly distinguished, and the load is calculated
for each of the sides separately, but then the
largest of the obtained values is taken and as-
signed to both sides in reserve.

Numerical Simulation:

Construction Canada explicitly prohibits the use
of numerical simulations of snow accumulation
due to insufficient data on the legality of its use
and the physicality of the results obtained with
its help.

4) ASCE standard [4] gives the following for-
mula for calculating the standard value of the
snow load:

ps = 0.7C,Celspy, (4)
where C. is the exposure factor, C; is the ther-
mal factor, /s is the importance factor, pg is the
ground snow load. Also, a minimum roof snow
load for low-slope roofs, pm, shall be obtained
using the following formula:

Pm = Ispg, (5)

For unbalanced load, the following formula is used:
(6)

bs = LsDy,

where Cis is the roof shape factor.
Differences from other documents:

Similar to the Canadian standards, wind direc-
tions are clearly highlighted, and the load is cal-
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culated for each of the sides separately, but then
the largest of the obtained values is taken and
assigned to both sides as a margin. The values
of the shape factor depend, as can be seen from
formula (4), on the thermal factor.

Numerical Simulation:

American regulations explicitly state that physi-
cal modeling results should only be used in con-
junction with numerical simulations, that shape
factors or load values cannot be generated based
on the experiment alone. The Appendix to the
ASCE standard [5] contains a classification of
numerical methods for modeling snow accumu-
lation. Also, American norms are distinguished
by the most detailed map of snow zoning, it
contains data for all more or less large settle-
ments in the United States due to the arrange-
ment of meteorological stations near airports.

In general, the differences between different
norms are more likely due to the engineering
tradition of countries that serve as prerequisites
for the compilation of norms, and in all respects:
even the standard weight of the snow cover is
taken somewhere strongly in reserve, some-
where it is specified as much as possible to pre-
vent unnecessary large loads. A significant

drawback of all regulatory documents is ob-
served in terms of legitimization and regulation
of mathematical (numerical) modeling of snow
loads. This circumstance for all documents is
undoubtedly an inhibiting factor in the introduc-
tion of mathematical modeling into construction
practice, especially considering the increasing
need for its use and the increasing pace of scien-
tific research in this direction in other countries,
such as China, where in the last 7 years, several
dozen articles on research (for example [18-
19]), carried out with the support of government
grants, were published.

EXAMPLE

In order to demonstrate the differences in the
definition of snow loads according to the regula-
tory documents of Russia [1], the European Un-
ion [2], Canada [3] and the USA [4-5], an ex-
ample of a three-level roof is considered (Fig.
1). Calculation formulas and values of the cor-
responding parameters and coefficients are pre-
sented in table. 1. Figures 2-5 show calculation
results.

Table. 1. Calculation formulas for various regulatory documents

Regulatory documents

Formula for snow load

Accepted values in the formula

Building Code of Russia SP
20.13330.2016 (with amend-
ment 3)

S = pcectSy

c. = 0.7 for the central level,
¢, = 1.0 for side levels, ¢; =
1.0, 5S4 = 1.5 kPa

EN 1991-1-3 (2003)

s = uC,Cisy (persistent);
s = uC,Cisqq (exceptional

C, =08 C,=10,5, =15
kPa, Sad = ZSk = 3 kPa

snow load)
S = US,q (exceptional snow
drift)
National Building Code of Can- | S = I;S(C,C,,CsCy) I, =1.0,C, =1.0,C, = 1.0,
ada 2015 S; = 1.5kPa
ASCE/SEI 7-16: Snow Loads pr = 0.7C.Celspy C,=09C =10,I,=1.1
Pm = Ispg (minimum load for | Pg = 0.96 kPa (analogue of Sg)

low-slope roofs)
ps = Cspr (unbalanced load )

42

International Journal for Computational Civil and Structural Engineering



Comparison Of Determination Of Snow Loads For Roofs In Building Codes Of Various Countries

/
17440
ay=61
"T” ...___/
=6
22210
o140 16470 18220 "’“)

Figure 1. General view and dimensions of the structure

1.4 10 e
07 -
0.2

= ,,Tw

|
Figure 2. Load arrangement accordmg to the Bulldmg Code of Russza SP 20.1 3330.201 6 (with

amendment No 3)

0.96 0.96 0.9 056 0.an mlZE 1.26
0.8 0.8 0.6 1.92 1.92 1.92 1.92 ”2 1.92 252 1.92
1 7 1] _ i
1.05 1.58
0.8 e 0228 0.8 1.2 1.2 07 os o2

y

Figure 3. Load arrangement according to EN 1991-1-3 (2003)

\
\f
|

Volume 17, Issue 3, 2021 43



Alexander M. Belostotsky, Nikita A. Britikov, Oleg S. Goryachevsky

0.8 ﬁ 0.8
3 3

— |

Figure 4. Load arrangement according to the National Building Code of Canada 2015
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Figure 5. Load arrangement according to ASCE/SEI 7-16: Snow Loads

CONCLUSIONS

Based on the results of the analysis and compar-
ison of the regulatory documents of Russia, the
European Union, Canada and the United States
in terms of determining snow loads on the roofs
of structures, as well as comparing load ar-
rangements using the example of a three-level

roof, determined according to the relevant doc-
uments, the following conclusions can be
drawn:

1. Normative documents of technically ad-
vanced countries / associations have their own
general approach to determining snow loads,
which differ significantly from other countries.
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2. All normative documents contain recommen-
dations for carrying out physical modeling of
snow loads, but recommendations for mathe-
matical (numerical) modeling are contained on-
ly in the norms of the European Union and the
United States.

3. Load arrangements, even for the simplest
roofs, differ in different documents both qualita-
tively and quantitatively.

4. This reveals the general problem of the lack
of progress in a common understanding of how
to determine the snow loads on roofs. We can
say that in this matter there is no reliable sup-
port even in the norms.

Improvement of Russian normative documents
in terms of physical modeling (regulation of re-
quirements and procedure for conducting exper-
iments) and mathematical (numerical) modeling
(legitimization and regulation) will help to par-
tially solve the problem of uncertainty in the
assignment of snow loads to complex surfaces.
Such measures, in particular, will increase the
mechanical safety of large-span structures, for
which the snow load is one of the determining
factors.

The improvement of Russian normative docu-
ments in terms of assigning snow loads to sim-
ple typical roofs can also be helped by studies
based on physical (experimental in wind tunnel)
and mathematical (numerical) modeling. This
alternative approach seems to be more effective
than field experiments and observations, which
are very time-consuming, labor-intensive, and
financially expensive.
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FINITE ELEMENTS FOR THE ANALYSIS OF REISSNER-
MINDLIN PLATES WITH JOINT INTERPOLATION OF
DISPLACEMENTS AND ROTATIONS (JIDR)

Viktor S. Karpilovskyi
ScadGroup Ltd., Kyiv, UKRAINE

Abstract: This paper proposes a method for creating finite elements with simultaneous approximation of
functions corresponding to displacements and rotations. New triangular and quadrangular finite elements have
been created, which can have additional nodes on the sides. No locking effect is observed for all the created
elements. All created elements retain the existing symmetry of the design models. The results of numerical
experiments are presented.

Keywords: finite elements; Reissner—Mindlin; plate problem; triangular element; rectangular element;
quadrangular element

KOHEUYHBIE DJIEMEHTHI 1151 PACUETA IIJIACTHH
PEMCCHEPA-MUHJIJINHA C COBMECTHOMW UHTEPIIOJIS-
IIMEW NEPEMEIIEHUM U YIVIOB TIOBOPOTA (JIDR)

B.C. Kapnunoeckuii
000 ScadGroup, . Kue, YKPANNHA

Annotanus: [IpemmoxkeH METO MOCTPOCHNST KOHEUHBIX 3JIEMEHTOB C OJHOBPEMEHHOH ammpoKCUManueil pyHKITHA, co-
OTBETCTBYIOIIHMX MEPEMEIIECHHUSM U yIJIaM MOBOPOTa. [10CTpOEHBI HOBBIE TPEYTOIBHBIE M YETHIPEXYTOJIbHBIE JIEMEHTHI
KOHEYHBIE JJIEMEHTHI, KOTOPbIE MOTYT UMETh JOTOIHUTEIBHBIE Y3JIbI HA CTOPOHAX. [I7Is1 BCEX MOCTPOSHHBIX 3IEMEHTOB
orcyTcTByeT 3¢ et 3anupanus. Bce MOCTpOEHHBIE 37IEMEHTHI COXPAHSIOT CYIIECTBYIOIIYI0 CHMMETPHIO PACUETHBIX CXEM.
[IpuBeneHs! pe3ynbTaThl YUCICHHBIX SKCIEPHMEHTOB.

Ki1ioueBble ci10Ba: KOHEUHBIE 3IIE€MEHTHI; PeliccHep-MuHAINH; N3THO TUTUT; TPEYTOIBHBIA AIEMEHT;
TIPSIMOYTOJIBHBIHN AIEMEHT; YeTHIPEXYTOIBHBIN AIEMEHT

fz(x)
X= {x } , f(x) =<{m,(x) ; is the area load.
4 my (x)

1. INTRODUCTION

Write down the Lagrange functional for

Reissner-Mindlin plates as follows [1-3]: The geometric operator 4 and the elasticity

1 r - matrix D (for an isotropic material):
() = EfQ(Au) DAud Q — [, fTud 2 (1)

- T
where: Q — plate of thickness h: solid body with a_ax % 0 0 0
a midplane XOY; 0 0
. A= 0 -1 > o | (2)
u(x) = {w(x),0,(x),0,(x)} is the vertical 0 o
displacement and rotations, I 0 ox @
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Rotations (jIDR)

D = 1 v , A=
v 1
| 0.5(1 — v)]

E 1s the Young’s modulus, v is the Poisson’s
ratio.
Equations of equilibrium:

00, % _ q
ay 8x D
A0 )_ _l—vﬁzﬁx 1+V820y:0
X 8y 52 2 ox? 2 Ox0Oy
ow 0’ 0, 1_V8249y 1+v &? 0,
A +0)= xz 2 9?2 oxoy =00)

Classic finite elements have three degrees of
freedom in each node: vertical displacement w;
and rotations &, 6, i=1,2,...,N, where N is the
number of element nodes. Finite elements have
3N unknowns, which are arranged in the
following order during the generation of a
stiffness matrix of the element:

{W])H)(]Iey]l 1WN: XN 7 N} (4)
which has a corresponding system of
approximating functions

{ P11, P12 P13 PN Pn2 Pzt (D)

We introduce a generalized displacement vector

G={w,0,,0,,7.7,2) (6)

where :

Jz, )5 are shear characteristics depending on the
displacement w and rotations &, 6.

Then the functional (1) can be written as
follows:

I1(u ):% [(Ba) DBidQ~ | T ud (7
Q Q
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_6%0110_
%—1001
B={0o 0o 200 (8)
0—%000

_O_a% %00_

Represent the approximating functions (5) of
the element in a five-dimensional space for the
generalized displacement vector (6):

;
<Pl§~(x,y)={¢,-},(p,-,2-,qo,-,3-,¢,§-‘,¢,-,5-} i=1+N,j=1,2,3(9)

where i is the node number, and j is the number
of its degree of freedom.
Elements with:

e ¢, =0%=¢p% — the corresponding approxi-
mations of the elements of the plane
problem of the theory of elasticity;

o P =0i=0h=0h=05=p3=0,i=1=N
o @ =p;=0,i=1+N, j=123,

as a rule, provide convergence of the method
only for medium thickness plates. The so-called
locking effect often occurs during the analysis of
thin plates, when the calculation results differ
significantly from the analytical ones.

The main reason for the locking effect is that it
is impossible to set such values of the degrees of
freedom of an element so as to ensure constant
moments in its area for the corresponding tasks.
There are many methods for eliminating the
locking mechanism. The most common elements
use:

o Mixed Interpolation of  Tensorial
Components, MITC [2,4];

e Discrete Shear Gap, DSG [5];

e hybrid models based on Reissner's

functional [6];
and others.
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This paper proposes another method for creating
finite elements for Reissner-Mindlin plates without
the locking effect: Joint Interpolation of
Displacements and Rotations (JIDR). In this
method:

oL, 05, @3 — not necessarily correspond-
ding approximations of the elements of the
plane problem of the theory of elasticity.
These can be, for example, approximations
of finite elements for Kirchhoff-Love plates;
@), = @)y — nonzero functions depending on
Prr P

PR=0N=0h=04=0, ¢j=¢;=0,/=123
in addition to approximating functions (5),
up to four specially constructed functions

are introduced corresponding to some
internal degrees of freedom of the element:

)
e ={0,0,0, ¢ 17| k<4 (10)

We will assume that the functions ¢}, @5, @3

are compatible for the constructed JIDR ele-
ments. Incompatible functions are (10), which
may have discontinuities on the element sides.

2. COMPLETENESS AND
INCOMPATIBILITY CRITERIA

Consider the residual:

Viktor S. Karpilovskyi

w N
S(x)=16, —Alg(Wi‘PiﬁHx,i‘Pinr z‘P:3) (11)
0 =

y

where A1 is the matrix operator that transforms
functions in a five-dimensional space into three-
dimensional ones:

10000
A4=[0 10 0 0
00100

It follows from the equilibrium quations (3)
that:

g _ow 1[0 1-v08, 1:v 36, |
ooy Al o 2 52 2 0Ox0Oy
w 1w 1-v ow 1+v dw |
@y A o’ 2 oy 2 oxoy?
0 ow 1 825y 1_V62¢9y_1+v 529,( _
7 Ox A ox? 2 9 2 Ox0y
_ow 1 ow 1-v ow _l+v o'w +.. (12)
ox A\ o’ 2 8x6y2 2 axzay

Substituting (12) into (11) and expanding the
values of displacement w with respect to the
origin, we obtain:

1 » 1 2
w|X:0+xwx|x:0+ywy|X:0+§x WXX|X:0+xwa|X:0+§y WW|X:0+...

1 1 1 1
{x)=qw, |x=0 Taw,, |x:0 tw,, |X:0 + (Ex2 +Z)WXXy |X_0 +XW,,, |X_0 +(—y2 +—)Wyyy |x_0 +...

1 1
_Wx|x:0 _xwxx|x:0 _ywxy|x:0 _(§x2 +

1 > 1
5N W XYWy, +§yi

™M=

(w+xw +yw, +

I
AR

M=

(W +xw, +y,wyv+(—x, 7

1 >
(W FXW o + YW, +(§x,

™M=1r

1
1 + E)Wxxx +X )i

50 International

Y

2
Wyy+'

1
Wiy +(§y12

) xxx| xnyxy|x0 ( Yy +i)wxyy|x 0+

")|x=0 Ap; -

1 1 » 1
)Wxxy + xiyiwxyy + (Eyl +Z)W}yy )|x0 Al‘pi2 +

1
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Let us equate to zero the coefficients of the
corresponding derivatives of w. We obtain the
identities of the completeness criterion [7-8]:

e oforder p=1:
N X
» A _Zl(xi‘Pn —p;3)= ,
i= -1
e of order p=2:

} (14)
2

.
N x; x2

A Y (5@ — X, )E{_:Ol_x} ’
1i:1 2 1 3 2

oo =

N
A Zl‘pil =
i=

N
A (i +@in)= {
i=1

S e

N yz y2 r
A Z(Tl(pil +Yi9;2) 5{7' Y 0}
i=1

N T
A -Zl(x;)’f‘Pn +XiPj, — ViPj3) = {xy, X —y} (15)
i=
e of order p=3:
N3 X2 1 {x3 x? 1}T
A o, —(-+p., |={— 0 ————
1%(6"’” (2+/1)""3J 6" "2 1)’
N xizyi X 1 _
AIEI > ‘pi1+(7+7)¢i2_xiyi<pi3 =
2. 2 T
©y a1 }
{ 2 2 TV
N xp? vl
Aligl #‘Pi1+xiyi¢iz_(7'+7)¢i3 =
{lx oL 2_L}T
R T AY)
Nl 3 2 302 T
Vi yi 1 _{y yo . 1 }
AS| L@, +(E-+), |=7=—,=—+—,07 (16

It should be noted that the identities of the com-
pleteness criterion (14) and (15) coincide with
the corresponding identities of the Kirchhoff-
Love thin plate elements. See [7,8,10]. Identities
of order p=3 coincide as well if

Mz

ol=1, j=2.3 (17)

1
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The completeness criterion identities of order
p=1 are the equations of the rigid body motion
of a finite element.

Failure to satisfy the completeness criterion
identities of order p = 2, as a rule, leads to the
so-called locking effect, when the method does
not converge to an analytical solution during the
analysis of thin plates.

If the completeness criterion identities of order
p=2 are not satisfied, then it is impossible to
implement the constant moment tests, and for
p=3 — the constant shear tests.

For all the created elements, incompatibility is
allowed only for functions (10). Since when
constructing the stiffness matrix of a finite
element the functional includes the following
expressions:

4 0 1 2 5(0 1, 3
ﬂk[@%’“ﬂ;jjr ﬂk(a(ﬂlﬂ'(ﬂyj, (18)

then the incompatibility criterion [7-9] of the
minimum order that provides piecewise testing
[11] is reduced for this problem to the following
equalities:

[ @ldQ=0, k<4. (19)
Q

K

Due to the fact that functions (10) correspond to
internal degrees of freedom, they can only
increase the order of fulfillment of the
completeness criterion identities of the system
of functions (5).

According to [7-9], if the completeness criterion
identities (14), (15) and the incompatibility

criterion equalities (19) are satisfied, the
convergence of the method will be ensured.
3. CONSTRUCTION OF
APPROXIMATING FUNCTIONS
We will assume that in (9)
O =Pin =Py = 11 Si=1=N (20)
51



where y: are classic approximations of the
elements of the plane problem of the theory of
elasticity, for which the completeness criterion
identities of order p=1 are satisfied:

N N
ZIZ,-EI, ; iXi =X, ZyIZI (21)
Transform  the coordinate system  for
isoparametric elements:
N N
x= lei}(i' y=Zly,'Zi, (22)
i= i=

Hence, (21) is satisfied as well.
Suppose that the last identity (15) is satisfied.
Then, according to (21):

N N
2 (i 50 = i) = 2 (33)

Form the vectors from the residuals (26):

0

§§/1+§/?
w=1F b 1234 27)
@gk_ k

Specify the components of functions (10) as
follows:

W=wl+ay, m@=w+b, ,k=1234 (28)

52

_(pll +X; iVi®Pi2 —

T E 2o
} ZA1 T‘Pnﬂ 4 +7)‘Pi2]

Viktor S. Karpilovskyi

Let us set, keeping symmetry:

1 1
Ph =5 X (y=yi), s =5 (x-x) @4
Check that all identities (14) and (15) are
satisfied for (24), since:

N 1 1
oy — — —_ :0’
I§1¢12 216%2,)(,(); yl)
N
Z(ﬂilsz—zz Zi(x=x;)=0 (25)
i=1 ieQ,

The fulfillment of (24) ensures the convergence
of the method without the locking effect, which
is confirmed by the numerical experiments.
Functions (10) are designed to improve the
accuracy of elements. To construct them, we use
the residuals of the completeness criterion (16)
of order p=3:

I}T Al (’2+ =)
z Z 1 6 P /1(P,3 ’
{xzy X 1 }T N
S I I Kl 2“1(

xy2 y2 lT N
Z3={T’xy’_7_7} ZA{

Iyl

2
|
—<P,1+( % +7)(pi2_xiyi(pi3]

Iyl (yl +l)¢,3}

(26)

The constants ax, bk in (28) are found from the
incompatibility criterion equations (19).
Nonzero  functions  (28)  usually
discontinuities on the element sides.
Analyze the constructed system of functions and
supplement the system of approximating
functions (5) with nonzero and linearly
independent functions (10), correlating them
with some internal degrees of freedom.

Instead of introducing the internal degrees of
freedom, we can “scatter” functions (28) over

have
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the approximations of the element, specifying in

)

of =il i=1+N,j=1,2,3, m=4,5, (29)
k

k

where ¢ are coefficients which are determined

by solving systems of equations based on the
completeness criterion identities.

Let high-precision elements be used, for which
the completeness criterion identities of order
p=2 are satisfied for the approximations y;:

Zx Xi=x, Zx,y,z,—xy, Zy, 2=y (30)

Then, using the first and last identities (16) and
keeping symmetry, we assume:

1 1
Oh = 3}(:()’ i) Ph Z—gli(x—x;) (€29)
It follows from (31) and (30) that:
NN N N
lei%‘z ZZIymﬁiz = lemﬂls = Zlyi§0i3 =0 (32)
1= 1= 1= =

Hence, identities (15) are satisfied.
All identities (16) of the completeness criterion
of the 3rd order are satisfied as well:

131 1 2 1)_1.3
15(6)6 2 2x +ﬂ,)§0"3)_6x

N1 1
2(2 xzy/%l (_x12

]

1 1
+)ph — x,-y,-(ﬂ}aj =5y

._.

Mz

1 1
(2 /yl(011+x/yl§0/2 ( y/ + )§0/3j 2xy

I
—

3

Mz

1 1 1
S (4o0eh+ (bt + ok | =% (33)

To construct approximations (5) and (10), we
can use the approximating functions of
Kirchhoff-Love thin plate finite elements.

Let in (9):

\Volume 17, Issue 3, 2021

1 2_ 3

@i =Vij,» Py =P = Xi» (34)
2_.3_ .3 _ 2 4 5

=P =P =03 =0; =¢; = 0,
i=1+N, j=1,2,3,
where y is the system of approximating functions
of a Kirchhoff-Love thin plate element
corresponding to the degrees of freedom (4). They
usually satisfy the second-order, if not third-order
completeness criterion identities. In order to
ensure consistency they only have to belong to the

Sobolev space Wzl, and not W22 ;

i 1s the system of approximating functions of
the element of the plane problem of the theory
of elasticity.

We construct functions (27) based on residuals
(26). Next we calculate the constants in (28)
from the equations (19). Then we analyze the
constructed system of functions (10) and
supplement the system of approximating
functions (5) with nonzero and linearly
independent functions, correlating them with
some internal degrees of freedom.

It would be a mistake to define the functions
corresponding to the rotations through the
derivatives .

0

0
ay l//u ’ ¢,3 a

@l = ~; i=1+N, j=12,3 (35)

The relationship between the approximations of
the rotation functions and vertical displacements
leads to a significant narrowing of the required
space for solving the variational problem. Thus,
for example, in the case of analysis of a simply
supported plate, we obtain zero shear forces with
good convergence in displacements and moments.

4. FINITE ELEMENTS

4.1. Three-Node Element (JIDR3)

Let us consider a triangle in the local coordinate
system shown in Fig. la. After changing the
coordinates (36), it is transformed into a right
triangle with unit legs shown in Fig. 1b.
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1 b
§=—(x—;y), n=—y (36)
g 3 (be) " 3(0,1)
. x ! ¢
1 2 (a,0) 1 2(1,0)
a) b)

Figure 1. Triangle and its master-element

Assume that the functions y: in (20) are linear
approximations:

n=l=c=n y=¢, x=n,=123 (37)
Since (21) is satisfied, then using (24):

Ph=0h=0%=y, =123

1
1 :%77)(11 o3 =—5lag+bn)x,
1
V=561, Ph=-5&las+bn-a)
1
P3 :%'7(’7—1)' 33 :—777(05"‘/377—[3) (38)
Construct residuals (26):
3 3 3
X by O o) S g
¢ =10
¥ a® b?
T2t
Xy b o, b _bc
% 22772 cy=—nly=c n(x b)
)X _at . b
ZZ - P 2 é P n
—xy+bcn
xy2 bc?
7_777_777(3/ c)——77(x b)
{3 =1xy—bcn
v
AP
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3 2
Yy o oo
62 o 477(y c)
2
Geleg o
0

Calculate vectors (27) according to (39):
w = {a c+3(b—a)by

w :2b—a{y }
12c|(a=b)(-a?+3bx)] > 4 |-x

=57 o) an=f3{Cf 40

Substituting (40) into (28), we find the values of
the constants ax, bx from the incompatibility
criterion equations (19). Discarding the zero
function from the linear independence
condition, we obtain only one function (10):

1, ={0,0,0,c(37-1),a+b—3(ac+bn)}", (41)

corresponding to the internal degree of freedom.

4.2. Four-Node Isoparametric Element
(JIDR4)

Let us consider a convex quadrangular finite

element in the local coordinate system shown in

Fig. 2a. After an isoparametric transformation

of the coordinate system (42), it is transformed

into a unit square shown in Fig. 2b.

4 (d.e)

Y 3o s o

4(L,1)

o X — é‘
1 2 (a,0) 1 2(1,0)

a) b)
Figure 2. Quadrangle and its master-element

x:ag(l_n)'i_b(l_é)n-i_d‘f?]r (42)
y=c(l=&n+ecn
Assume that the functions y; in (20) are

multilinear approximations:
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n=01=8)1-n), x,=£01-n), 43)
x=0=8n,  xa=¢n

They were also used for the isoparametric
transformation (42).

Since (21) is satisfied, then using (24):

Ph=0h=ph =1, i=123,4

1

|
¢’112 :zy)(p ¢’113 :_Exll'

11 11
%) —EJ’er D23 —_E(X—a)lz:

1 1
9l =§(y—C);(3, P13 = —E(x—b);@,

1 1
Pl =§(y —e) s Pi= _E(X—d)ﬂm’ (44)

Construct residuals (26). To obtain functions
(10), we substitute (26) into (27) and find the
values of the constants ak, br in (28) from the
incompatibility criterion equations (19). There
are only two functions left for the rectangle:

w ={0,0,0,0,(1-&))
,=1{0,0,0,7(1-7),0} (45)

4.3. Six-Node Isoparametric Element
(JIDRO)
Let us consider the triangle shown in Fig. 3.

v
3 (b.c)

X
1 2 (a.,0)
Figure 3. Isoparametric six-node element

Use the functions defined on the master-element
in Fig. 1b:

\Volume 17, Issue 3, 2021

=0=c=n1=25=2n); y, =£(25-1);
23 =1(2n=1); Xy =4n(l=¢=n);
X5 =45(1=8=n); Xo=4T- (46)
After transforming the coordinate system (22),
the element is transformed into a right triangle
with unit legs, shown in Fig. 1b.

Use formulas (24) to specify go,-lz, (p,-l3 and
construct the residuals (26). To obtain functions
(10), we substitute (26) into (27) and find the
values of the constants ak, br in (28) from the
incompatibility criterion equations (19).

If intermediate nodes are located at the
midpoints of the sides of the element, then the
Jacobian of the transformation (22) is a linear
function. Since functions (46) satisfy the
completeness criterion identities of the second
order (30), formulas (31) can be used to specify

@, 5. All the completeness criterion

identities of the third order (16) will be satisfied,
and all the residuals (26) will be equal to zero.

4.4. Eight-Node Isoparametric Element
(JIDRS)
Let us consider the quadrangle shown in Fig. 4.

v
3 (b,c)

. 4 (de)

X
1 2 (a,0)
Figure 4. Isoparametric eight-node element

Use the approximations defined on the master-
element in Fig. 2b:

11 ==& (1-n)(1-2& -2n);

12 =¢(=-1)(28 -2n-1);

13 =(1=En(2n-2£-1);

Xa=6n(2n+28-3);

15 =4=Emll-n);  xs=4E0-E)1-n);
13 =45(1-En.

27 =4&n(l-n); (47)
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After transforming the coordinate system (22),
the element is transformed into the master-
element in Fig. 2b.

Use formulas (24) to specify ¢, (0,-13 and

construct the residuals (26). To obtain functions
(10), we substitute (26) into (27) and find the
values of the constants ax, br in (28) from the
incompatibility criterion equations (19).

Suppose that the Jacobian of the transformation
(22) is a linear function (rectangle with the no-
des at the midpoints of the sides of the element).
Since functions (47) satisfy the completeness
criterion identities of the second order (30), for-

mulas (31) can be used to specify ¢, ¢. All

the completeness criterion identities of the third
order (16) will be satisfied, and all the residuals
(26) will be equal to zero.

4.5. Four-Node Element with a Piecewise
Polynomial Approximation
(JIDR4SubAreas)

Let us consider a quadrangular finite element in

the local coordinate system shown in Fig. 2a. It

is transformed into a quadrangle shown in Fig. 5

by transforming the coordinate system (48). A is

the intersection point of the diagonals of the
element.

Figure 5. Four-node element in
a special coordinate system

{X=xA+(a—xA)§+(d—xA)’7 (48)

y=y,0=E+(e=ya)n

Viktor S. Karpilovskyi

Consider the functions from [12], which are
second degree polynomials in each subdomain
Qi, i=1,2,3,4 and are continuous together with
their first derivatives on the diagonals of the
element:

i, i=1,2,3,4 (49)

Use formulas (24) to specify o), (0}3 and
construct the residuals (26). To obtain functions
(10), we substitute (26) into (27) and find the
values of the constants ak, br in (28) from the
incompatibility criterion equations (19).

4.6. Eight-Node Element with a Piecewise
Polynomial Approximation
(JIDR8SubAreas)

Let us consider a quadrangular finite element in

the local coordinate system shown in Fig. 2a. It

is transformed into a quadrangle shown in Fig. 5

by transforming the coordinate system (46).

Consider the functions from [12], which are

second degree polynomials in each subdomain

Qi, i=1,2,3,4 and are continuous together with

their first derivatives on the diagonals of the

element:
i, I=1+8 (50)

Since functions (50) satisfy the completeness

criterion identities of the second order (30),

formulas (31) can be used to specify ¢, .

All the completeness criterion identities of the
third order (16) will be satisfied, and all the
residuals (26) will be equal to zero.

5. TESTS

All calculations were performed in SCAD,
which is a part of SCAD Office®.

5.1. Patch Tests

A rectangular plate is shown in Fig. 6. The plate
sizes are proportional to those in the Patch Tests
considered in [13].
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y y
0.12)

(24,12

(0.8,0.8) (1.6.0.8)

0D (1.0,0.3)

(2.4,0)

Figure 6. Rectangular plate

Two groups of kinematic loadings with known
theoretical values were considered.

The first three load cases are a check of the
displacement of a rectangle as a rigid body
when moments and shear forces over the entire
area of the plate are zero:

e displacement along the OZ axis: w|r=l,

&r, 6|r=0;

e rotation about the OX axis: w|r=y,
&{r=1, 6|r=0;

e rotation about the OY axis: wir=y, &|r=—

1, &r=0.
The following three load cases provide non-zero
constant moments and zero shear forces over the
entire area of the plate:
. wlr=x?, &|r=0, &|r=2x;
o W=7 &r=2y, 6|r=0;
. wir=xy, &{r=x, Gr=y.
Patch tests are performed in order to check
whether the completeness criterion identities

(15) are satisfied for all

elements:

e stiffness matrices of all the considered finite
elements have three eigenvectors
corresponding to their displacement as rigid
bodies;

e the results for plates subjected to constant
moments were obtained with an accuracy up
to a computational error.

These tests serve only as a criterion for the

correctness of the program code.

the considered

5.2. Rectangular Plate Simply Supported
along the Perimeter Subjected to the
Transverse Uniformly Distributed Load

Let us consider a rectangular plate simply

supported along the perimeter subjected to the

transverse uniformly distributed load shown in

Fig. 6. Specify:

E =30000 kPa,v=0.3,h=0.2m,
a=24m,b=48m,p=1.0 kPa.

Specify the boundary conditions:

w|r=0, 6,(0,5)=06,(a,y)=0,(x,0)=0,(x,b)=0

VR VRSl
B ByY——4—4-— B ' Ba—
|
|
|
| l | B
A X B X c *
;J:—.— N — I!IA ;J: - -p-= !I-‘—é;-— }Bi‘h +__|!'_‘4;'_ ;Jh ! A
E X F X G r H X

Figure 7. Design models of a rectangular plate
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To study the locking effect, the plate thickness
varied from h=0.001m=a/2400 to h=1.2=a/2.
Experiment design models taking into account
the symmetry axes are shown in Fig. 7. Table 1
presents the calculation results for a thin plate
when h=0.08m=a/30. Analytical solution of this
problem in the center of the plate (point 4) and
in the middle of the larger side (point B)
(Analytical solution according to the spatial
theory: wla = 0.239663m; according to the

Viktor S. Karpilovskyi

Kirchhoff-Love theory: wja = 0.238907 m, the
values of the moments and shear forces
coincide):

w|a =0.23975%9m,

Mq|a, = 0.585695(kNm/m),
M,|a = 0.266978(kNm/m),
Qx[B,= 1.11602(kN/m)

Table 1. Displacements, moments and shear forces in the plate

Mesh Eloment Displacement wa (m) Moment My a (kNm/m) g:sr(l?\;/cnj)
type Mesh Mesh Mesh
2x2 4x4 8x8 | 16x16| 2x2 4x4 8x8 | 16x16| 2x2 4x4 8x8 | 16x16
A | MTC4 |-0.2363|-0.2384(-0.9394]0.9394 | 0.454 0.5809|0.5845|0.5854(0.8226|0.9676|1.0415| 1.0787
JIDR4 1-0.2302(-0.2382|-0.2393|-0.2396| 0.585 |0.5847|0.5852]0.5856|1.1523(0.9224|1.0376| 1.0782
JIDR4SA4 1-0.2379]-0.2397|-0.2397|-0.2397|0.6001 | 0.5616 | 0.5871 | 0.586 |2.2426|1.3454|1.0611| 1.0678
B DSG3 ]-0.0879|-0.2171|-0.2367|-0.2393/0.2172]0.5315{0.5765|0.5838 [ 1.2419 | 1.0958 | 1.0861 | 1.1369
JIDR3 |-0.1838|-0.2311{-0.2377|-0.2393/0.4276 | 0.5581 0.5788 | 0.5841{0.9327|1.0717| 1.108 | 1.1274
C | MTC4 |-0.2335/|-0.2385/-0.2389|-0.2395| 0.454 |0.5872[0.5852(0.5867|0.79380.9263|0.9666 | 1.0028
JIDR4 |-0.2097|-0.237 |-0.2388|-0.2395/0.4737 1 0.5695 | 0.5819|0.5854 | 1.1062 | 1.1911|0.9985| 1.0187
JIDR4SA |-0.2118|-0.2374|-0.2395|-0.2397|0.4604 | 0.574 |0.5864|0.5862|1.0494|1.9069 | 1.2488 | 1.0785
D DSG3 ]-0.1627]-0.222 |-0.2375|-0.2393/0.3379(0.51520.5815]0.5861 | 0.8049|0.9572| 1.1442| 1.2105
JIDR3 ]-0.1941|-0.2317|-0.2379|-0.2393|0.4239|0.5473|0.5802 | 0.5854 | 1.5143 | 0.8798 | 0.8864 | 0.9576
E | JIDR4 | -0.24 |-0.2398]-0.2398|-0.2398|0.6077 [ 0.5907|0.5869| 0.586 |0.8362|0.9553|1.0397 | 1.0783
JIDR4SA |-0.2398|-0.2398|-0.2398|-0.2398| 0.617 |0.5938|0.5878|0.5862|0.8685| 0.966 |1.0403| 1.0784
F JIDR6 |-0.2414{-0.2399|-0.2398|-0.2398| 0.659 [0.6019]0.5894|0.5866|0.8142|1.0022|1.0659| 1.0912
JIDR4 |-0.2417|-0.2396|-0.2397|-0.2398|0.6671 | 0.5985 | 0.5874 | 0.5861 | 0.5796 | 0.8685| 1.0046 | 1.0616
JIDR4SA |-0.2425|-0.2398|-0.2398|-0.2398| 0.682 |0.6056|0.5905| 0.587 [0.7586(0.9254|1.0077| 1.0611
H | JIDR6 |-0.2424|-0.2398|-0.2398|-0.2398(0.6849 | 0.604 |0.5902| 0.587 |0.8495|0.9604|1.0436| 1.082
5.3. Stress-Strain State of a Clamped :% !

Hexagonal Plate Subjected to the
Uniformly Distributed Load

Let us consider a regular hexagonal plate
clamped along the perimeter subjected to the
transverse uniformly distributed load shown in
Fig. 8.
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Figure 8. Hexagonal plate
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Specify:

E =30000 kPa,v=0.3,h=0.1m,
a=1m,p=10 kPa.

and boundary conditions:
W|l":0n|l"=01 |r =0.

A numerical solution of this problem was
obtained according to the Reissner-Mindlin
theory at the center of the plate at point 4 with a
high degree of accuracy:

wa=-38.749(mm), Mx|a=0.6511(kNm/m).

The solutions were obtained for various types of
finite elements. The maximum order of the
system of equations for which the solution is
obtained is 2747925.

The solution of this problem according to thin
plate theory is given in [14] and is:

wa=-36.324(mm), M:=0.64786(kNm/m).

The calculation results for the design models in
Fig. 9 are given in Table 2.

Figure 9. Design models Ix1 of a hexagonal plate

Table 2. Displacements and moments in the clamped plate

Mesh Displacement wa (mm) Moment My 4 (kHm/m)
; ese Element Mesh Mesh
yp 1x1 2x2 4x4 8x8 1x1 2x2 4x4 8x8
A MITC4 -36.619 | -37916 | -38.57 | -38.737 | 0.7259 | 0.6573 0.656 0.6514
JIDR4 -27.752 | -35.899 | -38.081 | -38.584 | 0.5335 0.6405 0.6489 | 0.6504
JIDR4S4 | -29.89 | -35.932 | -38.09 | -38.586 | 0.5236 | 0.6439 0.6478 0.6504
B DSG3 -21.032 | -35.274 | -38.132 | -38.663 | 0.3751 0.6101 0.6293 0.6429
JIDR3 -24.194 | -35.77 | -38.035 | -38.565 | 0.5076 | 0.6184 0.642 0.6486
C JIDRS -36.853 | -38.559 | -38.717 | -38.743 | 0.7235 0.6602 0.654 0.6518
JIDRS8SA | -37.37 | -38.614 | -38.734 | -38.747 | 0.7317 | 0.6657 0.6549 | 0.6521
D JIDRG6 -37.47 -38,66 | -38.739 | -38.747 | 0.6842 | 0.6613 0.6538 | 0.6518
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6. CONCLUSIONS

All the created elements:

* have passed all Patch Tests;

 numerical experiments have confirmed that there
is no locking effect;

* agood approximation of the numerical solution
to the analytical results and the results of high-
precision calculations has been obtained.
Elements based on thin plate elements were
created. Approximating functions were used for:
* triangular elements [7,15];

* quadrangular elements [16].

Numerical experiments did not increase the
accuracy of calculations in comparison with
the approximations given in the paper with a
significant complication of the algorithm.
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CALCULATION SCHEME OF REINFORCED CONCRETE
STRUCTURES OF CIRCULAR CROSS-SECTION UNDER
BENDING WITH TORSION

Vladimir I. Kolchunov !, Sergey A. Bulkin 2
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Abstract. The developed design diagram of the ultimate resistance of reinforced concrete structures in bending with torsion
of circular cross-sections most fully reflects the features of their actual exploitation. For a spatial crack of a diagonal large
ellipse, sections are taken in the form of a swirling propeller with concave and convex spatial parabolas from the first
and second blocks between vertical transverse circular sections from the beginning to the end of the crack. For practical
calculations in compressed and tensioned concrete, a polyline section of three sections is considered: two longitudinal
trapezoids and the third middle section of the radius curve of a small ellipse close to forty-five degrees. When calculating
unknown forces, solutions of the equations of equilibrium and deformations of the sections are made up to the end of the
crack passing through the moment points for the resultant moments and the projections of internal and external forces.
Shear torsional stresses along the linear longitudinal sections of the trapezoid were presented, as well as normal and shear
stresses located on the end cross-sections at a distance x from the support. The height of the compressed area of concrete
decreases with an increase in bending moments in the spatial section between the first and third cross-sections. It is found
in their relationships and connections. The dowel action of reinforcement is determined using a special model of the second
level with discrete constants. The static loading scheme was considered from the standpoint of an additional proportional
relationship between the torques along the length of the bar in the spatial section and the first and third transverse sections.
For a dangerous spatial crack, when projected onto the horizontal axis, the length C was found from a diagonal large
ellipse of a round bar.

Keywords: reinforced concrete, circular section, calculation scheme, bending moment, torsion, spatial crack,
dangerous spatial crack, governing equations

PACUETHASA CXEMA KPYIJIBIX KEJE3OBETOHHbBIX
KOHCTPYKIMM NPU CJOKHOM NPEJAEJBHOM
COINPOTHUBJIIEHUU-KPYUYEHUU C U3T'UBOM

Bn.H. Konuynos ', C.A. Byikun ?

1 YOro-3amanmblit rocymapcTBeHHbIH yHUBepCUTeT, T. Kypek, POCCHU S
23A0 «['0posCKO# TPOESKTHBINA HHCTHTYT UIIBIX U OOIICCTBEHHBIX 3MaHuii», I. Mocksa, POCCHU

AHHoTanust. Pa3zpaboranHas pacyeTHas cxema IpPeeIbHOTO CONIPOTUBIICHHUS KeIe300€TOHHBIX KOHCTPYKIMH MPH KpPy-
YEHUH C N3rMOOM 2JIEMEHTOB ¢ KPYIIBIMH ITOTIEPEYHBIMH CEUCHNUSIMH HanOoIee OJIHO OTPAXaeT 0COOEHHOCTH HX JIEH-
CTBUTENBHON pabOTHI. [l MPOCTPAaHCTBEHHON TPEIIMHBI JUATOHAIBHOTO OOJIBIIOrO IUINAICA IPUHSTHI CEUYCHUS B BUJIE
3aKpy4EHHOTO TIPOIEIIepa ¢ BOTHYTOH M BBITYKJIOH ITPOCTPAHCTBEHHBIMH 1apabosiaMH M3 HEPBOTO M BTOPOTO OJIOKOB
MEXXIy BEPTHKAIBHBIMH MONEPEYHBIMU KPYIIIBIMU CEUCHMUSMH OT Havaja 10 KOHIA TPEeKHbI. IS MpaKTHIecKnX pacde-
TOB B C)KaTOM M PAaCTSHYTOM OETOHE PaCCMOTPEHO JIOMAHHOE CEYEHHE U3 TPEX YIaCTKOB, — JIBa MPOOJIbHBIX TPAIICIIUU U
TpeTuii cpenHui OMM3KUN K COPOKa IATH TPaycaM yIacTOK KpUBOH pannyca Masioro suimrca. [Ipu pacyere HeM3BECTHBIX
YCHIINI COCTaBJIEHBI Pa3peIaloIine YpaBHEHHUs paBHOBECHS U Je(pOpMaIiii MONEPEUHbBIX CEIEHUH 10 KOHIIA TPEIHHBL,
MIPOXOJSIIIIE Yepe3 MOMEHTHBIE TOUKHU JUI PAaBHOACHCTBYIONIMX MOMEHTOB M MPOEKIMH BHYTPEHHUX W BHEIIHUX CHIL
Bbbutn mpescTaBiIeHbl KacaTeIbHbIE HANPSHKEHHUST KPYUYESHHUS 110 JTMHEHHBIM NIPOJIOIBHBIM CEUYEHHSAM TPAICNH, a TAaKKe
HOpMAaJIbHBIE U KacaTelbHbIC HAIPSHKEHMS, PACIIOJIOKEHHbBIC Ha KOHIIEBBIX MTONEPEYHBIX CEUEHHUAX HAa PACCTOSHHUU X OT
omopsl. IIpu 3TOM ¢ yBenmueHneM N3rndaronnX MOMEHTOB YMEHBIIAIOTCS BBICOTHI CXKATOM 00acTi OETOHA B IIPOCTPaH-
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CTBEHHOM CEUYEHHH MEXXIy EPBBIM U TPETHUM MONEPEYHBIMU CEUCHUSIMH, KOTOPbIE MOTYT OBITH Hall/ICHbI U3 UX OTHOLIIE-
HUH ¥ CBSI3eH. YUNTHIBACTCS «HATSJIBHBIIN» 3QQEKT B paCTIHYTOH ITPOJOIBLHON 1 IONIEPEIHON apMarype, onpeessieMbli
C IPUBJICYCHUEM CIICIIMAIBEHON MOJIEIN BTOPOTO YPOBHS C AMCKPETHBIMU KOHCTaHTaMu. CTaTHyecKast cxemMa Harpys>KeHUs
paccmarpuBaiach ¢ HO3UIMN JOMOIHUTEIBHOTO MIPOITOPIIMOHAIBHOTO COOTHOIICHHS MEXKTy KPYTSIIUMHA MOMEHTAMH 0
JUITMHE CTEP>KHS B IPOCTPAHCTBEHHOM CEUCHHH M B TIONEPEUHBIX IIEPBOM M TpeTheM ceueHusiX. [Ipu aTom aist onacHon
MIPOCTPAHCTBEHHOH TPEIINHBI TPH TIPOCIIMPOBAHNH HA TOPU3OHTAIBHYIO OCh ObuIa HaiieHa anHa C U3 TMaroHaIbHOTO

OOJIBIIOTO JJUIHIICA KPYIJIOTO CTCPIKHA.

KiioueBble ci10Ba: jKene300€ TOHHEIC KOHCTPYKIHHU, KPYTJIIOC CCYCHUEC, paCUCTHA CXEMaA, TPOIYHOCTD,
PI3I'PI6aIOH.[PII>i MOMCHT, prTﬂH_[I/Iﬁ MOMCHT, OIllaCHas MPOCTPAaHCTBCHHAA TPCUINHA, PA3PCIHAOIINE YPAaBHCHUA

INTRODUCTION

In regard with the complication of the types of
actions on building structures, the creation of
calculated models and the construction of
calculated diagrams of the complex resistance
of reinforced concrete in torsion with bending
becomes more and more urgent [1, 2, 3]. This is
also due to the fact that, firstly, there are
relatively few such studies [3—9], and secondly,
with the noted actions, it is necessary to take
into account the spatial work of the
overwhelming majority of reinforced concrete
structures with more and more original
architectural and structural solutions of
buildings and structures. The existing modern
calculated models of reinforced concrete, the
analysis of which is given, for example [6], does
not fully take into account the features of the
resistance of complexly stressed reinforced
concrete elements after cracking, including the
very scheme of cracks, taken in the calculation
with different cross-section sizes and not always
confirmed experimentally.

Therefore, the purpose of this research is to
develop a calculated diagram of the ultimate
resistance of reinforced concrete structures in
torsion with bending for circular cross-sections,
which most fully reflects the features of their
resistance after cracking [2, 12, 17, 18].

METHODS
To determine the calculated forces, the
resolving equations of equilibrium and

deformations are drawn up. In this case, the

64

projection of a dangerous spatial crack is
determined through the diagonal (larger) ellipse
of the round bar [13].

As a result, for a reinforced concrete structure of
a beam in a circular cross-section, we obtain a
spatial crack and, accordingly, a calculated
scheme after its formation. In this case, there are
cross-sections from sections 1-1 at the
beginning to 3-3 at the end of the spatial crack -
an ellipse for the first and second blocks (Figure
1). We obtain a calculated diagram of the
resistance of a reinforced concrete beam of a
circular cross-section from the action of
combined bending with torsion, taking into
account a spatial crack. In compressed concrete,
there are three zones /, [,, [, - longitudinal

zones (and), as well as an ellipse in the zone /,

(Figure 2). In tensioned concrete, the same three
zones [/, [,, [,, are located, but the ellipse is

adopted for the zone /,, as well as a parabola for
the zones /, and /,.

The equation of a small ellipse for a spatial
section is:

2 2

y z

w el M
R R

RV2.

Here b=R;a= = =
cosa cos4d5°

Then, in stretched concrete in the first and
second sections, we have spatial curves of the

form fparl’“(x,y,z) .

To construct the first spatial parabola
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Sar123(%,¥,2) , we find the coordinate T.1 (X, y,
z) along the x-axis (x =—/, —0.5/,) belonging to

the circle in section 1-1 in a plane parallel to the
Ozy plane. Then, for the coordinate at the
desired point, we can write:

y=t[R-(R-x). @

Now we find the ordinate of T.2 (x, y, z) along

the x-axis (x=-0.5/,) belonging to a small
ellipse lying in the
(z=-R+x, —Ax, —x,,):

plane Ozy

y:i\/Rz —(=R+x, - Ax, _xb,k)2 . (3)

For a point lying in the plane of the coordinate
axes Oyz we have the following coordinate
values: x =0; y=0;z=-R.

Zz Z
A A /. a=45"
X T

Y. S
30 N SN N
Circular Elliptical
Ccross cross
section N& section

B B

a) b)

Xe,k

Xe,k
Xy
\

X6,3 \
’%
wl
>
n
W

X

o )/ B
/ ‘Neutral axis

Figure 1. To the construction of an elliptical calculated scheme of a spatial crack in a reinforced
concrete structure with a circular cross-section: a) a circular cross-section; b) elliptical section;
¢) the layout of the broken cross-section for compressed concrete

\Volume 17, Issue 3, 2021

65



Vladimir I. Kolchunov, Sergey A. Bulkin
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Cross section 1-1 Cross section 3-3

2 2

Figure 2. Calculated scheme for determining the ultimate resistance of a reinforced concrete
structure in a complex stress state - torsion with bending: a spatial crack for a large ellipse with a
swirling propeller in the direction of concave and convex spatial parabolas coming from the first and
second blocks (a) and located between circular cross-sections I — I (b) and 3-3 (c)

Let's define the coefficients A4,, B,, C, for the 4 2R—x, =X, +Ax, +x,, _0: (@)
auxiliary curve z(x)=4,-x’ + Bx+C,. To do this, b +05L)Y = (<05, T

; i 2R—x, —x, + Ax, +x
we substitute the values of the coordinates at C-R- LT X 1+ Xk (11+0-512)2 )

points 1, 2, 3 into the equation of this curve. hT (I, +0.5L,)* = (<0.51,)*

After algebraic transformations, we get:
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Similarly, the values of the coefficients 4,, B,, C, of the auxiliary plane curve are obtained, we
obtain:

W/R2—(R—xl)21

(L, +0.51) !

JR —(R—x) = [R* = (-R+x, - Ax, - x,,)" -

4= ; ; ; 6)
(=0.51,)* = (-1 - 0.51,)
JRP=(R-x)" -
P +05L)
\/Rz —(R-x,)’ —\/R2 ~(—R+x, —Ax, —x,,)" — /R = (R-x) A
Coo : (4 +05L) ®

((-0.5L,)* = (=4, = 0.51,) ) (1, +0.51,)°

Let us write the equation of the first spatial

m2,(0.50;[R ~(-R+x, ~Ax, ~x, )} ;-R+x, ~Ax, -, ,);(11
patabola 1, 1(x,,2): O3L5 R ~(R 3, =A=' =R =, )5 (1)

m3,(0.50, —;\[R* = (R + x,)*;—R + x,) .(12)

fpar1,2,3(x’y’z) =42 (x)° + by (x)*.

Then we can calculate the coefficients 4,, B;,

G, for the auxiliary curve

To construct the second spatial parabola

Joar 2 5 (X,3,2) we define the coordinates of

points 1r, 2r, and 3r (see Figure 2), which have
coordinates similar to points 1,2 and 3:

m.1 (0.5, +[;\R* —(R—x,)*;R—x,); (10)

(2R—x3 —x, +Ax, +)cb’k)2l3

z,(x) = 4, -x* + B,x + C,. To do this, substitute
the values of coordinates at points 1r, 2r, 3r into

the equation of this curve, and after algebraic
transformations we obtain:

AB = 2 3 2 2 ’ (13)
(21, +0.5L,)(0.50, + )" +(0.51, + 1,)” = (0.51, = 1,)"(1;) — (0.5L,)" - 21,
B —A4,-(0.5L,+ L)’ + 4, - (0.5, = ;) (14)
’ 21, ’
2 _ 2 732
€, = (<R, ~Av—x,, )~ 4, .[(0.512) 21, —(0.51, +13)2(lo.512)+(0.512 L) (05[2)}' (15)
3

The coefficients 4,, B, , C, for the auxiliary plane curve y,(x) are obtained in a similar way:

- B;(213) _, (16)
(0.5, =1,)" = (0.5, + 1)
(0.5, ~ 1, (0.5, +1,)?)- (\/R2 —(R—x,) R —(~R+x, - Ax, - xb’k)z)

;347

B, =
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C, :\/R2 —(R+x,—Ax;—x, ) —

By analogy with Eq. (9), the equation of the
second spatial parabola is also written:

Lo 2,5, (% 3,2) =42, (0)* + 1, (x)? . (19)

From the equilibrium equation of the moments
of internal and external forces in section I — I
relative to the y-axis passing through the point
of application of the resultant forces O, in the

stretched reinforcement () Mo,1=0), we obtain:

M, a1 =Ropsas Gy = Pro» Oy 1Ay [y = 0, X1+
seLup | ) Asc,up (ho —a, ) +

+Z Rotiser " @i Aic 1 e (ho =gy ) +
+ZRSC,I,i,rig "W, Asc,l,i,rig (ho - a;,i,n‘g ) -
_z R e O A g1 er (as,i,lef 44 ) -

_Z Rs,l,i,rig C Wt As,l,i,rig (as,i,rig - as,d ) -
KK, Ry =Ry -a=0.

sup, / - sup,

+m- R o

up,cir

S

S

S

(20)

Here ¢,,. is the parameter that takes into

account the procedure for projecting the stress
components in the & plane onto the I — I plane
perpendicular to the longitudinal axis of the
reinforced concrete element; sign * - means the
reverse transition from section 4, in the upper
fiber of which the deformation criterion of
strength is "triggered," to section I — I through
the transition relations of projection of the
diagram o, — ¢, to the direction perpendicular to

the plane k (see Figure 2); product ¢,,.0,, . 4, -

the value for the considered section is known;
A, = R*arccos((R—x,)/ R)—

—(R—x,)\J2Rx, —x,> - area of the compressed

concrete zone in section 1-1; x, - the height of

0y, =const;

the compressed concrete zone in section 1-1;
hy—@. ., - x - shoulder of the inner pair to the

68

. . . (18)
(0.5, 1,)* = (0.51, + 1)

center of the compressed zone of concrete; ¢_., -

a static-geometric parameter that takes into
account the location of the center of gravity of
the compressed zone of concrete in section I — I
(in the section x,, the height of the compressive

stress diagram is taken in the form of a pipe
sector, in the section x —x, - in the form of an

ellipse sector); K,, - a numerical coefficient that

takes into account the static loading scheme
from the standpoint of additional bending
moments along the length of the bar. It is used
when it is necessary to take into account the

field of local stresses A,, and is found

according to the proposals of S.P. Tymoshenko.
Thus, it can be considered A,, a known

quantity; K, - coefficient, ratio (it is known

and specified in the initial data is given) by the
generalized support reaction R and bending

moment M; R - generalized support reaction

in the first block at the moment of exhaustion of
the bearing capacity of the reinforced concrete
structure of the beam; a- horizontal distance
from the support of the beam to the section [ —I;
- the filling factor of the diagram for the

a)up,cir

upper
coefficient of filling the diagram of a stretched
right or left reinforcement; @, , - coefficient of

reinforcement; o, -

cir

compressed

filling the diagram of compressed right or left
reinforcement.
The unknown M

bend 1 is found from this
equation (20).
Next, we obtain an expression for the transverse

force from internal forces:

Q —R _ Mbend,l
I~ “lsup,l,.M .

m, I

1)

Here M,,,, , is found from equation (20)
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am,[ =a+ KMKpr,M ’

(22)

From the equilibrium equation of the projections
of all forces acting in section I — I on the x-axis,
the area of the compressed concrete zone 4, , in

this section is determined (3 X = 0):

A, = R*arccos((R—x,)/ R)— (R —x)y/2Rx, - x” =
1

= ' ':m : Rs,],d ’ a)d,cir ’ As,d -
D0, 0pu 51" P,

—-m- Rsc,l,up ’ wup,cir ’ Asc,up - ZRSC,I,lef ’ a)c,cir ’ Asc,],lef -
_z Rsc,l,rig ’ a)c,cir ' Asc,[,rig + ZRS,I,lef ' a)cir ’ As,[,lef +
+Z Rs,],rig ’ a)cir ' As,],ﬁg] . (23)

From here, knowing the radius of the circle, you
can calculate the height of the compressed zone
of concrete x, in this section.

In equation (23) @, - the filling factor of the

tensile reinforcement diagram; @ — the same,
tensioned reinforcement right or left, @, — the

the

same, compressed reinforcement right or left;
Rs,],d’ R Rs,I,lef R Rsc,I,rig’ Rsc,I,lef b st_
respectively, calculated resistances of tensile
reinforcement, tensile reinforcement of right or
left, compressed reinforcement, compressed
reinforcement of right or left, clamps.

Similarly, from the equilibrium equation of the
projections of all forces acting in section III —
III on the x axis, the area of the compressed
concrete zone 4, ; in this section is determined

(TX = 0):
A, =R*arccos((R—x,)/ R)— (R —x,)J2Rx, - x,* =

B 1
?0.%m.x3 " Py
-m-R;, 0, 'Asc,up - stc,uef @, Ay ger —
_Z Rsc,3,rig @, 'Asc,3,rig + ZRS,S,lef WA 5t
DR 0 Ay |- (24)

same, compressed reinforcement, @,,—

s, Lrig ° sc,Lup 2

[m Ry, 0, A, —
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From here, knowing the radius of the circle, you
can calculate the height of the compressed zone
of concrete x, in this section.

Now we obtain an expression for the torque
from internal forces in section I-I (see Figure 3)
from the equation of the sum of the torques

relative to the point br (Y Ty = 0):

M

t,1

= TPI»M ’ ﬂ'xl ’ bcir ' ¢Cir,z— : (Zl - 05 . ﬂ’xl) +

+0.5- T .

-(xl—lx,)-bir-[O.S-/lx,+%-(xl—/1x,)}+

+0, A, -(h0 - zl) (25)

Here ¢, . is a parameter that takes into account

the position of the center of gravity of the
section; b, - the width of a segment of a circle

. . : . S
in the section under consideration; z, = R—— -

distance from point br to the center of gravity of
the section; S - the static moment of the
section; A - area of a circle; Ax, - the height of

the plastic deformation zone,
b, =2JR*—(R-x,)".
From the equilibrium equation of the

projections of internal and external forces acting
in section I — I on the Y axis (ZY =0), it 1s

possible to determine the parameter kQ,m that

takes into account the presence of adjacent
cracks:

Ty -x-b—rpl,x -k

o (l=x)-b+K, R, =0, (26)

Here K,, — the same as in the formula (20).

In formula (26), the thrust forces in the working
reinforcement in the middle section I — I are
taken equal to zero.

In this case, the transverse force perceived by
the concrete in the compressed zone will be
equal to:

Qp=7,,xDb. (27)
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Figure 3. Diagrams of forces in cross-section I-
1 (3-3) with torsion

In turn, the shear force perceived by the
concrete in the tensile zone will be (Figure 4):

Q[I,T :Tpl,x .kQ,m(hO _x)b (28)
On the other side:
QII,T =0- Q[,b . (29)
Tpl,x Tpl,x 2 ypl,x 2
: o
—I A 4
1 X1 R ®
=
= S
oy g
-~
T2,x / TZ,x =k szTpl,x YQ,2,m,x
a) b) c)

Figure 4. Diagram of shear stresses t, in the
middle cross-sections [ — I (3-3)

Equality (26) can be used to determine the
parameter k,, that takes into account the

presence of adjacent spatial cracks in the stress-

Vladimir I. Kolchunov, Sergey A. Bulkin

strain state of the stretched zone of the middle
cross-section I — I:

pl,x

P - Ky R,—7,.xDb
o Tpl,x(hO -x)-b

(30)

The formulation of the following equations
requires some clarification. The upper, lower
and lateral longitudinal reinforcement (in the
presence of multi-tiered reinforcement) was
conventionally not shown in Figure 2. Under
equilibrium conditions, the stresses arising in
the noted reinforcement are taken into account.
The only exception is the equation of
equilibrium of the moments of internal and
external forces acting in section I — I relative to
the axis x perpendicular to this section and
passing through point b,- the point of
application of the resultant forces in the
compressed zone (Tv, 1= 0)

In the spatial section k for block 2, cut off by a
complex section, passing along a spiral-shaped
spatial crack and along a broken section of the
compressed zone, all reinforcement [12] falling
into this section is taken into account (see
Figure 2). In this case, in the compressed upper
longitudinal reinforcement, cut off by sections I
— I and I — III (the dagger effect is not taken
into account), and in the rest of the longitudinal
and transverse reinforcement, the components
of the dagger effect are taken into account.
These components are determined using a
special second-level model [1, 2, 13, 15].

The need to use a complex broken section of the
compressed zone of concrete is due to the fact
that its destruction occurs (as shown by
experimental studies) in a certain volume
located not along the entire length between
points A and B (see Figure 2), but only in a
certain volume located in the middle part of this
volume. In this case, destruction occurs in the
middle part not along the line AB, but at an

angle close to 45° to the upper surface of the

reinforced concrete structure, which
predetermined the direction of the middle part
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of the broken section, where the ultimate stress-
strain state is reached.

In the areas of the compressed zone located at
the edges of the broken section, the stress-strain
state changes from sections I — I and III — III to
the middle =zone according to linear
dependences, respectively. In this case, the
height of the compressed zone decreases with an
increase in the bending moment (see Figure 2).
Such a design scheme is most consistent with
the actual resistance of structures in torsion with
bending, the parameters of which are
experimentally confirmed.

The lateral surfaces of the broken section in
compressed concrete coincide with the planes of
the axis (or "smeared" plane) of the longitudinal
working reinforcement. In this case, the
reinforcement located in the lateral zones of the
section when crossing the broken section is
considered to be located on the left for section I
— I and on the right for section III — III. Thus, it
is intersected by planes 1 — I, III — III,
respectively, at the end sections of a complex
broken section.

The equations for determining the shear
stresses from torsion in a cross-section located
at a distance x from the support are written in
cylindrical and Cartesian coordinates.

It is also important to note that all geometric
characteristics are considered relative to the
geometric center of the section.

With regard to the average cross-section I — I,
which is in conditions of complex resistance -
torsion with bending, it is advisable to take into
account the fact that a significant part of this
section is subject to tension. It is known [1, 2,
15] that in tensile concrete there are a number of
adjacent spatial cracks that affect the stress-
strain state of the middle section I — I. We will
take into account this effect of adjacent cracks
using the parameter &, , .

If the torque along the longitudinal axis of the
reinforced concrete structure is not constant, but
changes, then an additional dependence is
introduced into the calculation, the ratio
between the torques in section k and in section I
-1
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M

T, a

I<T 'Kpr,T :
M, c—0,5b-sina’
a-M;,

K. K, ;- (c=0,5b-sina)

MT,/ = (31)

Here K.is a numerical coefficient that takes

into account the static loading scheme from the
standpoint of additional torques along the length
of the bar; K | - coefficient taking into account

the ratio between R, and T'; a is the horizontal

distance from the structural support to the
section [ — 1.

If the torque along the longitudinal axis of the
reinforced concrete structure has a constant
value, then the resulting stresses from torsion in
stage III reach their limiting values equal to 7, .

Knowing 7,, we can determine the torque per j-

th square of the compressed zone in section I — I
by the formula:

_— (32)
(é’y)2 +z°

In the case when the torque along the
longitudinal axis of the reinforced concrete
structure changes and has a lower value than in
section k, then instead of 7, , should be inserted

rinto formula (32).

In turn, the torque received by the concrete in
the tension zone will be equal to:

T _M _ Tt,u ‘kT,m .]t
R — - >

LR (33)
(é’y)2 +z2

here k,, is a parameter that takes into account

the presence of adjacent spatial cracks in the
stress-strain state caused by the torsion of the
tensioned zone of the middle cross-section I — 1.
On the other hand, again returning to the
construction of general resolving equations (see

Figure 3), for M, ,, the equation of equilibrium
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of the moments of internal and external forces
acting in section I-I relative to the x axis,
perpendicular to this section and passing
through the point of application can be used
resultant forces b, in the compressed zone of

concrete (Tp, 7= 0):

Mt,R :Mt _Mt,c' (34)
The parameter can be found from this
equationk; , :
2 2
M, - M, +z
kT,m = ( : t’C) (é,y) . (35)

Here 7, is the shear torsional stress in

compressed concrete, obtained in the third stage
of stress-strain state by projecting the diagram
"o,—¢& " onto the section plane I — I for the

dependence "7 —y", taking into account the

ratio O:T or M: T, one of which, as a rule, is
given. If necessary, one should take into account
the additional dependence arising from the ratio
of the torques in section 1-1 and in section £.

It is also appropriate to note that the limiting
stresses 7, , T T 0,, are known

tu? t,xy,ul t,zx,ul °
(they are located on the horizontal sections of
the “strain-stress” relationship diagrams), since
the plastic state occurs simultaneously for
tangential and normal stresses.

From the hypothesis of proportionality of
longitudinal deformations in the calculated
section, we find stresses in longitudinal
reinforcement:

. -E (1 -
o, = ¢10, Tou.z] S( ) : ho al + 0, < Rsl- (36)
’ E, (1) X )

the stressed

reinforcement at the moment when the prestress
value in concrete decreases to zero when the
structure is loaded by external forces, taking
into account the prestress losses corresponding

Here o, prestresses  in
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to the considered stage of the structure
operation. If the condition (36) is not met, then
we assume o, to be equal Rs. In equation

(36), the notation ¢, . is the same as in formula

(20).

Normal shortening deformations along the x-
axis in compressed concrete at various points of
the k-k section and in the I-I section can be
found from the same hypothesis of
proportionality to the limiting deformations
Epirigx at the rightmost point of the k-k

section:—from the right point (rig) to the section
I-I, -

Ep 1 a
= ; 37
- (37)

gbu,k,rig,x

_ gbu,k,r[g,x ad

Ep1 = (38)
a—1,

— rom the right point (rig) to the middle point
(bx):

gbu,k‘rig,x - a - l] ; (39)
Ehkx 4 _( NI

I, +712 A Mhors 'sz

2

201 .
a,,=da— ll+712'5_77har,b'lz 5

(40)

& oot a

gb,k,x — bu,k:;lg_,xl m,b —
1
2,1
gbu,k,r[g,x ' |:a - [Zl + 712 ' 5 - nhor,b ’ 12
= ; (41

= @1)

— from the right point (rig) to the left point (lef):

a=1l
9
Eputetefx 4T (4L+1)

_ gbu,k.rig,x ’ [a - (Zl + 12)]
Epuklef x = .

gbu,k,rig,x _

(42)

P (43)
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Unknown deformations & and ¢, lef x WE

s,k,rig,x
also determine from the proportionality
conditions:
&, (a-1)
s,k,rig,x = 7 5 (44)
gs,k,rig,x ’ [a - (ll + 12)]
gs,k,lgf',x = . (45)
a—1,

Then for the voltages, respectively, we can write

lo2 and

s,k,rig,x

= gs,k,rig,x ’ Es ’ Vs (/1)
Gs,k,lef,x = gs,k,lgf',x ’ Es ’ Vs (ﬂ’) .

Next, we determine the unknown parameter xz,«
from the condition that the sum of the
projections of all forces acting in the spatial
section k on the x-axis is equal to zero: Y X=0,
(see block II in Figure 2):

_Gs,k ’ md ’ As,d + ZRsc,up,i ' a)up ’ A -

sc,up,i

_Z R Oy 'As,i,rig - ZRs,i,lef Wy A T
+z R g @ ig Asc,i,rig + stc,i,lef O, 1y O
_§0102-xy,u,Mt .Ab,ll + ¢10Txy,u,Mt .Ab,l3 - O-b,l,rig : Ab,* -

—-o A A A

sc,l,rig ’ sc,l,rig - O-b,3,lef ’ b, ** - Gsc,3,lef ’ sc,3,lef -
“Xyi A, T Ay aa +

+§010Txy,u,Mt ’ Ab,l3,ad _O-b,l,rig ’ Ab,*,cir,ad -

~X, 4y 0 =0. (46)

b,k ,core

O 3ier 4

b, x*,cir,ad

The following restrictions must be taken into
account:

0.1k, < x, , <0.3h);

Xp <X

(47)
(48)

In equation (46), X, — the projection of the

components of the stresses on the axis of x;
4,, — is the area of concrete on the zone /;

A,, — the area of concrete on the zone /;;
4,. .. — the area of concrete of the right sector
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broken section (sector height x,); 4, ., — the

area of concrete left sector of the broken section
(sector height x,,); 4,, , — the area of the

concrete with a height Ax, of zone /,;4,, ., —

the area of the concrete with a height Ax, of

zone Ly A, . .. — the area of the concrete part
of the right sector altitude Ax;; 4,.. . .

square concrete of the left sector altitude Ax;;
Ay ke core = ((R —x,) arccos((R—x,)/ R—x,)—

—(R- xk)\/2(R —xp)(x, —xp) — (%, — 'xB)2 )\/E -
the area of the core of the section of compressed

concrete in the section k-k on the zone /;

Ay = (R2 arccos((R—x,)/ R)—

—(R—x,)J2Rx, —x,° )\/5 — 4, oo — the area

of the arc of the upper fibres of circular cross-

Mrig

: :Rs,i,rig : a)rig : As,i,rig
k=1

section;

Mg

(Zst,i,rig @, Ay, g ) — Stress is stretched in
k=1

the transverse reinforcement (cross clamps) to
the right of the contour of the first segment of a

parabola spatial f, . ,,(x,»,2) (zone [);
Myer Nyef
Zst,i,lef W Ay e (st,i,lef W A e ) -
k=1 k=1
stress 1s stretched in the longitudinal

reinforcement (cross clamps) for the left loop of
the second segment of a parabola spatial
Joar 2,5 (%,3,2) (zone [;); hy — working height

section.

(xB,k + x3,1)'11

Ab’,] :f ; (49)
Xp, +Xpq) 1
Ab,l3 :( B.k 23,3) 3 (50)

The value X,, for the midpoint (bk) of the

polyline section k (on the zone /,) is:
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V21
R Z T K [+ 712 'E_nhor,b 1,

Xb,k: +

a
+(i¢10 'Txy,u,Mz)'(Ps,*- (51)

Here ¢,. — is the transition coefficient from a

cross-section to an oblique (oblique, — when the
cross-section is located at an angle [ =45,

cos45° normal stresses in the

=—); O ad oy~

cross-section k are taken instead of stresses

04, . » and tangential stresses 7, ,, are taken

instead of stresses 7 these stresses are

xy,u, Mt >
calculated by the formulas:

ab,ad,x,k = O-bu,x,k - O-b,crc,x,k o

r

xy,ad, Mt =7 (52)

v, ME Txy,crc,Mt .
The second supporting block of section k-k is
separated from the reinforced concrete element
by a spatial section formed by a spiral crack and
a vertical section passing through the
compressed zone of concrete through the end of
the spatial crack front.

The balance of this block is ensured by fulfilling
the following conditions.

The sum of the moments of all internal and
external forces acting in the vertical longitudinal
plane relative fo the y-axis passing through the
point of application of the resultant forces b, in

the compressed zone is zero Y Ms=0 (see block
I, Figure 2):

O-S + 8,11,
Mbmd,k:—’k2 £ (h, OSka) A+
o, +0
+ Tk T Tt > L (hy = 0,5x,,) - M A+

+¢7,* ’ Rs 'nhor,s 'Ci—lza)*,cirAs - <05,* ’ Rs ’ Zw*,cirAs +

+ZRs,i,rig ’ a)rig,cir ’ As,i,rig |:h0 - 0’ SxB,k - as,i,rig:l +
ZRs,i,lef * Oy i A et [ho —=0,5x,, — as,i,lej'] +
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10, R > @ (0 5Cein —0.5L -z, )~

_(05,*,rig S,rig ’ ZCO *cir s,rig -
_¢7,*,lefRszwl *,cir S ! [1 0’5 ’ h ’ CosaO +

V L’ll” S )lg lnCl 1

+O’ 512 - st] + (pS,*,lcf s,lef ’ Z a)l,*,cirAs,lef +
+qswrig Lc 095 h 'C'_O.Slz _st —
"= 2h+b 2h+b

ot 'Sheb c-[c ~(L+1,)-0,5-h-cose, +0.31, —zm} +
[ 2:x,, +X

+H oo +0.7 A A1 _a 2 7Bk TBL
((p9 zy,u,0 (011 zy,u,Mt) b,l ,ad [ 1 3 XB,k + XBI

—0.5-1, - Mhorp * 12)} + (%sz,u,g Pty ) : Ab,l3 )

' [1_3.2-x3’3+x35k

+(0.5-L,+m,,, L) |+
3 Xgst+Xg, '

"‘((012 T TP sz,u,Mt) Ay [11 t (0-5 by =y )} t

+(¢12 ’ sz,u,Q - ¢l4 ’ sz,MA,MI) ’ Ab,**,cir ’ |:l3 + (05 ’ ZZ + nhor,b ’ 12 ):| +
[ 2-x,, +x
1 B,k B,1
+(¢9sz,u,Q + (Dllrzy,u,Ml) ’ Ab,ll,ad ’ [ll - -

—(0.5- lz ~horp lz)] + (¢9sz,u,g ! szy,u,Mt) )

. ' 13.2-x3,3+x31k
bl ad A

+(0.5-L,+m,,,., L) |+
3 Xgyt+Xp; '

"’(% Toruo TP T ) Ay i ad ‘[11 t (0-5 /R )} +
+(§012 T ~ P 'sz,u,Mr)'Ab,**,cir,ad '[13 +
"'(0-5‘[2 F Mhor b - )} + X, 'Ab,k,xB 'Zb,i- (53)

Here K,,, K

same

— numerical coefficients, the

as in the formula (20);

1 : .
a,,(c)=a-c—1I - Elz — horizontal distance

from the structural support to the center of
gravity of the compressed concrete zone in
section k; (4 —distance from section I-I to the
structural support). The projection ¢ is assumed
to be constant at each step of the iterative
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process. Concise valves on either side of the
cross-section in this equation is not taken into
account in view of the smallness of the shoulder
relative to the point b, (because of the

smallness of the parameter x,); &, &, &,
¢..» @ - parameters, taking into account the

components of the "pin" effect in the armature
(at each step of the iteration are taken as
constants and are determined based on the
model of the second level); @, @, — filling

ratio plots shear stresses; 7,,., — the distance
between the center b, (the longitudinal axis of
the beam) and the point b (see figure 2); /,, —
shoulder from the point 5, to the center of
gravity of the cross-section with an area of
(x, —x,,)-+/l; +b* on the zone ,.

Equation (53) determines the bending moment
M

bend k *
Next, we determine the transverse force from
internal forces:

_ Mbend,k

Qk = Rsup,k,M -

(54)

am,k

Here, M,,,, . is found from the equation (53).

am,k = am,b(c) + KMKpr,M . (55)
The height of the compressed zone xj in cross-

section k-k between cross-sections I-I and III-I11
(see Figure 2) can be found from the ratio:

_ X tx

%= (56)

x,— height of the compressed zone in section I-I

for the equation (23); x3 — height of the

compressed zone in section III-III for the
equation (24).
Enter the notation:
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Xk

_ 57
Xp i + Ax, 57)

m=

Here, the height of the compressed zone x,,

for the k-k section is determined from equations
(46), including and xj . Then, for the increment

of the height of the compressed zone in sections
k-k and 1-1, we can write:
Ax, =x, —x,. (58)

On the other hand, if the relation (57) holds for

X
sections 1-1, we can write 7, = 2l From
X1+ A,
here x,, we get:
-Ax
Xy, =N (59)
m—1
In this equation, the value Ax, is known.
Similarly, by entering the notation 7,:
Xp
773 - - > (60)
X —AX;

Determine the height of the compressed zone in
sections 3-3:

v = -Ax, .
ENCASY

(61)

The sum of the projections of all forces acting in
the spatial section k on the z-axis is zero (3. Z=0,
see block II, Figure 2):

h

1ga
qsw,rig = T[qsw,lef 'nq ’ tg_a -
0

_¢7,*Rs Z a)*,cirAs,*,cir - (p7,*,rigRs z a)rig,*,cirAs,rig +
+¢7,*,lefRs z a)lef,*As,lef _Q +Rsup

+(¢11sz,u,Mt + ¢9sz,u,Q) : Ab,l] +
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+(¢11sz,u,]l/[t - ¢9sz,u,Q) +

((Pm Toum TP 'sz,u,Q)'
((P14 Toum — P2 'sz,u,Q) Ay i T
Zy, 'Ab,k,xB - ((Dnsz,u,Mt + %sz,u,g)' Ab,ll,ad +
((Dllz-zy,u,Mt _(p9sz,u,Q) 'Ab,13,ad +
((”14 Toum TP 'sz,u,Q) Ay ciraa T

+(¢14 ’ sz,u,Mt - (012 ’ sz,u,Q) ’ Ab,**.cir,ad + Zb,k ' Ab,k,core ‘ (62)

Ab,l3
A +

b, *,cir

Here Z,, — the projection of the components of

stresses in the spatial section on the z-axis;
@115 Pr.ie — Darameters that take into account

the components of the "nagel" effect in the
reinforcement (at each step they are taken as
constants and determined based on the second —
level model); QO — the transverse force in the
section from the support to the k-k section.

For the midpoint (bk) of a polyline spatial
section k on the zone /, we can write:

2
Zb,k = (¢12 ' sz,u,Q i ¢l4 ’ sz,u,Mt ) : 7 +
V2

- (63)

+ ((p9 ! sz,u,Q i ¢11 ’ sz,u,Mt ) '

Substituting in the formula (63) tangential stress

T.up Instead of 7 T instead

ofr

zx,u,Q zx,ad , Mt

and 7

instead of 7 ad M

2y,u,Q
and using the dependencies

zx,u, Mt sz,ad,Q

instead of 7,

sz,ad,Q - sz,u,Q - zx,cre,Q 2 ’[zx,ad,Mt - z-zx,u,Mt - sz,crc,Mt b

Tyad.0 = Ty ™ Topere,0

the unknown ¢

T T

zy,ad , Mt =

the linear force in the

T T

zy,u, Mt - zy,cre, Mt

rig
clamps on the right side of the section is
determined from equation (62).

The linear force in the clamps on the left side of
the section (g,,,, ) can be found from the

relation:

qsw,qu = qsw,rig - 7711,* : TQ; (64)
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Here En,* :;H -b — is a coefficient that takes

into account the projection lengths of inclined
cracks on the left and right faces are
approximately the same, i.e. ¢, = c,, but t7g-

In this case, for the running force in the clamps,
the condition must be met:

4 08-R -4, —
< < SW SW

n-R, -
bt 4
u S sw,lef — _7711 'TQ (65)

s N

(67)

The sum of the moments of internal and
external forces in the transverse plane relative to
the x-axis passing through the point of
application of the resultant forces b, in the

compressed zone is zero (3. 75+=0, see block 77,
Figure 2):
Mt = Rsup ’ nhor,b + KT ' 77 : Rsup ’ am(c) =
= Rsup nhor,b + KT ’ 77 ’ am (C)) =

= —qswﬁ\/lzz +4R? -(h0 — O,SxB,k) —

h
g rig tg_a : (0>5b Mhorp 2R) +
h
F 1 11y 'E '(R + Mhorp '2R) +
+77hor,b ’ b : ¢7,*Rs z a)*,cir s

- (hO - O’ SxB,k ) . ¢8,*RS Z a)*,cirAs +
—(O,Sb F Mhorp b) QR za)lej',*,cirAs,lgf -
_(ho — Xk T as,i,lef) Py e R Z a)lc_’f,*,cirAs,lef -
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_(09517 “horp ) D7+ rig I\ Z Diq % cir 4, rig
_(ho —Xpi T Strtg) D+ 1ig Sza)rtg cirfls rig —
—Rop  Mhors +(§011Tyz,u,Mt + %Tyz,u,Q)
A, [R-m,,, 2R-2a", |+
+(i¢117’-yz,u,Mt + (p9Tyz,u,Q) 'Ab,lz : (R —-2a', ) +
+(¢)11Tyz,u,Mt - %Tyz,u,g) Ay [R + 10y 2R =20 'st +
+(¢14 Tt T P12 Thnno ) Ay i '[R -
My 2R —a 'sci| + (§014 Ty ~
P Thuo ) Ay o cir '[R + 14y " 2R —a 'st +
+((ﬂ] 1Cyzumn T ¢9Tyz,u,Q) ’ Ab,/l,ad ) [R -
“horp 2R- za'sc] + (igollz-yz,u,Mt +
+(P9Tyz,u,Q) 'Ab,lz,ad ‘ (R - 2avsc) +
+((P11Tyz,u,m - %Tyz,u,g) 'Ab,z3,ad : [R +
00 2R - 2a'sc:| + [(014 T T
TP, Tyx,u,Q:| s T [R ~Mhorp " 2R—a 'sc] +
+((014 T — P2 'Tyx,u,Q) : Ahﬁ*,cir,ad '[R +
-h.=0(68)

bkco:e i

+77hor,b ' 2R - avsc] + Yb

Here K,

into account the peculiarity of the static loading
scheme in terms of additional torques along the
length of the structure; K — a coefficient that

,— 1s a numerical coefficient that takes

takes into account the relations between R

and T’ ¢7,lef’ ¢7,rig’ ¢8,lef’ ¢8,rig’ -

that take into account the components of the
"nagel" effect in the reinforcement. At each
iteration step, these parameters are taken into
account as constants and determined using the
second-level model; — the distance

parameters

Mhorb.tef
between the center b, (the longitudinal axis of

the beam) and the point b, , (see Figure 2, left

lef
part of the plot); ¢, — the angle of inclination of

the middle section of the compressed concrete
zone to the horizontal plane. The value of this

\Volume 17, Issue 3, 2021

angle, based on experimental data, can be
assumed to be 45° in the first approximation.
The torque moment M, can be expressed in

t
terms of the bending moment using a relative
parameter 7 taking into account the coefficient

value Kr:

M =n-M

t bend *

The total torque moment A, can be written as

the sum of the torque moment expressed in
terms of bending and the torque from the
reaction of the support and the eccentricity of its

application 77y, p:

Mt = Rsup ’ nhor b + KT ’ 77 ' Rsup ’ am (C) =
Rsup (nhorb +K nam(c))a

@ — filling ratio plot shear stresses in torsion in
the compressed concrete in accounting for
elastic-plastic work; gswr — linear stress to the
clips that occur at the sides of the reinforced
concrete element from the torque 7 (see figure
2); q,,.,— linear stress to the clips that occurs on

the bottom face of the concrete element from
the torque 7; A, — shoulder from point b, to the

center of gravity of the cross-section area

X, —xp, )AL +b” at the zone I,; Y,

projection components of the stresses in the
broken section on the y-axis. For the midpoint
(bx) of the polyline section k on the section /2,
by analogy with (63), we can write:

NG

Y, =0, Tou0" 5 05 T 5

. (69)

Substituting in (69) the tangent stress 7, ,

instead of T o0 and T ad M instead of T eut®
and using the dependencies
sz,ad,Q = sz,u,Q - sz,crc,Q;
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T from the equation

yx,ad, Mt

(68) the unknown M, is found.

t

= 2-yx,u,Ml - 7’-y)c,crc,Mf

The sum of the projections of all forces acting in
the spatial section k on the y-axis is zero (3 Y=0,
block 17, see figure 2):

1
qsw,o‘ = ’ I:_¢8 *rig SZ Ilg cir s Ilg
I + 4R’
_gDS,*,lefRs Z a)/ef,cirAs,lef - (085* ' Rs Z a)*As +

+Q) T, Mt 'Ab,* + ¢ T, Mt 'Ab,** +

2 12
+Y;77k “Xp i '\]lz +b° +¢, T, M 'Ab,*,ad +

LORE PRV SRIED ARV SRS ARV S R ¢/1)

x,u, Mt b,x* ad bk,xp

Here 4.

the components of the "nagel" effect in the
armature, which is taken as a constant at each
iteration step and is determined using the
second-level model [12,14,15].

From the equation (70) the unknown gsw. is
found.

When composing a function of many variables,

it is taken into account that A, =¢(x),

s :¢(C)a A :¢(C)a

¢, =const; o, =const; o,

— is a parameter that takes into account

a = const,

1s an unknown

quantity, and the value M, =const. The
moment M, = f(c).
Transition ~coefficients ¢, etc. calculated

iteratively, they are discrete constants at each step.
The functions f(x,y,z) of the diagonal large
ellipse of the considered construction of a
circular cross-section (with a smaller diagonal
b=R and a larger diagonal a =/ (c)+1, +(c)

can be written:

y’ 2z _
(2l(c) + R\2)? e : 70
Here L =RN2;  a=Ic)+RV2+I(c)=
=21(c)+R2.

Vladimir I. Kolchunov, Sergey A. Bulkin

From this equation we get:

l(c)=—F— (72)

~RV2 \/R_Z VR’

.
2 2 AR*-7)

Then the projection of the spatial crack on the

horizontal axis is determined from the
expression:

2
c=1(c)+],+1(c) = 2/R—+4(yR <R32, (73)

V2

Here [ (c)=1,(c)=dcosa =d -cos45° = dT;

a=d%+R\/§+d%=R-3\/§.

CONCLUSION

1. A calculated model and a beam calculated
scheme are proposed for analyzing the complex
limiting resistance of a reinforced concrete
structure from the action of bending with
torsion, taking into account the spatial nature of
cracks in reinforced concrete elements of
circular cross-section.

2. For the calculated forces, the resolving
equations of equilibrium and the equations of
deformations are compiled. In the considered
calculated sections I-I and III-III, unknown
components of the torque, height, and area of
the compressed zone of concrete for an element
of a circular cross-section are obtained.
Similarly, using the equilibrium equations and
strain equations for the spatial section k passing
along the surface of the spatial crack, the
components of the torque, the height of the
compressed concrete zone, deformations and
stresses in the reinforcement for the left and
right parts of the section under consideration,
and the load intensity in the clamps are
obtained.
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3. In the spatial section k, cut off by a spiral-
shaped spatial crack, all the reinforcement
intersected by this section is taken into account.
The use of a complex broken section of a
compressed concrete zone for practical
calculations was due to the fact that cracking
and destruction occurred in a certain volume
according to linear dependencies at an angle
close to the middle part of the broken section,
where the maximum stress-strain state is
reached.

4. In the area of the stretched zone of the spatial
crack of a reinforced concrete round rod, the
right and left contours of the longitudinal
stretched working reinforcement and clamps are
highlighted. The calculation scheme also takes
into account the "nagel" effect in the stretched
longitudinal and transverse reinforcement
falling into this spatial section, the parameters
of which are determined using a special model
of the second level.

5. The static scheme of loading of a
reinforced concrete element during bending
with torsion was considered from the positions
of the proportional ratio between the torques
(the coefficient from the reaction of the support
R, ) along the length of the rod in the spatial

section k and in the cross-sections (first and
third).

REFERENCES

1. Bondarenko V.M. Computational models
of the strength resistance of reinforced
concrete. / V.M. Bondarenko, V.l
Kolchunov. — M .: ACB, 2004. — 472 p.

2. Golyshev A. B. Resistance of reinforced
concrete / A. B. Golyshev, V. 1. Kolchunov.
— K .: Osnova, 2009 .- 432 p.

3. Travush V.1, Karpenko N.I., Kolchunov
VL. 1., Kaprielov S.S., Demyanov A.lL,
Bulkin S.A., Moskovtseva V.S. Results of
experimental studies of high-strength fiber
reinforced concrete beams with round
cross-sections under combined bending and
torsion// Structural ~ Mechanics of

\Volume 17, Issue 3, 2021

10.

11.

Engineering Constructions and Buildings
2020 —Vol.16 (4). pp. 290-297.

Adheena Thomas, Afia S Hameed. An
Experimental Study On Combined Flexural
And Torsional Behaviour Of RC Beams.
International ~ Research  Journal  of
Engineering and Technology. 2017. Vol.
04. Issue 05. Pp. 1367-1370.

Khaldoun Rahal. Combined Torsion and
Bending in Reinforced and Prestressed
Concrete beams Using Simplified Method
for Combined Stress-Resultants. ACI
Structural Journal. 2007. Vol. 104. No. 4.
pp. 402—411.

Kolchunov VLI., Fedorov V.S. Conceptual
hierarchy of models in the theory of
resistance of building structures // Industrial
and civil engineering. 2020 —Ne§ — P. 16-
23.

C. Kim, S. Kim, K.-H. Kim, D. Shin, M.
Haroon, J.-Y. Lee. Torsional Behavior of
Reinforced Concrete Beams with High-
Strength Steel Bars. 2019. Structural
Journal. Vol. 116, pp. 251-233.

Kandekar, S.B., Talikoti, R.S. Study of
torsional behavior of reinforced concrete
beams strengthened with aramid fiber
strips. International Journal of Advanced
Structural Engineering. 2018. Vol. 10, pp.
465-474. doi: 10.1007/s40091-018-0208-y.
Kiistek, V., Prusa, J., Vitek, J.L.: Torsion
of Reinforced Concrete Structural Members.
Solid State Phenom. 2018. Vol. 272, pp. 178—
184.
doi:10.4028/www.scientific.net/SSP.272.178.
Santhakumar R., Dhanaraj R.,
Chandrasekaran E. Behaviour of
retrofitted reinforced concrete beams under
combined bending and torsion: A numerical
study. Electronic Journal of Structural
Engineering. 2007. No. 7. pp. 1-7.

Ilker Kalkan, Saruhan Kartal. Torsional
Rigidities of Reinforced Concrete Beams
Subjected to Elastic Lateral Torsional
Buckling. International Journal of Civil and
Environmental Engineering. 2017. Vol. 11.
No.7. Pp. 969-972.

79



12.

13.

14.

15

16.

17.

18.

80

Salnikov A., Kolchunov V1., Yakovenko
I. The computational model of spatial
formation of cracks in reinforced concrete
constructions in torsion with bending
(2015), Applied Mechanics and Materials
Vols. 725-726 (2015) pp. 784-789.
Iakovenko 1., Kolchunov V1. (2017). The
development of fracture  mechanics
hypotheses applicable to the calculation of
reinforced concrete structures for the
second group of limit states. Journal of
Applied  Engineering  Science, Vol.
15(2017)3, article 455, pp. 366-375. (In
English) doi:10.5937/jaes15-14662
Demyanov A.. Development of a
universal short two-console element to the
resistance of reinforced concrete structures
during torsion with bending / A.L
Demyanov VL. 1. Kolchunov, I. A.
Yakovenko // Izvestiya VUZov. Textile
industry technology. 2017. No. 4 (367). —
pp. 258-263.

Bernardo, L. Modeling the Full Behavior
of Reinforced Concrete Flanged Beams
under Torsion. Applied Sciences. 2019.
Vol. 9. doi:10.3390/app9132730.

Pettersen J. S. Non-Linear Finite Element
Analyses of Reinforced Concrete with
Large Scale Elements: Including a Case
Study of a Structural Wall. Norwegian
University of Science and Technology,
2014. 85 p.

Nahvi H., Jabbari M. Crack detection in
beams using experimental modal data and
finite element model. International Journal
of Mechanical Sciences. 2005. Vol. 47.
pp.1477-1497.

Demyanov A., Kolchunov VI The
dynamic loading in longitudinal and
transverse  reinforcement at  instant
emergence of the spatial crack in reinforced
concrete element under the action of a
torsion with bending. Journal of Applied
Engineering Science, vol. 15(2017)3, article
456, pp. 375-380. (In  English)
doi:10.5937/jaes15-14663

19.

20.

21.

22.

23.

24

25.

Vladimir I. Kolchunov, Sergey A. Bulkin

Vishnu H. Jariwalaa, Paresh V. Patel,
Sharadkumar P. Purohit. Strengthening
of RC Beams subjected to Combined
Torsion and Bending with GFRP
Composites. Procedia Engineering. 2013.
Vol. 51. Pp. 282-289.

Tsai H.-C., Liao M.-C. Modeling
Torsional Strength of Reinforced Concrete
Beams using Genetic Programming
Polynomials with Building Codes. 2019.
KSCE Journal of Civil Engineering. Vol.
23, pp. 3464-3475 (2019).
doi:/10.1007/s12205-019-1292-7.
Arzamastsev S.A., Rodevich V.V. To the
calculation of reinforced concrete elements
for bending with torsion. Izvestiya vysshikh
uchebnykh zavod. Construction, 2015 —Ne9
- pp. 99-109.

Karpyuk, V.M., Kostyuk, A.l., Semina,
Y.A. General Case of Nonlinear
Deformation-Strength Model of Reinforced
Concrete Structures. Strength Mater. 2018.
Vol. 50, pp. 453-454. doi:10.1007/s11223-
018-9990-9.

Jan L. Vitek Jaroslav Prisa, Vladimir
Kristek, L.B. Torsion of Rectangular
Concrete  Sections. ACI  Symposium
Publication. 2020. Vol. 344, pp. 111-130.
Rahal, K.N. Torsional strength of
reinforced concrete beams. Canadian
Journal of Civil Engineering. 2000. Vol. 27,
pp. 445-453. doi:10.1139/cjce-27-3-445.
Lin, W. Experimental investigation on
composite beams under combined negative
bending and torsional moments. Advances in
Structural Engineering. 2020. Vol. 24, pp.
1456-1465. doi:10.1177/1369433220981660.

CIIMCOK JIMTEPATYPbI

1.

bounpapenko B.M. Pacuernsie wmoxaenu
CHJIOBOTO COIIPOTHBIICHUS JKene300eToHa. /
B.M. bounapenko, B.1. KomuyHoB. — M.:
ACB, 2004. - 472 c.

International Journal for Computational Civil and Structural Engineering



loabimes A. b.  ConpotuBieHue
xkene3oberona / A. Bb. Tombimes, B. U.
Komuynos. — K.: Ocnoga, 2009. — 432 c.
Tpasyw B.HU., Kapnenko H.A,
Komuynos Ba. H., Kanpumesos C.C.,
JleMbsiHOB AN., Byakun C.A,,
MockoBieBa B.C. Pe3ynbTaThl
AKCIIEPUMEHTAILHBIX UCCIICIOBAHUMA
CIIOKHO-HAMPSDKEHHBIX ~ 0aJlOK  KPYyTJIOro
MOTIEPEYHOT0 CEUEHUS U3 BHICOKOTPOUYHOTO
¢dubpoxenezoberona //  CrpourtenbHas
MEXaHHKa HWHXEHEPHBIX KOHCTPYKIHH U
coopyxkennit. 2020 —1.16 — Ned — C. 290-
297.

Adheena Thomas, Afia S Hameed. An
Experimental Study On Combined Flexural
And Torsional Behaviour Of RC Beams.
International  Research  Journal  of
Engineering and Technology. 2017. Vol.
04. Issue 05. Pp. 1367-1370.

Khaldoun Rahal. Combined Torsion and
Bending in Reinforced and Prestressed
Concrete beams Using Simplified Method
for Combined Stress-Resultants. ACI
Structural Journal. 2007. Vol. 104. No. 4.
pp- 402-411.
KoiuyHnos
[lonsiTuiinas

Ba.U.,, ®enopo B.C.
uepapxuss B TEOpUHU
COTIPOTUBIICHUS CTPOMTETBHBIX
KOHCTpyKuud  //  IlpoMmblliuieHHOE |
rpaxaaHckoe crpoutenbeTBo. 2020 — Ne§ —
c. 16-23.
C. Kim, S. Kim, K.-H. Kim, D. Shin, M.
Haroon, J.-Y. Lee. Torsional Behavior of
Reinforced Concrete Beams with High-
Strength  Steel Bars. 2019. Structural
Journal. Vol. 116, pp. 251-233.
. Kandekar, S.B., Talikoti, R.S. Study of
torsional behavior of reinforced concrete
beams strengthened with aramid fiber
strips. International Journal of Advanced
Structural Engineering. 2018. Vol. 10, pp.
465-474. doi: 10.1007/s40091-018-0208-y.
Kristek, V., Prusa, J., Vitek, J.L.: Torsion
of Reinforced Concrete Structural Members.
Solid State Phenom. 2018. Vol. 272, pp. 178—

\Volume 17, Issue 3, 2021

10.

1.

12.

13.

14.

15

16.

Calculation Scheme of Reinforced Concrete Structures of Circular Cross-Section Under Bending with Torsion

184.
doi:10.4028/www.scientific.net/SSP.272.178.
Santhakumar R., Dhanaraj R.,
Chandrasekaran E. Behaviour of
retrofitted reinforced concrete beams under
combined bending and torsion: A numerical
study. Electronic Journal of Structural
Engineering. 2007. No. 7. pp. 1-7.

Ilker Kalkan, Saruhan Kartal. Torsional
Rigidities of Reinforced Concrete Beams
Subjected to Elastic Lateral Torsional
Buckling. International Journal of Civil and
Environmental Engineering. 2017. Vol. 11.
No.7. Pp. 969-972.

Salnikov A., Kolchunov V1., Yakovenko
I. The computational model of spatial
formation of cracks in reinforced concrete
constructions in torsion with bending
(2015), Applied Mechanics and Materials
Vols. 725-726 (2015) pp. 784-789.
Iakovenko I., Kolchunov V1. (2017). The
development of fracture  mechanics
hypotheses applicable to the calculation of
reinforced concrete structures for the
second group of limit states. Journal of
Applied  Engineering  Science, Vol.
15(2017)3, article 455, pp. 366-375. (In
English) doi:10.5937/jaes15-14662
JleMbsIHOB A.N. Pa3pabotka
YHHUBEPCAIHLHOTO KOPOTKOTO JIBYX-
KOHCOJIBHOTO 3JIEMEHTa K CONPOTUBIICHHUIO
KeNe300€TOHHBIX ~ KOHCTPYKLIUH  TpH
Kpyueruu ¢ uzruoom / A.W. JlempsinoB Bu.
N. Komuynos, U. A. SIxosenko // V3Bectust
BVY3os. TexHonorus TEKCTHJIbHOU
npombinuieHHOCTH. — 2017, Ned4(367). — C.
258-263.

Bernardo, L. Modeling the Full Behavior
of Reinforced Concrete Flanged Beams
under Torsion. Applied Sciences. 2019.
Vol. 9. d0i:10.3390/app9132730.

Pettersen J. S. Non-Linear Finite Element
Analyses of Reinforced Concrete with
Large Scale Elements : Including a Case
Study of a Structural Wall. Norwegian
University of Science and Technology,
2014. 85 p.

81



17. Nahvi H., Jabbari M. Crack detection in
beams using experimental modal data and
finite element model. International Journal
of Mechanical Sciences. 2005. Vol. 47.
pp.1477-1497.

18. Demyanov A., Kolchunov VL The
dynamic loading in longitudinal and
transverse  reinforcement at  instant

emergence of the spatial crack in reinforced
concrete element under the action of a
torsion with bending. Journal of Applied
Engineering Science, vol. 15(2017)3, article
456, pp. 375-380. (In  English)
doi:10.5937/jaes15-14663

19. Vishnu H. Jariwalaa, Paresh V. Patel,
Sharadkumar P. Purohit. Strengthening
of RC Beams subjected to Combined
Torsion and Bending with GFRP
Composites. Procedia Engineering. 2013.
Vol. 51. Pp. 282-289.

20. Tsai H.-C., Liao M.-C. Modeling
Torsional Strength of Reinforced Concrete
Beams using Genetic Programming
Polynomials with Building Codes. 2019.
KSCE Journal of Civil Engineering. Vol.
23, pp- 3464-3475 (2019).
doi:/10.1007/s12205-019-1292-7.

Vladimir I. Kolchunov, Sergey A. Bulkin

21. Ap3amacueB C.A., PoaeBuu B.B. K
pacueTy »Kele300€TOHHBIX JJIEMEHTOB Ha
m3rud ¢ kpydeHueM // V3BecTHsi BBICIINX
yueOHbIX 3aBeaeHuid. CtpoutensctBo, 2015

—Ne9 — ¢. 99-109.
22. Karpyuk, V.M., Kostyuk, A.l., Semina,
Y.A. General Case of Nonlinear

Deformation-Strength Model of Reinforced
Concrete Structures. Strength Mater. 2018.
Vol. 50, pp. 453-454. doi:10.1007/s11223-
018-9990-9.

23. Jan L. Vitek Jaroslav Prusa, Vladimir
Kristek, L.B. Torsion of Rectangular
Concrete  Sections. ACI  Symposium
Publication. 2020. Vol. 344, pp. 111-130.

24 Rahal, K.N. Torsional strength of
reinforced concrete beams. Canadian
Journal of Civil Engineering. 2000. Vol. 27,
pp. 445-453. doi:10.1139/cjce-27-3-445.

25. Lin, W. Experimental investigation on
composite beams under combined negative
bending and torsional moments. Advances in
Structural Engineering. 2020. Vol. 24, pp.
1456-1465. doi:10.1177/1369433220981660.

Viadimir 1. Kolchunov, Dr.Sc., Professor, Department
of unique building and structures, South-Western
State University, 94, 50 let Oktyabrya street, Kursk,
305040,Russia phone: +7 (910) 317-93-55; e-mail:
vlikb2@mail.ru

Bulkin S. Aleksandrovich, Chief Design Specialist of
Urban planning institute of residential and public buildings
(GORPROJECT), 105005, Russia, Moscow, Nizhny Susalny
lane, 5, building 5A

Konuynoe Braoumup Heanosuy, TOKTOp TEXHUIECKUX HaYK,
npodeccop kKadenps! « YHUKAIBHbIE 31aHUSI U COOPYKEHHSD),
IOro-3ananuelii rocynapctsensblil yuusepeutet; 305040,
Poccus, . Kypek, ym. 50 ner Oxtsa0pst, mom 94; ten .: +7
(910) 317-93-55; e-mail: vlik52@mail.ru

bynkun Cepeeii Anexcandposuu, TIIaBHBIHN CIICITHATICT-KOH-
ctpykrop 3A0 «[opoackoll MPOEKTHBIN HHCTUTYT KHIIBIX
1 oOlIecTBeHHBIX 37anuiiy», Poccus, 105005, Poccust, T
Mocksa, Hwxnuii CycanbHsblii nep., 5, ctp. SA

82 International Journal for Computational Civil and Structural Engineering



International Journal for Computational Civil and Structural Engineering, 17(3) 83-93 (2021)
DOI:10.22337/2587-9618-2021-17-3-83-93

GEOMETRIC REPRESENTATIONS OF EQUILIBRIUM CURVES
OF A COMPRESSED STIFFENED PLATE

Gaik A. Manuylov, Sergey B. Kosytsyn, Irina E. Grudtsyna
Russian University of Transport (RUT - MIIT), Moscow, RUSSIA

Abstract: The work is aimed at studying the solutions of the stability problem (subcritical and postcritical equilibrium)
of an infinitely wide regular compressed reinforced plate, using a selected T-shaped fragment that is equally stable with
others. The authors have given a classification of possible analytical solutions for these plates. The results of the work are
presented in the form of variants of spatial bifurcation diagrams, values of critical loads, as well as coordinates of singular
points for different cases of solutions.

Keywords: stability, stiffened plate, post-critical equilibrium, critical load, bifurcation curve

TEOMETPUYECKHUE IPEJICTABJEHHUSI KPUBBIX
PABHOBECHSI C’KATOM NOJAKPEIIJIEHHOM IJIACTUHBI

I'A. Manyiinos, C.b. Kocuuvin, U.E. I pyouyvina
Poccuiickuit yausepcuret Tpancnopta (MUHNT), . Mocksa, POCCUA

AHHOTanms1: padoTa HAMpaBjIcHA HAa MCCIICIOBAHUE PCIICHUI 3aa4i YCTOMYMBOCTH (JIOKPUTUUCCKOTO M TTOCICKPUTHYEC-
CKOTO paBHOBeCHs1) OECKOHEUHO HIMPOKON PETyJSIpHON CKATOW MOAKPEIUIEHHON TUIACTHHBI, MIPH MOMOIIX BbIIEIEHHOTO,
PaBHOYCTOHYMBOTO ¢ ApyruMu T-o0pasHoro hparmMeHTa. ABTOpaMu J1aHa KJiacCU(UKAIIUS BO3MOXKHBIX aHATUTUICCKUX Pe-
UICHUI JUTS JAHHBIX [UIACTHH. Pe3ybraThl paboThl IPEICTABICHBI B BUIC BAPHAHTOB MPOCTPAHCTBEHHBIX OM(YPKAIIOHHBIX
JMarpaMM, 3Ha4€HUN KPUTHUECKHUX Harpy3o0K, a TaK’Ke KOOPAUHAT CUHTYJISIPHBIX TOUEK /JIsl pa3JInYHbIX CJIy4aeB PEIICHUN.

KiioueBble ciioBa: yCTOHYMBOCTD, TIOIKPEIUICHHAS IIJIACTHHA, MOCICKPUTHUECKOE PABHOBECHE, KPUTHYECKas Harpy3Ka,
Oou(ypKalMoHHas KpuBast

1. INTRODUCTION presented, and a laconic classification of
possible solutions presented in the form of
Algorithms for solving the problem of stability  spatial bifurcation diagrams is given.
of reinforced plates have been described by a
fairly large number of authors, starting from the
50s of the twentieth century
[1,3,5,7,10,11]. However, the main and
extremely important research factor that unites
all works on this topic is the interaction of its
own forms (general and local forms of loss of
stability). It is the interaction of forms that
affects the bearing capacity of the reinforced

plate, significantly reducing it in a number of

2. PROBLEM FORMULATION

An infinitely wide reinforced plate s
considered. Physical characteristics of the material:

E=2:10kg/cm’, u = 0.3.

Boundary conditions: the plate is hinged-
supported at the ends, the longitudinal edges are

cases. In this article, for the first time, a
qualitative study of post-critical equilibria is

\Volume 17, Issue 3, 2021

free. Figure 1 shows a cross-section of a
reinforced plate with corresponding dimensions.
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Figure 1. The plate cross section

Here b — is the distance between the ribs in the
axes, h - is the thickness of the plate,

b, — is the height of the rib, t; — is the thickness
of the rib, L — is the length of the reinforced
plate.

Let us analyze the equilibrium of one T-shaped
fragment of the reinforced plate, which is

2l
=T

with

equally stable the others. Boundary
conditions for it: hinged support along the short
sides, along the longitudinal edges, fastening of
the movable termination type (Figure 2). A
compressive force is applied at the center of
gravity of the section.

Figure 2. Conditions for fixing and finite-element model of the T-shaped fragment

3. CLASSIFICATION OF POSSIBLE
SOLUTIONS

A reinforced plate is an example of an

asymmetrical structure that consists of elements:

a plate (sheathing) and reinforcing ribs. This

design has several forms of buckling:

» the general shape, which is a half-wave of a
sinusoid, which is close to the bulge shape of
a wide Euler strut;

» local forms of wave formation.

Under central compression, a general deflection
develops towards a more rigid element, i.e. if the
reinforcing ribs are weaker in relation to the plate,
then the deflection develops on the side of the plate,
so that the ribs turn out to be on the concave side
(Figure 3a). If the plate is conditionally “weak”
then the edges turn out to be on the convex side
(Figure 3b). Thus, the general form of buckling is
characterized by the deflection direction.

277
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F igure 3. Two main types of general form of bucklmg
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Considering the internal forces arising from the
compression of the reinforced plate, it can be
concluded that along with the compressive
force, due to the inevitable small eccentricities,
an internal bending moment also appears, and
the more the deflection increases, the more the
influence of this moment is manifested. In the
usual understanding of the linear stability
problem, any structure has linearly independent
(orthogonal), and therefore independent from
each other forms, they can be observed when

solving buckling in any finite element complex.
However, the nonlinear solution shows that the
general shape with increasing deflection sooner
or later generates a new one - wave formation in
the plate or reinforcing ribs (Figure 4). Wave
formation of the plate is possible when the ribs
are in the stretched bending zone, and the plate
is in the compressed one. Wave formation in the
reinforcing ribs develops in the opposite
direction of the general deflection.

Figure 3. Local forms of buckling in the plate or in the stiffeners

The expression for the total potential energy of
a compressed reinforced plate in the case of

interaction of two forms of loss of stability (s =
2) has the form:

1 AN, 1 N, 1 L1,
[y =a0+5a4 (1 —_> &1 +5a, (1 —_> €5 + 5 a11181 + A12286:185 +—~a111181 +
2 WA .

1
+ 7 222283 + 5 11228583

where: § — are normalized eigenforms (the
amplitude of the deviation of the eigenmode
relative to the plate thickness;

A —is the load parameter;

Z— are imperfections in the s-th form of
buckling (s =1, 2,... ..n).

A 2 2 A —
(1-5)a +att+a =1

(1 _%> &2 + d38:6; =
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3 4 (1)

A

A — _
- A—lalilil - Eazzzzz

Coefficients: a;q; — characterizes the general
form of buckling, a,,, — interaction of forms.
The first variation of the total potential energy
for each form gives the equilibrium equations:

2)
A —
E 3)

X
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ai11
where: d; = —,

a; a;

A4 — is the critical load of the linear calculation
of the general form of buckling by the type of
an Euler strut;
¢, — relative amplitude corresponding to the
general shape;
¢, — relative amplitude corresponding to the
local form of loss of stability of wave formation
(plate or ribs);
A, — waveform load.
The general form of buckling depends only on
the direction of the deflection and the
corresponding coordinate &;; all solutions for a
given form will be called unbound solutions. In
this case, any wave formation (in the plate or
reinforcing ribs) is absent (§, = 0).
The study of uncoupled solutions is based on
considering the equilibrium equations (2) and
(3). In the case of an ideal problem (without
initial geometric imperfections), the right-hand
sides of the equations are zeroed, and under the
condition (§, = 0) from (2) we obtain the
equation of the straight line of the general
deflection:

b =di§ +1 (4)
and the expression for the coordinate of this
straight line:

_(1—U1)

€1 = d,

(5)

The straight line of unbound equilibria is
located in the plane Ag;, the geometric meaning
of the coefficient d; is expressed in the slope of
this straight line. If the coordinate &; >0, d; <
0 (always), then p,; decreases and vice versa
(Figure 5). From equation (5) it follows that at a
load p; =1, (i.e., the compression load is equal
to the critical load of the linear calculation), a
bifurcation point appears, corresponding to the
general form of buckling. The birth of
bifurcation points is possible only if the system
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3 ay H1 A H2 H1
in subcritical equilibrium has an energy-
orthogonal complement, 1i.e.there is a

possibility of the emergence of new force
factors, whose influence on the system forms a
new form of equilibrium. In this case, the initial
subcritical equilibrium is determined by the
action of the compressive load. However, in any
case, the development of the general deflection
of the reinforced plate arises, and at the same
time a new force factor appears - the bending
moment. If the problem is considered taking

into account the initial deflection (§; # 0), then
the equation for p, will take a slightly different
form (the equation of imperfect curves-
hyperbolas tending to a straight line of general
deflection):

RACAERY

— 6
&1+ & ©

M1

The local form of wave formation arises with
the development of a bending moment and
compressive stresses in the middle part of the
reinforced plate, the action of which provokes a
nonlinear system to self-organization (the
definition is given by G.A. Manuylov [7]), this
means to a change in the form of buckling,
therefore the coordinate &, is a function total
deflection, i.e. defines the associated strain.

The coupled solutions are divided into two types:

» bifurcation solutions with (a #0) or
without the initial deflection (§; = 0);

> solutions with limit point (§; # 0 u &, # 0).

From equations (2) and (3) with &, # 0 and

disregarding the initial imperfections

(¢, = 0u &, = 0) we obtain that:

A
ds (1 -+
& = +& 3( );\1)_% (7)
a(1-5)
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Figure 5. Bifurcation diagrams of unrelated solutions

Equation (7) defines post-bifurcation solutions
of coupled equilibria. However, in order to
obtain the bifurcation point itself, the condition

(1 - %) +2d,5

H, =
d3&;
In the initial subcritical equilibrium, the
waveform amplitude &, = 0, since pure

compression is in effect. Equality to zero of
determinant (8) is reduced to the condition of
equality to zero hy;or h,,. Of greatest interest is
the inversion of the h,,matrix (8), since it is
related to the second equilibrium equation.

From the condition, h,,(4,d5,&) =0 we
obtain an expression for the coordinate of the
deflection &; at the singular point:

u%(kzdl_d3k)+u1(d3+d3k_2kd1)+d1_d3:0

Equation (10) is common to any related
solution; the main role in it is played by the
coefficients d;. The d, coefficient is always less
than zero, the signs of the d, and d5 coefficients
indicate the nature of the wave formation. If
d, > 0 and d; > 0, then wave formation should
be expected in the reinforcing ribs.

\Volume 17, Issue 3, 2021

(1-£)+ds&

of equality of the Hessian potential energy to
zero is necessary. The Hesse matrix obtained
from equations (2) and (3) has the form:

2d,8;
(8)

_kpy —1

=7 ©

Substituting this expression into equation (2),
we obtain a quadratic equation to determine the
relative bifurcation load:

(10)

Accordingly, ifd, <0, d3 <0, then wave
formation will appear in the plate (skin). The
values of the coefficients di (i = 1, 2, 3) are
taken from the work of A.I. Manevich [11] for
different cases of related solutions. For the case
of wave formation in the reinforcing edges, the
values of the coefficients are:
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d, = —0.009, d, = 1.024, d5 = 0.975,
k = j—l — 1.4852.

2

Then equation (10) will take the form:

w2 —1.6688p, + 0.67=0 (11)

The roots of the equation are the values of the
bifurcation load of wave formation in the edges:

l’ll(l) = 0.67331/1 l’ll(Z) = 0.99558.

For another plate, in which wave formation
occurs in the skin, the values of the coefficients
d; are as follows:

Gaik A. Manuylov, Sergey B. Kosytsyn, Irina E. Grudtsyna

d, = —0.0069, d, = —0.503,
dy = —0.051, k = 3* = 1.287.

2

Equation (10) will take the form:

u? —1.8338y; +0.81351 =0 (12)
The values of the bifurcation load of wave
formation in the plate:

Figure 6 shows a bifurcation diagram of coupled
solutions (waving in reinforcing ribs). Figure 7
is a bifurcation diagram of coupled solutions
(wave formation in a plate).

B (0.49000; 0.99558)

Figure 6. Bifurcation diagrams of related solutions (wave making of the stiffeners)

&t

&t

Figure 7. Bifurcation diagrams of related solutions (wave making of the plate)
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In diagrams 6 and 7, point A is a bifurcation
point in the general shape, B and C are wave
formation bifurcations. As can be seen from the
diagrams, the critical load of wave formation in
both cases is lower than the load corresponding
to the shape of the total deflection. This
indicates a loss of bearing capacity near the
critical waveform load. If the ribs are in the
compressed zone and lose stability, then the
difference between the critical load of nonlinear
and linear calculations can reach up to 60% [7],
[11]. If the plate loses its stability, the difference
can be in the range of 15% - 30%. All new post-
bifurcation coupled solutions are located in
planes inclined to the plane §,0A.. All of these

A 2 2
(1 - )\_> & +dq &1 +dyE; =
1

(1 - %2) §2 +d38:6, =0

solutions are unstable because the Hessian
matrix is not positive definite, since
h,,(A,d3,&) =0 not only at the bifurcation
point, but also along all curves &,. The case of
coupled buckling in the presence of initial
deflection has a completely different
form. Consider two options for the initial
deflection:

> a = —0.5 (wave formation in the edges);
» & = 0.5 (wave formation in the plate);

€, — is the amplitude related to the thickness of
the plate (skin). Then the equilibrium equations
(2) and (3):

Then the equilibrium equations (2) and (3):

A — (13)
7\_121

(14)

And equation (10), compiled taking into account the initial imperfections, will be written as

follows:

w2 (k?dy —ds k) + pq (ds +ds k — 2kdy —d3%) +dy —ds =0

The &; coordinate is calculated in the same way
as in the previous cases; however, post-
bifurcation solutions will depend on the

imperfection amplitude a:

— | Eamg —d182 —(1—py)
EZ — +\/ S1l 12:12 b1 )81 (16)

Equation (17) corresponding to the negative
value of the deflection has the form:
uf —1.9926p, + 0.67 =0 17)

The critical loads of wave formation in the ribs
have the following values:

I‘ll(l) = 1.564 )51 u1(2)20428

The bifurcation diagram is shown in Figure 8.

\Volume 17, Issue 3, 2021

(15)

As can be seen from this graph, the values of
bifurcation loads are lower than in the case of
solutions without initial imperfections. The
bifurcation points of wave formation B and C
appear on unconnected curves of imperfect
solutions constructed according to Eq. (6).

In a situation where the deflection of a positive
sign (expected wave formation in the plate)
develops, the bifurcation diagram turns out to be
more complex, since the straight line of the total
deflection is inclined with respect to the load axis
at an angle less than 90 ° As a result, the curves of
unconnected solutions with initial imperfections
have two bifurcation points on each branch
between which there is one limiting point. From
equation (15) with the corresponding signs of the
coefficients d;, we obtain (18):

w2 —1.848y, +0.81351=0  (18)
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Figure 8. Bifurcation diagrams of related solutions (wave making of the stiﬁ”eners,a =-0.5)

Values of bifurcation loads: The coordinates of the bifurcation points are
calculated by the formula (19):

l‘ll(l) = 1.125 Hul(z) = 0.723

G- [A-wm)? wmE 19
=" +J 2 g )

Equating the discriminant of equation (19) to The coordinates of the limit points when two
zero, we determine the load at the limiting values of p, are substituted:

points:
(1—-py)
= =—— 21
Wi+ (2+%4d)y; +1=0 (20) S101.2) 2d, @D
We get: w1y = 1.125 u pyp)=0.889 The corresponding bifurcation diagram is shown

in Figure 9.

Ll

F(-0.027:1.124 D029 1125

(-8.77: 1.125)

A

{Cl1.353; 0.723)

%\‘\’”’k
Eat

Figure 9. Bifurcation diagrams of related solutions (wave making of the plate,a =0.5)
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Point B, C, D and G - points of wave formation
bifurcation in the plate. Points F and E are limit
points. Note that J. Hunt [2] previously
predicted the constructed bifurcation diagrams
using the example of concrete reinforced plates
in general form based on energy considerations.
The case of the appearance of limit points on the
equilibrium curves is possible if in equations (2)

and (3) the right-hand sides are not equal to zero

(&4 # 0,8, #0).0One of the options for
determining the critical loads and the
coordinates of the limit points is to solve the
fourth-degree equation with respect to the
coordinates of the limit point:

d1d3?1L + [2d1d3(1 —kp,)+ d%(l - H1)]E§ +
+[2d3(1 — )@ —kpy) +di (1 —kpq)?— d%lha]ﬁ +

— -2 —
H(@ =)@ — kg )? = 2ds(1 —kpy I & & + (kg )?dy 8, — (1 —kpy )?p & =0 (22)

Some solution results are given in the article
by the authors [6]. Typical bifurcation

PJM

diagrams with limit points are shown in
Figure 10.

Mia

Figure 10. Bifurcation diagrams of related solutions with limit points, (a * O,g # 0)

Note that the diagrams shown in Figures 6 and
7 correspond to the case when the critical loads
of wave formation are less than the critical loads
of the total deflection, since the post-bifurcation
waveform is unstable, the bearing capacity of
the reinforced plate is determined mainly by the
sensitivity to initial imperfections by the type of
waveforming.

If the geometry of the stiffened plate is changed
so that the critical undulation load is greater than

\Volume 17, Issue 3, 2021

the critical load of the total deflection (Figure 11),
then, in principle, it is possible to increase the
bearing capacity of the reinforced plate by lifting
it to a value close to the total deflection load.
Bifurcation diagrams for cases where the critical
load of wave formation exceeds the critical load of
the total deflection (a - the case of wave formation
in the ribs, b - the case of wave formation in the
plate) are shown in Figure 11.
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Figure 11. Bifurcation diagrams for the case of rational design of a stiffened plate
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ANALYTICAL AND NUMERICAL METHODS FOR
DETERMINING THE CARRYING CAPACITY OF APILE
BARETT ON WEAK SOILS IN DEEP PITS
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Abstracts: The article provides an analysis of the bearing capacity of barrett piles in difficult geological conditions at a construction
site in the city of Hanoi, Vietnam based on the results of analytical calculations according to Russian building codes, mathematical
modeling and field full-scale tests. The paper describes a numerical test of a single barrette for Mohr-Coulomb and Hardening Soil
models in the Midas GTS NX software package. The bearing capacity of a barrette in soft soils is also proposed to be determined
by an analytical solution for calculating the settlement of a single pile, taking into account the unloading of the pit after soil
excavation. The results of full-scale tests at the site of future construction, graphs of "load-settlement" of the barrette head from
the applied vertical load and the general assessment of the bearing capacity of the barret pile by various methods are shown.

Keywords: pile-barrett, settlement-load dependence, bearing capacity, FEM, analytical solution, mathematical modeling
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INTRODUCTION areas of the world [1]. Difficult geotechnical

conditions dictate special requirements for the
Currently, the demand for the construction of high-  design of zero cycle structures for such facilities
rise buildings is very high in large metropolitan  [2]. Therefore, piles-barrettas are gaining great
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popularity as deep foundations, which can
perceive significant longitudinal and transverse
forces due to the increased bearing capacity both
in material and in soil compared to alternative
types of pile foundations [3]. At the preliminary
design stage, when full-scale tests of piles have
not yet been carried out, in order to assign the
main structural parameters of foundations, a
computational design method is used based on
analytical and numerical calculations for limit
states [1]. Taking into account the base formed
by a layer of weak soils, the great depth of the
excavation and the laying of barrett piles, a special
approach to the calculation of the bearing capacity
of the piles, taking into account the stress-strain
state of the enclosing soil mass, is required [4,5,6].
On the construction site of a high-rise building
with a developed underground part in the city
of Hanoi, Vietnam, barrettas with a section of
800x2800 mm and a length of 37 meters were
designed as foundations. In order to determine
the bearing capacity of a single barrette on the
ground, analytical calculations were carried out
according to the method of Russian standards
and mathematical modeling in the geotechnical
software package. After assigning the parameters
of the pile foundation, at the construction site,
full-scale tests of a single barrette with a static
indentation load were made and carried out.

GEOTECHNICALCONDITIONS OFTHE
CONSTRUCTION SITE

According to the results of engineering and
geological surveys, the geological zone under the
well has a depth of 61 m, consists of 9 soil layers:
IGE-1: compacted embankment; IGE-2: fluid clay,
brownish-gray, mixed with organic inclusions;
IGE-3: loose sand, ash-gray, medium brown
of medium density, unimportant IGE-4: fluid-
plastic clay, brownish-gray, mixed with organic
inclusions; IGE-5: fine, gray and yellowish-gray
sand, medium density, unimportant; IGE-6: soft-
plastic loam, brownish-gray; IGE-7: fine sand,
medium size, unimportant; IGE-8: fluid-plastic

Volume 17, Issue 3, 2021

loam, brown-gray, dark gray, mixed organic;
IGE-9: gravel and pebble soil. The engineering
and geological conditions of the construction site
are relatively difficult with layers of weak soils
and a high level of groundwater at an elevation of
-4.50 m from the earth's surface. The physical and
mechanical properties of soils are shown in Table 1.
A barrette with a section of 800x2800 mm and a
length of 37 meters rests on a strong layer of IGE-
9 — gravel-pebble soil (Figure 1).

0 4

:; J Ground water level

-6
_g 4
-10 7 1GE-2

-14 The bottom of the pit

(-
m

Depthmark, m
S

-
.
i
™
I
[
™
=
<
=1

Figure 1. Layout of the pile-barrets in the ground

DETERMINATION OF THE BEARING
CAPACITY OF PILES BY ANALYTICAL
METHODS

In accordance with Russian standards [7], the
bearing capacity of hanging piles is determined
depending on the physical and mechanical
properties of the foundation soil and the depth of
the pile. Analytical calculations have shown the
value of the total bearing capacity of this barrette
equal to F, . = 27285 kN. At the same time,
77% fell on the heel of the pile and only 23% on
the side surface.
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Table 1. Physical and mechanical properties of soils

No. Soil h, v, IL e o, c, E,
layers M KH | epao. (;;ga Mlla
m) | (Nmd) (degree) | “TY | (Mpa)
| Compacted 1.6 16.00 - - - - -
embankment
2 Fluid clay 16.1 17.00 1.408 | 1.246 6.30 7.00 1.5
3 Fine sand 5.1 19.00 0.350 | 0.771 | 30.00 - 135
4 Fluid-plastic clay 10.2 17.20 0.811 | 1.171 18.00 9.10 15.0
5 Fine sand 3.0 19.20 0.350 | 0.746 | 30.00 - 135
6 Soft-plastic loam 34 17.80 0.695 | 1.002 7.40 9.60 5.0
7 Fine sand 1.0 19.10 0.035 | 0.755 | 30.00 - 13.5
8 Fluid-plastic loam 4.8 17.50 0.930 | 1.082 8.00 9.50 3.0
9 Gravel and pebble soil | >15.8 20.10 0.300 | 0.524 | 38.00 2.00 50.0

Taking into account the significant thickness of soft
soils with a low modulus of deformation within the
barrette shaft, the deformability of the pile under
load will play a significant role. Therefore, in the
calculations, it was decided to limit the bearing
capacity on the ground by the limiting settlement of
a single pile, equal to 40 mm, similar to full-scale
and numerical tests. The method for determining the
settlement of a single pile depending on the average
value of the soil shear modulus G within the pile and
under its lower end is also described in the provisions
of the Russian standard [ 7]. According to the results of
the analytical calculation, it was found that the bearing
capacity of the barrett from the condition of limiting
the settlement to 40 mm was decalcz = 18450 kN.
The depth of the projected pit is almost 15 meters.
At depths of more than 5 meters, the effect of
"unloading-reloading" becomes most pronounced
for a certain thickness of the base as a result of
excavation of the pit. This phenomenon will
manifest itself especially in foundations composed
of weak soils with a low modulus of deformation.
Therefore, tocalculate the settlementofbarrettindeep
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pits, it was proposed to determine the shear modulus
G taking into account the unloading of the base.
For this purpos, a new term Hur is introduced,
which means the depth of the unloading strata. The
lower boundary of the unloading stratum is taken
atadepthz=H_, where the condition is fulfilled:
o,=050,, (1)
where ¢_ is a vertical stress from the own weight
of the soil, selected when cutting the excavation,
at a depth z from the level of the bottom of the
excavation, kPa. Determined according to the
provisions of the Russian standard for geotechnical
construction [8].
o,, Isavertical stress due to the own weight of the
soil at a depth z from the level of the bottom of
the excavation, kPa.
In this case, the depth of the unloading thickness
H . should be no more than H__, equal to (4 +
0.1b) at 10 <b <60 and 10 m at b> 60 m, where b
is the width of the pit.
In the problem under consideration, H = 10 m.
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To calculate the settlement when determining the
average value of the soil shear modulus, within
the unloading thickness H _for soils, the elastic
shear modulus Gur is taken, defined as

o,
o 2(1+v

=

where E  is a modulus of soil deformation upon
removal / reapplication of the load,

v, 1s a coefficient of lateral deformation of the soil
when removing / reapplying a load.

According to the results of the analytical calculation,
taking into account the unloading of the soil in the
excavation, it was found that the bearing capacity
of the barrette from the condition of limiting the
settlement of 40 mm was F =24600 kN.

d,calc3

MODELING

Numerical modeling of changes in the stress-strain
state of the soil mass in the process of virtual testing
of the experimental barrette pile was carried out
using the geotechnical software package Midas
GTS NX in a spatial setting. A finite element
model of the test barrette-surrounding soil mass
system in Midas GTS NX is shown in Figure 2.

The dimensions of the computational area are taken
in terms of 30.8 x 32.8 m and a depth of 66.2 m.

For the formation of finite elements, a hybrid mixed
mesh, mainly hexahedral types of finite elements, was
used. The grid step is condensed in the area where the
barrets are located and is discharged to the boundaries
of the computational domain. Consideration of
the behavior of the soil at the contact between the
barrett and the base mass was modeled using special
interface contact elements. The stiffness parameters
are assigned taking into account the reduction in
contact strength, taking into account the reduction
factors given in the Russian design standards [7].
Mathematical modeling of the test was carried out
step by step in several stages:

1. Formation of the initial stress-strain state of
the soil mass;

2. Development of the foundation pit;

3. Barretta device;

4. Loading the barrette (Figure 2). Gradual
application of a vertical indentation load to the
test barrette of 2500 kN at each stage.

To calculate the bearing capacity of a barrette in
the Midas GTS NX program, two subgrade models
were considered:

— Ideal-elastoplastic Mohr-Coulomb model.

— Elastoplastic model of the hardening soil
“Hardening Soil”.

The deformed model diagram and vertical
displacements at an intermediate stage of testing
(at P = 20,000 kN) for various soil models are
shown in Figure 3.

Figure 2. Mathematical FE-model

\Volume 17, Issue 3, 2021
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a)
Figure 3. Deformed diagram and vertical displacements of the model under a load of 20,000 kN: a)
Mohr-Coulomb model, b) Hardening Soil model

The criterion for ensuring the bearing capacity of
the pile on the ground is the vertical displacement
of'the barrette head, equal to 40 mm. This condition
is met at the calculated vertical load equal to F, -
= 16440 kN for the Mohr-Coulomb model and
Fyus = 23600 kN for the Hardening Soil model.

FULL-SCALE TESTS

Experimental barrette piles were made on the site
for the construction of a high-rise building in the
city of Hanoi. Tests of a single barrette with a
section of 800x2800 mm and a length of 37 meters
with a vertical static load were carried out using
hydraulic jacks up to a maximum load of 30 MN
using the Top-Down method.

The condition of the maximum settlement of
the pile head under a load of 40 mm is achieved
under a vertical load F, ;.= 27500 kN (Figure 4).
This value is taken as the bearing capacity of the
barrette on the ground.

RESULTS

The results of determining the bearing capacity
of a barrette on the ground by analytical and

b)

numerical methods, as well as the results of field
tests, are presented in Table 2.

The combined load-settlement graph for various
considered methods for determining the bearing
capacity of a barrette is shown in Figure 5.

DISCUSSION

As it is well known, the ideal-elastoplastic soil
Mohr-Coulomb model does not describe the
behavior of the soil during unloading [9]. The same
applies to the analytical method for determining the
settlement of a single pile according to the Russian
standard, where the soil is considered as a linearly
deformed half-space, characterized by the shear
modulus and Poisson's ratio. The results obtained
by these methods are in good agreement with each
other. The values of the bearing capacity differ
by about 10% (Table 2), and at the initial stage
of loading (at P <12500 kN) the graphs exactly
coincide. However, the solutions based on these
techniques do not agree well with the results of field
tests and cannot be applied for practical purposes
for conditions of soft soils and deep pits.

The proposed modification of the analytical method
for calculating the settlement of a single pile in
order to take into account the unloading of the base

o8 International Journal for Computational Civil and Structural Engineering
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Barrette Head Load ( MN )
o] 5 10 15 20 25 30 35

Displacement ( mm )

50.0

Figure 4. Results of full-scale static tests of barrette piles

Table 2. Bearing capacity of pile-barrets by different methods

Methodology for calculating the bearing capacity of a | Bearing capacity of the pile

pile on the ground on the ground, kN
Field test results, F g sie 27500
Analytical classical method [7], Fdcaler 27285 (-1%)
Taking Midas GTS NX software for Hardening Soil model, Fg

; 23600 (-14%)
into HS

account Analytical method for settlement criterion (modified),
unloading | 7,

Midas GTS NX software for Mohr-Coulomb model, Fg
excluding | ac

unloading | Analytical method according to the criterion of
settlement [7], Flacale2

24600 (-10%)

16440 (-40%)

18450 (-33%)

load, P, kN
0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 32500

Settlement, S, mm

3 %
', e 8
—%— GTS NX (Hardening Soil) “a he k

4l «— GTS NX (Mohr-Coulomb) v
——71. 742 Cl1 24.13330.2011 !
-70 =
& 74.2 Cl1 24.13330.2011 (taking into account unloading)

= —8— experimental studies

Figure 5. Combined load-settlement graph based on the results of analytical calculations,
numerical modeling and field tests
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during the development of a deep excavation made
it possible to describe the behavior of a barrette
under load with sufficient accuracy. The bearing
capacity with a limiting settlement of 40 mm is in
good agreement with the numerical solution (with
the adopted Hardening Soil model), the analytical
method for strength characteristics, and the results
of full-scale static tests.

CONCLUSIONS

1) Complex design solutions of the zero cycle and
difficult geological conditions of the construction
site require a special approach to the design of
deep foundations.

2) When using different soil models (MC and HS)
in mathematical modeling of the test of a barrette
in a deep pit, the graphs of barrett displacement
under load are significantly different. For
numerical calculations of piles in soft soils and
deep pits, it is recommended to use the Hardening
Soil model, which takes into account the work of
the soil along the secondary loading branch. This
solution, with sufficient accuracy for practical
purposes, describes the results of field tests.
3) A good convergence of the value of the bearing
capacity of the barrett on the soil is shown by the
analytical solution for determining the settlement,
where the reduced shear modulus G is determined
taking into account the thickness of the base
unloading, for which the soil deformation modulus is
applied when removing / reapplying the load Eur. This
technique is applicable for preliminary calculations
of settlement and bearing capacity of piles.

REFERENCES

1. Shulyat'yev O. A. Osnovaniya i fundamenty
vysotnykh zdaniy / O. A. Shulyat'yev [Soils
and foundations of high-rise buildings]. —
Moscow: ASV Publishing, 2020 — 442 p.

2. Mangushev R.A., Osokin A.l., Konyushkov
V.V. et al. Proyektirovaniye osnovaniy,
fundamentov i podzemnykh sooruzheniy

[Design of foundations, foundations and
underground structures]. Moscow: ASV
Publishing, 2021. 632 p.

. Mangushev R.A., Gotman A.L., Znamenskiy

V.V., Ponomarev A.B. Svai i svaynyye
fundamenty. Konstruktsii, proyektirovaniye
1 tekhnologii [Piles and pile foundations.
Constructions, design and technology]/ Under ed.
Corr.-member of RAACS, Dr., prof. Mangushev
R.A. Moscow: ASV Publishing, 2015. 320 p.

. Mangushev R.A., Nikitina N.S. Evaluation

and analysis of bearing capacity of bores
piles and deep laid pile-barrette for a high-
rise building on loose grounds based on
calculations and field tests // International
Journal for Computational Civil and Structural
Engineering. 2018. Vol.14, Iss. 2. Pp. 109-116.

. Le Trung Hieu, Nikitina N.S. Nekotoryye

osobennosti vozvedeniya fundamenta na
slabykh gruntakh pri stroitel'stve zdaniy [Some
features of the construction of a foundation on
soft soils during the construction of buildings].
Sbornik statey XXXVII mezhdunarodnoy
nauchno-prakticheskoy konferentsii Moskva:
«Nauchno-izdatel'skiy tsentr «Aktual'nost'.
RF» [Collection of articles of the XXXVII
International Scientific and Practical
Conference Moscow: "Scientific Publishing
Center" Actuality.RF "], 2021, Pp. 81-84.

. Van Thanh Tran. Studying and calculating

the bearing capacity of barrette piles based on
comparison with O-cell test. Article: Tap chi
Xay dung Viét Nam 59 (625), pp. 232-236.

. Building Code of RF SP 24.13330.2011. Svod

pravil. Svaynyye fundamenty. Aktualizirovannaya
redaktsiya SNiP 2.02.03-85 [Pile foundations.
Updated edition of SNiP 2.02.03-85].

. SP 22.13330.2016. Svod pravil. Osnovaniya

zdaniy 1 sooruzheniy. Aktualizirovannaya
redaktsiya SNiP 2.02.01-83 [Foundations of
buildings and structures. Updated edition of
SNiP 2.02.01-83].

. Vermeer P.A., De Borst R. Non-associated

plasticity for soils, concrete and rock // Heron.
1984 Vol. 29 No. 3.

100 International Journal for Computational Civil and Structural Engineering



Analytical and Numerical Methods for Determining the Carrying Capacity of a Pile Barett on Weak Soils in Deep Pits

CIIMCOK JIMTEPATYPbI

1. IyasarbeB O.A. OcHOBaHUS U QyHIAMEHTHI
BbICOTHBIX 3aanuii / O. A. lllynareeB. — M.:
ACB, 2020 — 442 c.

2. Manrymes P.A., Ocoxknn A.U., Konom-
KkoB B.B. u 1p. [IpoekrupoBanue 0CHOBaHMUI,
(yH1aMEHTOB U TIO/I3€MHBIX COOpPYXeHui / M:
Wszn-Bo ACB, 2021. 632 c.

3. Manrywes P.A., T'orman A.JL., 3HameHcKnii
B.B., [lonomapes A.B. Cau u cBaiiHbie QyH-
naMeHThl. KOHCTpYKIMH, TPOEKTUPOBAHUE
u texnonoruu / Iloxa. pen.un.xopp. PAACH,
I.T.H., po¢. Manrymesa P.A. M.: U3n-Bo
ACB, 2015. 320 c.

4. Manrywes P.A., Hukutuna H.C. Ouenka u
aHaIn3 HecyIel cnocoOHOCTH OypOHAOMBHBIX
cBail ¥ cBail-6appeT rryOOKOro 3a10KEeHHS 1S
BBICOTHOTO 3[1aHUS Ha CJIa0bIX IPyHTax IO
pe3yabpTaraM pacyeToB M IIOJIEBBIX UCIIBITA-
Hull. Ctaps: - M.: MexnyHaponHbIil )KypHai
“International Journal for Computational Civil
and Structural Engineering (Me>xayHaponHbIit

JKYpHAJ MO pacyeTy IpaKAaHCKUX U CTPOU-
tenbHbIX KOHCTpYKIui)” (IJCCSE), 2018 1.

5. Jle Yynr Xuey, Hukntuna H.C. Hexoropsie
0COOEHHOCTH BO3BeJCHUS (PyHIaMeHTa Ha
Ca0BIX TPyHTAX IPU CTPOUTEIHCTBE 31aHUH.
Coopuuk crareit XXXVII mexayHapogHoi
Hay4HO-MpaKkTH4Yecko koHpepeHuuun Mo-
ckBa: «HayuHo-u3narenbCkui NEHTp «AKTY-
anmpHOCTE.PDy», 2021, ¢ 81-84.

6. Van Thanh Tran. Studying and calculating
the bearing capacity of barrette piles based on
comparison with O-cell test. Crabs: Tap chi
Xay dung Viét Nam 59 (625), ¢ 232-236.

7. CII 24.13330.2011. CBon npaBwmi. CaitHbie
byHIaMeHThI. AKTyaTu3upOBaHHAS PEAAKIIHS
CHulI 2.02.03-85.

8. CI122.13330.2016. CBog npaBui. OcHOBaHUS
3MaHUN U COOPYKEHHUH. AKTyallu3upOBaHHAS
penakius CHull 2.02.01-83.

9. Vermeer P.A., De Borst R. Non-associated
plasticity for soils, concrete and rock // Heron.
1984 Vol. 29 Ne 3.

Rashid A. Mangushev. Corresponding Member of the
RAACS, Professor, Doctor of Technical Sciences; Head of the
Department of Geotechnics, St. Petersburg State University
of Architecture and Civil Engineering (SPbGASU), Director
of the Scientific and Production Consulting Center for
Geotechnology, SPbGASU. Russia, St. Petersburg, 2nd
Krasnoarmeiskaya 4; email: ramangushev@yandex.ru.

Nadezhda S. Nikitina. Candidate of Technical Sciences,
Professor of the Department of Soil Mechanics and
Geotechnics; National Research Moscow State University
of Civil Engineering (NRU MSUCE); Moscow, Russia,
129337, Yaroslavskoe shosse, 26; tel./fax: +7 (495) 287-
49-14; e-mail: nsnikitina@mail.ru;

Le Trung Hieu — Master's student of the Department of Soil
Mechanics and Geotechnics; National Research Moscow
State University of Civil Engineering (NRU MGSU);
Moscow, Russia, 129337, Yaroslavskoe shosse, 26; tel./fax:
+7 (995) 770-09-13; e-mail: hiuletrg@gmail.ru;

Ivan Yu. Tereshchenko — Chief Specialist of GIPROATOM

LLC; Moscow, Nauchny proezd, house 8, building 1; e-mail:
i.tereshchenko@giproatom.com.

\Volume 17, Issue 3, 2021

Maneywes Pawiuo A60ynnoeuy — diaeH-KoppecronieHT PA-
ACH, npodeccop, TOKTOp TEXHHYSCKUX HAYK; 3aBEIYOIINI
kadenpoii reorexurku Cankr-IlerepOyprekoro rocynapcrBeH-
HOTO apXHUTEKTypHO-CcTporTenbHoro yauBepcutera (CII6IA-
CY), mupeKTop Hay4IHO POU3BOICTBEHHOTO KOHCAITHHIOBOTO
uenrpa reorexuonoruii CII6IACY. Poccus, Cankr-IletepOypr
2-s1 Kpacnoapmetickas 4; email: ramangushev@yandex.ru.

Hurxumuna Haodesicoa Cepeeesna —x.T.H., ipodheccop Kade-
Ipbl «MexaHUKU I'PYHTOB U I€OTEXHUKW»; HanmoHanbHblH
nccrienoBareabckuii MOCKOBCKUN TOCYAapCTBEHHBIA CTPO-
ntensHblll yHUBepcuTeT (HUTY MI'CY); . Mocksa, Poccus,
129337, SIpocnasckoe 1moccee, 1.26; Tein./dakc: +7(495) 287-
49-14; e-mail: nsnikitina@mail.ru;

Jle Yyne Xuey — maructpant kadeaps! «MexaHUKH rpyHTOB U
reoTexHUKN»; HarmoHambHbINA HccienoBareabckuii MockoB-
CKHMI TOCYHapCTBEHHBIN cTpouTenbHbIi yHUBepcuteT (HUY
MI'CY); . Mocksa, Poccusi, 129337, SIpocnaBckoe miocce,
1.26; Ten./dakc: +7(995) 770-09-13; e-mail: hiuletrg@gmail.ru;

Tepewenxo Hsan IOpvesuu — tnapnbiii criermanuct OO0

"TUITPOATOM"; . MockBa, Hayunslii npoesn, nom 8,
crpoenue 1; e-mail: i.tereshchenko@giproatom.com.

101



International Journal for Computational Civil and Structural Engineering, 17(3) 102-113 (2021)
DOI:10.22337/2587-9618-2021-17-3-102-113

STATIC BENDING STRENGTH
OF SANDWICH COMPOSITE PLATESWITH TETRACHIRAL
HONEYCOMBS
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Abstract: The article presents a numerical strength analysis of sandwich plates with solid face layers and tetrachiral
honeycomb core layer under static bending conditions. An aluminum alloy was chosen as the material of plates. For
honeycomb core layers, the discretization (number of unit cells) and the relative density were varied with a constant
thickness. Calculations were performed for the case of bending with rigidly clamped ends and three-point bending
within the framework of the theory of clasticity by the finite element method. The strength analysis enables one
to determine the load values, at which the maximal stresses according to the von Mises criterion were equal to the
conventional yield stress of the material. The aim of this work is to study the effect of discretization and relative
density of honeycomb core layers of tetrachiral type on the strength of sandwich plates.

Keywords: composite plates, tetrachiral honeycombs, multilayer plates, strength analysis, static bending,
finite element method

IHNPOYHOCTD CJIOUCTBIX KOMITIO3UTHBIX ITIJIACTUH
C TETPAKUPAJIBHBIMHU COTAMUA
IHPU CTATUYECKOM MU3I'UBE

A.B. Ma3zaee, M.B. IIlumuxoea

Boponesxckuii rocynapcTBeHHBIN TEXHUYECKHH YHUBEpCUTET, T. Boponexx, POCCUA
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AHHoTanus: B paGoTe npon3BOAMICS YNCICHHBIH aHAINU3 TPOYHOCTH CIOMCTHIX KOMIIO3UTHBIX ITIACTHH CO CIUIOLI-
HBIMU BHEIIHUMH CJIOSMH U COTOBOM MPOCIONWKON TETPAaKMpPaJIbHOTO THIA B yCIOBHIX CTAaTHYECKOTO m3ruba. B
KayeCcTBE MaTepraia IJIACTHH BHIOPAH aIIOMUHUEBBIN CIUIAB. Y COTOBBIX MPOCIOEK BaPbUPOBAIACH AUCKPETU3ALNS
(KOnMM4YecTBO 3IEMEHTAPHBIX STU€EK) H OTHOCUTEIbHAS TUNIOTHOCTh IIPU MOCTOSTHHOHN ToNmuHe. PacueTs! mpousBoau-
JIUCH NIPH XKECTKOM 3aIIEMJICHUH C TOPLIOB U TPEXTOYEUYHOM M3THOE B PAMKaX TEOPUHU YIPYTOCTH METOOM KOHEYHBIX
3JIEMEHTOB. B mporecce aHann3a NpoYHOCTH ONMPEAESISIINCh 3HAUCHNS HArPy3KH, IPH KOTOPBIX MaKCUMAaJIbHbIE Ha-
MIPSDKEHUS TI0 KPUTEpUI0 Mu3eca MpupaBHUBAINCH K YCIOBHOMY HpeaeNy TeKydecTH MaTtepuaia. Llenpio paboTs
SIBIIIETCS M3yUEHHUE BIMSHUS AMCKPETHU3ALNU M OTHOCHUTEIBHOHN IIOTHOCTH COTOBBIX IPOCIIOEK TETPAKHUPAIHLHOTO
THIA Ha IPOYHOCTH KOMITO3UTHBIX MJIACTHH.

KiroueBble cjioBa: KOMIIO3UTHEIS TUTACTUHBI, TETPAKUPAJIbHBIE COTHI, MHOTOCJIOMHBIE TUTAaCTUHBI, aHAJIN3 IIPOYHOCTH,
CTaTHICCKUN H3FI/I6, MECTOJ KOHCUYHBIX DJICMCHTOB
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1. INTRODUCTION

In the last three decades, much attention has
been paid to materials with negative Poisson's
ratio, which are called auxetics [1-3]. These
materials have a non-standard deformation
mechanism, namely: they expand with tension
and contract with compression. Despite the
recent special attitude to auxetic materials, the
theoretical admissibility of the existence of such
materials was first shown by Love more than
120 years ago [4]. Later, Landau came to the
similar conclusion [5]. Based on the well-known
expression for the shear modulus for an
isotropic material, it follows that when Poisson's
ratio tends to -1, the shear resistance increases
significantly, which is an important property for
many applications. Currently, it is known about
many advantages of auxetics over materials
with classical behavior [6], for example:
increased resistance to indentation, resistance to
the process of initiation and opening of cracks,
increased energy absorption, etc. Such
properties of auxetics remarkably complement
the properties of classical materials in
composite structures, in particular, layered
plates.

Honeycomb structures of certain geometry are
most often used as auxetic in sandwich
composites. Prall and Lakes [7] theoretically
and experimentally determined negative
Poisson's ratio in trichiral honeycomb
structures. They also showed that Young moduli
of chiral honeycombs depend on the ratio of the
length of tangentially attached ribs and the
radius of the cylinders, as well as on the ratio of
the distance between the centers of adjacent
cylinders (connected by ribs) and the radius of
the cylinders. Scarpa and Tomlinson [§]
theoretically assumed that re-entrant
honeycomb core layers with negative Poisson's
ratio increase the flexural stiffness of composite
plates. They also suggested using honeycomb
core layers to design composites with pre-tuned
mechanical properties by changing the
geometric parameters of the unit cells.

\Volume 17, Issue 3, 2021

Alderson et al. [9] numerically and
experimentally determined Poisson's ratios for
chiral honeycombs of various types (hexa-,
tetra-, antitetra-, tri- and antitri- chiral cells)
under plane uniaxial compression. Honeycombs
differ in the number of tangentially attached
ribs, and in antichiral structures, adjacent unit
cells have mirror symmetry. Alderson et al. [9]
used finite element modeling and ambient
experiments, in so doing prototypes were made
from nylon using additive technologies. It is
shown that the chiral honeycombs family has a
negative Poisson's ratio. However, the trichiral
structure showed a positive Poisson's ratio, and
the antitrichiral structure showed auxetic
behavior with short tangentially attached ribs
and classic behavior with long ribs. It was
showed that chiral structures, in comparison
with antichiral structures, have a higher Young
modulus under plane uniaxial compression for
any number of ribs.

Lira et al. [10] have shown numerically and
experimentally that an auxetic honeycomb
structure of the re-entrant type has an increased
specific flexural stiffness relative to hexagonal
honeycombs. Such a structure with a reduced
mass also allows one to obtain the same first
natural frequency in comparison with hexagonal
cells. Li and Wang [11] made sandwich
composites with various honeycomb core
layers: truss type, conventional honeycombs,
and re-entrant honeycombs. It has been shown
[11] that wunder the three-point bending,
sandwich composites with a re-entrant type
auxetic honeycombs exhibit high energy
absorption and more efficient stress distribution
before failure.

Alomarah et al. [12] numerically and
experimentally investigated popular auxetic
honeycomb structures under plane uniaxial
compression:  re-entrant,  tetrachiral  and
antitetrachiral. They also investigated a new
honeycomb structure, namely: re-entrant chiral.
The prototypes were made of polyamide using
additive technologies. Alomarah etal. [12]
obtained the stress-strain curves, showed the
strain modes of the investigated structures,
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investigated energy absorption, and determined
the magnitudes of the negative Poisson's ratio.

Xiao et al. [13] numerically and experimentally
investigated the behavior of a rigidly fixed
sandwich beam with re-entrant honeycombs
under conditions of a local shock pulse. The
deformation of the facial sheets and the auxetic
core layer was also analyzed. The composites
were made of an aluminum alloy using additive
manufacturing. It has been experimentally
shown [13] that re-entrant honeycombs with
thin walls exhibit local densification in
composites due to the negative Poisson's ratio.
Re-entrant honeycombs with thick walls showed

only global deformation without auxetic
behavior.
Essassi et al. [14] experimentally and

numerically investigated sandwich composites
with re-entrant honeycomb core layers under
three-point bending conditions. The composites
were made of biological material using additive
technologies. During manufacturing, the relative
density of the honeycomb structure was varied.
Flexural stiffness, shear stiffness and shear
modulus for the sandwich composites under
investigation were determined, and the effect of
the relative density of the core layers on these
values was evaluated.

Composite panels with auxetic honeycombs
under three-point bending have been
investigated in [15, 16]. The composites were
made of wood-based materials. The authors
determined the stiffness, strength and energy
absorption capacity of the composite panels. It
has been shown that sandwich panels with
auxetic honeycombs have advantages over those
with classical honeycombs, in so doing the
plane of honeycomb core layers with auxetic
behavior is oriented parallel and perpendicular
to the plane of composite panels, respectively,
in[10, 15-16] and [11, 13].

In the present paper, three-layer sandwich plates
with solid face layers and tetrachiral honeycomb
core layer under static bending are investigated
numerically.
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2. FORMULATION OF THE PROBLEM

Let us consider a honeycomb structure
consisting of ordered cylinders arranged in a
square grid pattern, which are connected to each
other by tangentially attached ribs, where each
of the cylinders contains four attached ribs
(Fig. 1). It has been shown experimentally
[9,12] that tetrachiral honeycombs exhibit
auxetic behavior in the plane. In the sandwich
plates under consideration, the plane of

honeycomb core layers with auxetic behavior is
oriented parallel to the plane of the plates.

Figure 1. Parameters of the honeycomb
structure of tetrachiral type

For  numerical  experiments, tetrachiral
honeycombs have been designed with different
discretization (number of unit cells) and equal
relative density p , which is defined as the ratio

of the volume of solid body of the honeycombs
to the volume of the central layer of composites
along the outer faces. The honeycombs have
been considered with four values of the size of

elementary cells L=1.6d , where d, e 1, 1.3,

1.6, and 1.9. The volume of a solid body of the
honeycomb structures could be varied by
changing the thickness of their walls 7 . For

each discretization of the structure, 9
honeycomb models have been constructed with
the equal step of increasing volume. At each of
the four values of L, the tetrachiral honeycombs
uniformly fill the central layer of the
composites. For the obtained honeycombs, the
following geometric parameters have been used:
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O =const; at
p. = const, (r=d/2), and
B=t, [r~const. The total thickness of the

sandwich plates is 2 mm, the thickness of the
face layers is 0.5 mm, and the thickness of the
honeycomb core layers is 1 mm. For
comparative analysis, 11 models of solid plates
have been considered with an equal step of
increasing volume by changing the thickness of
plates from 1 to 2 mm with a step of 0.1 mm.
Strength calculations for composite and solid
plates have been carried out within the
framework of elasticity theory by the finite
element method using the «Structural
Mechanics» module [17] from the « COMSOL
Multiphysics 5.6» numerical simulation system.
A linear elastic body model is used to describe
the behavior of the plate’s material. Under the
conditions of bending of composite and solid
plates with rigid fixation, the displacements of
nodes (Fig. 2) have been subjected to the
following boundary conditions:

(r,=d,[2),
a =1/r ~ const

r, [/l = const

Under the conditions of three-point bending of
the plates, the displacements of nodes on
straight line segments have been supposed as

uw,z(x:xl,y:O,OSZSh):O,

2)
ux,yyz(x:xz,y:0,0SZSh):O.

The plate is subjected to the external load F

uniformly distributed over a
segment (Fig. 2):

straight line

Fy:Fy(le,yzb,OSZSh), 3)

where a=54 mm and ~2=13 mm are plate
dimensions, »=2 mm is its thickness, /, = a/2
mm, x, =12 mm, and x, =42 mm. To exclude

the deflection in the zy-plane, the displacements
of nodes in the face layers of composites and

solid plates have been considered as u_ =0.

The finite element mesh of the composite plates

is constructed separately for each layer:
>
! b
/] : /] A
// F")) / '
' h
z _ngf l
X;
a

Figure 2. Boundary conditions of composite and solid plates

X

X,y
‘ SxSa,yz0,0SzSh)zO,

Sxle,y:b,OSzSh): ,

X 2

y

u ’Z(OSxle,y:O,OézSh)zo,
- 1
ux’y’z(O 0 M

xZSxSa,yzb,OSZSh):O.
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quadrangular prisms and triangular prisms are
used for solid layers and honeycomb core
layers, respectively (Fig. 3). The condition of
continuity of field variables is established at the
layer interfaces of composite plates. Figure 4
shows a finite element mesh of unit cells of
tetrachiral structures at each step of increasing
relative density. For constructing the mesh for
solid plates, quadrilateral prisms have been
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used. Finite elements of the serendipity family
of the second order are used in all models.

Figure 3. Mesh of finite elements of composite
plates

The properties of the D16 aluminum alloy [18]
are used as the material properties of composite
and solid plates, namely: Poisson's ratio
41 =0.33, elastic modulus £ =72 GPa, density
p=2780 kg/m? and the conventional yield

point o,, =290 MPa.

Figure 4. Finite element mesh of unit cells of
tetrachiral structures

During static bending of composite and solid
plates, the load values F, (N) have been
determined, at which the maximum stresses
according to the von Mises criterion are equal to
the conventional yield stress of the material
C,.=0,,-

n
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In order to verify the results of calculations via
the «COMSOL» system, additional calculations
of solid plates have been performed by the finite
element method in displacements using the
algorithm for solving the plane problem based
on the known equations of theory of elasticity
[19-20], adopting the following boundary
conditions (Fig. 2):

ux,y,z(x=x1,OSySb,0SzSh)zO,

“
u,, (x=x,0<y<b,0<z<h)=0.

In the case of the three-point bending of the
plates, the boundary conditions (2) and (3) have
been used.
The algorithm for solving the plane problem
was adapted for plate calculations, in so doing
the stiffness matrix of the finite element £° is
determined by the expression

ki =k" +k°, (5)
where the submatrix of normal deformations k*

and the submatrix of shear deformations k¢
have the following form:

, Eh

EkE = (1= u)-

a2 A

nn, HE,1,

.7§,§s(l+ L) ML e
) (1 +§,§s] ’
(1-x) ¥ 3

g =20

©T 4

1, (. &S

; (l+ 3 ) 1.8, (7
%/ 7,8, (l+%j

G=E/2(1+,u) is the shear modulus, » and s

are numbers of matrix blocks (r=12...4,
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s=1,2...4), a, and b, are dimensions of the

sides of the rectangular finite element along the
x- and y-axes, respectively, £ is the size of the
finite element along z axis, y=b, /afe is the

dimensionless parameter, £, & and 7., 7, are

dimensionless coordinates of the rectangular
element, which take on the following
magnitudes: & =-1, n,=-1, & =1, n,=-1,

53 =1, n,=1, §4=_1’ n,=1.

The matrix N matching the global numbers of
nodes to the local numbers is constructed
according to the rule N =g with

iel2...i, and g¢gel,2...4,

where m is the global node number (Fig. 5, a),
m, is the quantity of global nodes, i is the finite
element number (Fig. 5, b), i

mel,2...m,,

, 1s the quantity of

finite elements, and ¢ is the local number of the
node of the i-th finite element (Fig. 6), in so
doingif N, ¢q,then N  =0.

7 w8 Hn9 B0 K7 2

r=N , s=N _, mnel2..m,, if rvs=0

m,i n,i

0
ol
The stiffness matrix of the finite element model

K is determined by summing the extended
stiffness matrices K =), k“"(i). To consider

f2

0
then k', :(
© 0

the external fixation of the finite element model
node, it is necessary to delete the rows
i,=2m, —1,i,=2m, and columns j =2m -1,
J, =2m, of the stiffness matrix K, where m is

the number of the fixed node.
The displacements of nodes are determined by
the expression

u,=K,'-P, (8)
where K ' is the inverse stiffness matrix with
due account for the fixed nodes,

P={P P

nodal forces (hereinafter, the row matrix in

PX

de—1

P’ } is the vector of

24 215 26 217 218 219

([

||

78

79\ 41 w2 #3 wé H5 #6

/|

68 £9 .78 7t ¢ 7

22| 7 |75 | .| &F

KO | %71 | W2 | B3 | T4

69" | 89 | W | 7 | 72

Figure 5. Scheme of finite elements of the plate: (a) global numbering of nodes, (b)
numbering of finite elements

4 34 3[4 34 34((34 34 3|4 3[4 3
r 2l 2l 2l .2l ol 2y 2 vy 2
4 3|4 314 3|4 34))34 3|4 3|4 214 )
| ) | T e 2l Ar 2d gl o2

Figure 6. Scheme of local numbering of nodes of finite elements

The extended stiffness matrix £ is constructed
according to the k™ (i)=k  principle, where
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curly braces means the column matrix),

c=2(mf— p), P’ and P’ are nodal forces
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along x- and y-axes, respectively, and p is the
quantity of the fixed nodes.

The full vector of  displacements
u= {uf u, -+ u_ u; (e=2m,) includes
zero displacements u . =0, oel2, where
k,=2m, -1, k,=2m_, and the matrix
u,= {u:l u, U ujc} is a submatrix

of u, where u, #0.

The vectors of displacements along x- and y-
axes are determined by the expressions u, =u,_

and u’ =u, respectively, where m_=2m—1,
m,=2m.

The displacement vector v of the nodes of the i-
th  finite element is constructed as

X v X ¥ X y X y
V. =qu u u u u u u u
! { m mh m? m m m m* m* } ?

where N, =1, N, =2, N, =3, N, =4,

m= i 4,

u', and u’ are the nodal displacements along

x- and y-axes, respectively.
The strain vector ¢ of the i-th finite element is
determined from the expression

e(i,6,1m) =B (&) v, 9)

where f(&,n) is the matrix of the relationship
between nodal displacements and deformations,

T

b(Lm) 0
0 a(L9)
b(2n) 0
1|0 a(2¢)
5(5,77)=5 b, (3.1) 0 ,  (10)
0 a,(3¢)
b(4m) 0
0 a,(4¢)

with a,(¢.&)=n,(1+ &) /b,
b(g.m)=¢& (1+n,n)/a,,and g=1,2...4.
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The vector of nodal stresses o of the i-th finite
element is determined as

o (i.&n)=xe(i.6.n), (11)

where y is the matrix of elastic constants, =¢ ,

n=n,,and

E l—p u
. (12
1+ﬂ)(1—2ﬂ)[ H l—uj (2

The equivalent stresses o, at nodes of the finite

a

element are determined by the von Mises
criterion [21]

0'e=\/0]2+0'22—0'1-0'2, (13)

where o, and o, are the principal stresses.

3. RESULTS

Diagrams of the stress distribution in solid
plates obtained in the «Structural Mechanics»
module of the «COMSOL» package have been
verified using the algorithm for solving the
plane problem. Based on the calculated results
for the solid plate with the thickness #=1.5 mm
using the constructed algorithm and boundary
conditions (4), a graph of isolines with the stress
distribution is shown in Fig. 7, a. A similar
stress distribution diagram obtained in the
COMSOL  software with the boundary
conditions (1) is presented in Fig. 7, b. The load
magnitudes according to the constructed
algorithm at o, =o,, for plates with the

thickness #=1.5 and t=2 mm are 435 and
785.5 N, respectively, and those obtained via
the COMSOL software for the same plates are
425.7 and 755.9 N, respectively. The solutions
according to the two approaches are in good
agreement.

The stress distribution diagrams under the
condition of the three-point bending (2) for a
plate with the thickness # =1.5 mm obtained via
the algorithm for solving the plane problem and
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the «COMSOL» system are presented,
respectively, in Fig. 8, a and Fig. 8, b. The load
magnitudes calculated via the constructed
algorithm for plates with the thickness 7=1.5
and f=2 mmat o, are 282.4 and 505.8

N, respectively, and for the same plates via the
COMSOL package are 307.7 and 558.2 N,
respectively. The solutions obtained using the
two approaches are in good agreement.

Based on the results of the strength analysis, graphs
of the sandwich plate honeycomb core relative
density dependence of the load £ are shown in

=0y,

Fig. 9 and Fig. 10, respectively, for the boundary
conditions (1) and (2). The solid body volume of
composite and solid plates dependence of the load
F, at bending with rigid fixation (Fig. 11) and

three-point bending (Fig. 12) are also presented.

Reference to Fig. 9 shows that under the
conditions of bending with rigid fixation (1),
within the range of values of the honeycomb
core relative density from 20 to 35 %, there is a
significant difference in the strength of
sandwich plates with different discretization of
tetrachiral structures at the same relative
density. From Fig. 10 it is seen that under the
conditions of three-point bending (2), sandwich
plates with different discretization and equal

relative density of tetrachiral honeycombs
demonstrate a small difference in the strength
over the entire range of values of the relative
density. Composite plates with tetrachiral

honeycombs (Figs. 11-12) could significantly
reduce the volume of a solid body relative to
solid plates with equal strength.

30 90

120 150 180 210 240 270 290 (MPa)

290 (MPa)

Figure 7. The stress distribution diagrams for a solid plate with thickness t =1.5 mm

under the bending with rigid fixation conditions at o,

. =0,, obtained using (a) the

algorithm for solving the plane problem, and (b) the « COMSOL» software

———

0 30 &0 80

120 150 180 210 240 270 290 (MPa)

a
B .

il
0 50 100

200 250 290 (MPa)

Figure 8. The stress distribution diagrams for a solid plate with thickness t =1.5 mm

under the three-point bending conditions (2) at o,

= 0,, obtained using (a) the algorithm

for solving the plane problem, and (b) the « COMSOL» software
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Figure 9. Diagram of the sandwich plate
honeycomb core relative density dependence of
the load F, (at o, =0,,) at bending with

rigid fixation (1)
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Figure 10. Diagram of the sandwich plate
honeycomb core relative density dependence of
the load F, (at o, =0o,,) at three-point

bending (2)

CONCLUSIONS

Based on the results of the numerical analysis,
it has been shown that composite plates with
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Figure 11. Diagram of the solid body volume of
composite and solid plates dependence of the
load F, (at ©,, = 0o,,) under bending with

rigid fixation (1)
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Figure 12. Diagram of the solid body volume of
composite and solid plates dependence of the
load F, (at o,, = 0o,,) under three-point

bending (2)

tetrachiral honeycombs with a relative density
of honeycomb cores from 20 to 70% have a
significantly higher strength relative to solid
plates with an equal volume of a solid body. At
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bending with rigid fixation, the discretization of
tetrachiral structures effects the strength of
composite plates at relative density values from 20
to 35%. Honeycombs with large unit cell size are
stronger relative to those with smaller unit cell size
at the same relative density. The use of tetrachiral
honeycomb cores in the design of composite plates
is a promising approach for improving the
mechanical properties of composite plates.
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ON THE CHOICE OF PRESTRESSING PARAMETERS

Anatolii V. Perelmuter
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Abstract: This paper focuses on the regulation of forces in a statically indeterminate system under the action of many
loads. This regulation is realized by prestressing. The paper compares two proposed methods for selecting rational values
of the prestressing parameters: maximizing the minimum bearing capacity margin for the elements of the system (1) and
equalizing the margins for all elements (2). An illustrative example is provided.

Keywords: prestressing, bearing capacity margins, Chebyshev solution, margin equalization

O BBIBOPE TAPAMETPOB IIPEJAHAIIPAKEHUSA

A.B. Ilepenvmymep
HITO «CKA Codt», r. Kue, YKPAUHA

AnHoTanusi: PaccmarpuBaeTcs 3a/1aua 0 peryJMpOBaHAN YCWINH B CTAaTHYECKH HEOTIPEACTMMON CHCTEMe HaXo/sIecs
1071 BO3/ICHCTBMEM MHOTHX HarpykeHWH. PerymipoBaHue BBITOIHSACTCS ITyTEM CO3/IaHHS MPEABAPUTEIILHOTO HAIpPsDKe-
Hust. CONOCTABISIIOTCS /1BA MPEUIaraeMbIX METo/1a JUTs BBIOOpa pallOHAIBHBIX 3HAUCHUH apaMeTpOB MPeIHATPSHKCHIS:
MaKCHMH3aLUsI MUHIMAJILHOTO TI0 SJIEMEHTaM CHCTEMBI 3araca HecyIeil cnocodHocTH (1) 1 BRIpaBHUBaHUE 3aI1acoB MO
BceM aneMeHTaM (2). [IpuBeneH WuTIoCTpaTuBHBIN IpUMep.

KaroueBrble cjioBa: MpeaHaIps’KCHUEC, 3arachbl Hecymeix'l CHOCO6HOCTI/I, 4eOBIIIEBCKOE peuicHuce,
BbIpaBHHBAHUC 3a11aCOB

1. INTRODUCTION in continuous beams and stiffening girders of
cable-stayed bridges [3, 6], adjustment of cable-

One of the effective ways to improve a design is stayed structures [9] and others [4])

prestressing, which regulates the internal forces
in the system. Many works on structural
optimization consider prestressing forces as
design parameters, along with the cross-sectional
dimensions of the structural members [6, 7, 8]. We will assume that an internal force envelope
However, such a problem formulation is not the diagram is obtained as a result of the analysis of
only possible one; there is often a problem of —an unstressed system for all the load cases.
choosing prestressing parameters for a structure With a known internal force envelope diagram
with known dimensions, which will not be We will determine the prestressing parameters,
changed unless absolutely necessary. For which make it possible, in a way, to improve the
example, this situation is typical when analyzing distribution of internal forces in the system (e.g.
existing structures under changed loading 1O expand the elastic deformation area, or to
conditions (e.g. during reconstruction). There are reveal the bearing capacity margins, improve the
many other cases when it is necessary to adjust ~operating mode of the structure, etc.).

internal forces in a structure (equalizing moments ~ Let us show that this problem can be solved using
optimization methods. To do this, consider the

2. PROBLEM FORMULATION
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expressions for true extreme forces (stresses) in
an element (section) of the elastic system

i i

S; _ Sipm’ +S["’i” (1 = 1,2,...,m)

St :S.prm+Simax; (1)

Here S, S are the maximum and minimum

internal forces in the i-th element, obtained as a
result of a standard analysis of an elastic n-times
statically indeterminate system, taking into
account the deformation compatibility conditions
and possible unfavorable load combinations. The
calculated values S/ and S;" are corrected as

follows (Fig. 1).

S™ = max (0, S )

S =min(0,S7"). ®

This ensures that values S are positive and

S"". are negative.

s -
/ | — 5 :
N’ 7 k j
Smin
Figure 1.

The prestressing force is determined by the
following expression

Siprestr — Zn:‘sijxj (l = 1: 2!""m) (3)
=l

where s, 1s the force in the i-th element of the
system from the action x =1 of the j-th

prestressing parameter (unknown of the force
method).
If the values of tensile R’ and compressive R,

bearing capacity are known, then the bearing
capacity conditions are written as

\Volume 17, Issue 3, 2021

S'<R.,S >-R' (i=1..,m), (4)

i

or as system of two-sided inequalities

R -S" <Y sx <R -S™
e Q)
(i=12,..,m).

System (5) determines the feasibility of the
design. If it is consistent, i.e. there are values

x,(j=12,..,n) which satisfy inequalities (5),

then they can be selected as prestressing
parameters. If it is inconsistent, we have to set
other values of R and R, .

It should be noted that if a system is made of an
ideal elastoplastic material, and the inequalities
(5) are consistent, it will exhibit purely elastic
behavior after a certain number of plastic
deformation cycles for all possible changes in the
live load, i.e. the system will be adaptable. This
conclusion follows directly from the Bleich-
Melan adaptability theorem.

It means that in cases where the physical
realization of an optimal elastic system can be
achieved with the help of prestressing, it is
always possible to design an optimal elastoplastic
system that adapts to a given load program, and
there is no need for the artificial regulation of
forces.

Not to be bounded by the values of the bearing
capacity of the truss members, assuming that the
bearing capacity of each member is equal to the
extreme force possible for it, i.e. consider the so-
called fully stressed structure [5, p. 78], where
every part is stressed to the maximum
permissible stress at least under one of the
possible load combinations, we will consider the
following conditions instead of (5)

(i=12,.,m), (6)

goJ !

-S" < is.,x. s
=l

that 1s, our goal is to find the prestress that should
reduce the internal force wvariation range
calculated without its effect.
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When the system (6) is consistent, there is an
infinite set of solutions which forms a domain Q

in the space of values x=(x,,...,x,). You can

choose from this set the values of the prestressing
parameters which satisfy some predetermined
conditions. Let us consider some of the possible
options.

3. OPTIONS

Bearing capacity margin maximization.

We will assume that, all other things being equal,
prestressing ensuring the maximum bearing
capacity margin of the system will be the best.
Since the values

fi(x)=8" —Zn:sﬁxj (i=12,..m);
()

ﬁ(x): i’"”’+2n:s,.j.xj (i:m+1,...,2m)
j=1

characterize these margins for all elements
(sections) of the system, it is advisable to look for

such a vector x =(x1* x), for which the
following condition is satisfied

L(x")=max min f;(x), (®)

x 1<ioam !
1.e. the minimum bearing capacity margin for
the elements of the system is maximized.
Determining the value L(x) from the condition
(8) with limitations (6) is the problem of
finding the Chebyshev point of a system of
linear inequalities. This problem can also be

solved as the following linear programming
problem [2]:

find the maximum of a linear form
Z= Xn+l 9)

with limitations
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n
fi(x)=8" _Z‘;S(/x./ X
=

(i=12,..m); (10

10
fi(x)=8""+ ;Siij +X,,
(i:m+1,...,2m)

If we denote the Chebyshev solution of the
inconsistent system as X~ :(x,* x,) then by

creating the corresponding prestress in the
system, we can obtain the following values of the
required bearing capacity parameters:

Pos S

| (an

i i

I%:S.’”’"+Zn:si/.x*_ (i=12,..,m)
e

Strength margin equalization.
Strength margin of a complex multi-element
system is often determined by forces in only a
few design members, while other members have
much larger bearing capacity margins. Therefore,
you might want to use prestressing to obtain a
system with uniform margins [1].
The consistency condition for the system of
inequalities (3), which can be written as follows

ﬁ(x,,...,xn)ZO (izl,...,Zm), (12)
indicates that there are interior points in the
domain Q defined by the inequalities (10) if at
least one of these inequalities is strict. We will
further proceed from this assumption.
Following [1], we consider an auxiliary function
in the form of the product of the bearing capacity
margins

P=f fofo (13)

The function P is smooth and takes positive
values at all interior points of the domain Q, and

vanishes at the boundary of this domain, since
here at least one of the functions (7) is equal to

International Journal for Computational Civil and Structural Engineering
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zero. Hence the smooth function P reaches its
maximum at an interior point of the domain Q2.
To show that this maximum is realized at a single
point M™ and, therefore, the local maximum
coincides with the global one, consider the
logarithm of P.

2m

L=InP=3 Iny, (14)

The function L is negatively defined and concave
in the domain Q, as evidenced by the analysis of
a matrix of the second partial derivatives

FL 31 0 9 1 9
oxox, A f oxdx, Hox f ox, (15)
(i,kzl,...,n)

Taking into account that

f,=(Sax b)), (16)
s=1
we obtain
82L _ —%- ajiajk
oxox, A (<& b ’
;ajsxs—‘r J (17)
(i,k :1,...,n)

The negative definiteness of a matrix with such
coefficients follows from the conditions of linear
independence of functions (10).

The solution corresponding to the point M’
located as far as possible from the boundaries of
the permissible domain, and its deviations from
the boundaries determine a balanced system of
strength margins.

4. NUMERICAL EXAMPLE

As an illustrative example, consider a simple
system of four bars with the same tension-
compression stiffness shown in Fig. 2. It can be
subjected to one of the three independent loads at
a time: P1=10t, P>=10 t and P3=10t.

Figure 2.

Forces in the 1st and 3rd bars are used as the
prestressing parameters of this twice statically
indeterminate system. Force values obtained as a
result of the static analysis are given in Table 1

Table 1
Bar Forces from loads: Extreme Prestressing
J Pl P2 P3 Smax Smm X1:1 X2=l
1 0.000 6.983 5.382 6.983 0.000 1.000 0.000
2 -3.162 2514 4.375 4.375 3.808 -0.707 -0.707
3 -4.941 0.000 3.808 -3.162 -4.941 0.000 1.000
4 -3.162 -2.514 0.499 0.499 -3.162 0.707 -0.707

Inequalities of type (5) for this system have the

form

0<x1<6.983,

\Volume 17, Issue 3, 2021

3.808<-0.707x1—0.707x2 < 4.375,
-4.941 <x2<-3.162,
-3.162 <0.707x1—0.707x2< 0.499.
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Their graphical representation is shown in Fig. 3.
As can be seen from Fig. 3, only four limitations
shown with a bold line are active.

X;

x,=-4,941

N
\\\\\\\\\\\\\\\\\k\\\§

These limitations can be expressed in the form of
the following inequalities:

x1>0
-3.162 < —0.707x1—0.707x2
x2<3.808
0.707x1—0.707x2 < 0.499

We will further consider only these limitations,
although it should be noted that in practical
problems it is impossible to discard inactive
limitations in advance and, as a result, the amount
of computation increases significantly.

It should also be noted, however, that using only
active limitations has no effect on the calculation
results, since the unaccounted values of the
bearing capacity margins fj(x) a priori exceed the
considered values.

Both solutions can be illustrated graphically for
the considered problem with two unknowns. The
solution to the Chebyshev point problem is
shown in Fig. 4.a, where the lines of the function
level are shown by the dotted line

L(x) = min[ fi(x), £2(x), /5(x), 3(X)].
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The solution to the equal margin problem is
shown in Fig. 4.b, where the lines of the function
level are shown by the dotted line

P(x)=fi(x)x f2(x) x f3(X) X fa(X).
a) b)

T X2 A Xy

72

LS

1,88

1,37

(I /I Y I Il

__—é_(/x
6__

%{///// L

Table 2 provides forces in the bars adjusted by
prestressing for the Chebyshev point problem.
And while for a system without prestressing with
bars of the same cross-section it was necessary at
least to ensure the following values R" = 6.983
and R~ = 4.941, for a prestressed system we
have R"=6.44 and R"=6.82.

Table 2
Jj P, P, P; Smax gmin
1| -1.04 5.94 4.34 594 | -1.04
2| -1.10 4.58 6.44 6.44 | -1.10
3] -6.82] -1.88 1.93 193 | -6.82
4] 257 -1.92 1.09 1.09 | -2.57

Table 3 provides the adjusted force values for the
equal margin problem. Here we have the
minimum possible values of the bearing capacity
parameters R+ =6.02 and R—=2.87.

Table 3
j| P P, P; gmax Smin
1| -0.96 6.02 |  4.42 6.02 | -0.96
2| -151 4.16 6.02 6.02 | -1.51
3| -631| -137 244 | 244 -1.37
4| -287| -222 079 0.79| -2.87
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As you can see, in this example ensuring uniform
bearing capacity margins is more advantageous in
terms of the weight of the structure.

There can be other relationships between the
considered solutions as well. The choice between
them depends on many factors and is informal.
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Abstract: The analysis of scientific literature shows that to date, the physical parameters of the deformation of reinforced concrete
bar structures during their dynamic buckling and the influence of the dissipative properties of the structural system on this process
remain insufficiently studied. In this regard, the paper proposes an analytical solution to the problem of dynamic buckling of a
reinforced concrete column when it is loaded with an impact load, taking into account the presence of initial geometric and (or)
physical imperfections and damping properties of the system, as well as an analysis and assessment of the column deformation
parameters based on the obtained analytical solution. An expression for the dynamic deflection of a bar element under its axial
loading with a high-speed shock load, taking into account damping, is obtained in an analytical form. For practical calculations
in a quasi-static formulation, the paper proposes an expression for the dynamic factor kd of bar structures under axial shock load.
A numerical example of calculating a reinforced concrete column using the obtained analytical expressions with and without
damping is considered. It was found that the maximum deflection of the elastic axis of the column under high-speed loading was
achieved at t = 0.04 s. In this case, the total dynamic deflection taking into account damping was 4.8% less than the deviation
without taking into account damping and 1.18 times more than the corresponding static value.

Keywords: reinforced concrete, column, buckling, accidental impact, progressive collapse, deflection, velocity,
acceleration

JTE®OPMHUPOBAHMUE )KEJE30BETOHHON BHEIIEHTPEHHO
CKATOM KOJIOHHBI ITPU JOT'PYKEHUN
YIAPHOM HAT'PY3KOHN

C.1O. Casun ', B.U. Konuynos *?
! HanmoHampHBIIH HeCienoBaTeabCKuii MOCKOBCKH# TOCYIapCTBEHHbINH CTPOUTENBHBIN YHHBEPCHUTET,
. Mocksa, POCCH
2 }Oro-3amaHeit rocynapcTBeHHBIN yHUBEpCHTET, T. Kypck, POCCHU S

AHHOTanuMs1: AHaIM3 HAYYHON JINTEPATyphl MOKA3bIBACT, UTO K HACTOSIILIEMY BPEMEHHU OCTAIOTCS HEOCTATOYHO HCCIIE/I0-
BaHHBIMH (PU3HUECKHE TTAPAMETPHI IEPOPMHUPOBAHHS KEINE300€ TOHHBIX CTEP)KHEBBIX KOHCTPYKIUH IPH NX JMHAMUYECKOM
MIPOJOJIEHOM M3THO€E 1 BIMSHHE HA 3TOT HPOLECC JUCCUIIATHBHBIX CBONCTB KOHCTPYKTHBHOMN CHCTEMBI. B cBS3M € 3THM,
B paccMaTpuBacMOi paboTe MPEIIOKEHO aHATNTHIECKOE PEIICHNE 3aJauH O INHAMHUYECKOM IIPOAOILHOM H3THOE JKelle-
300€TOHHOM KOJIOHHBI ITPU €€ AOTPYKEHUH yIapHON HArpy3KOH ¢ y4eTOM HaJIMYHs HA4aJIbHBIX TEOMETPUIECKUX U (VIIH)
(bU3HUECKUX HECOBEPIICHCTB U AEMII(UPYIONINX CBOWCTB CUCTEMBI, a TAK)KE 1aH aHAJIU3 U OIICHKA ITapaMeTpoB AehopMu-
POBaHMS KOJIOHHBI HA OCHOBE MOJIyYCHHOTO aHAJTMTHYECKOTO PelIeHns. B aHamuTnaeckoi (hopMe moydeHo BeIpakeHHe
JMHAMUYECKOTO OTKJIOHEHUSI yIIPYTOi OCH CTEPKHEBOTO JIEMEHTA ITPU €T0 NPOAOIHLHOM HarpyKEHHN BBICOKOCKOPOCTHOM
yAapHOH Harpys3koil ¢ ydeToMm aemrdupoBaHus. J[Is MPakTHYECKUX PAacdeTOB B KBA3UCTATHIECKOW MOCTAHOBKE MpEa-
JIOKEHO BBIpakeHHe Kod(unnenta nuHaMuaHOCTH kd cTepKHEBBIX KOHCTPYKIMH Ha MPOJONBHYIO YIapHYIO Harpy3Ky.
PaccMOTpeH 4nclIeHHBIN MPUMEp pacyeTa ’Kelne300€TOHHON KOJIOHHBI C UCTIOIb30BaHNEM ITOMYIEHHBIX aHAMTHIECKUX
BBIPaKEHHU NIPH yueTe AeMI(prupoBaHus 1 0€3 HEr0. YCTaHOBJIEHO, YTO HANOOJIbIIIee OTKIIOHEHUE YIIPYTOi OCH paccMaTpH-
BaeMO¥ KOJIOHHBI ITPX BEICOKOCKOPOCTHOM Harpy>KeHnH 06110 JocTUTHYTO Iipu t = 0.04 s. IIpu 3TOM IOITHOE THHAMIYECKOE
OTKJIOHEHHE C yueToM AemmpupoBanus Ha 4,8 % MeHblIe OTKIOHEHH 0e3 yuera aemmduposanus u B 1,18 pa3 6onbie
COOTBETCTBYIOIIEH CTATUUECKON BETUYUHBI.

KoroueBble ci1oBa: jene300eTOH, KOJIOHHA, IPOJOJILHBIN H3rH0, yaapHas Harpyska, Iporpeccupyromniee oopyiieHue,
OTKJIOHEHHE, CKOPOCTb, YCKOPEHHE
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INTRODUCTION

During the entire service life, the buildings and
structures are subject to power and
environmental influences of various nature and
intensity. In some cases, such influences can
lead to a loss of the bearing capacity of the
structural elements of a building, which in turn
can lead to a disproportionate failure of the
entire structural system that got name of
progressive collapse. Major accidents such as
the collapse of a section of the Ronan Point
high-rise residential building (London, 1968)
[1], the Sampoong Department Store (Seoul,
1995) [2], the Transvaal Park (Moscow, 2004)
[3], the WTC building (New York, 2011) [4],
the federal buildings of Alfred Murray
(Oklahoma City, USA, 1995) [5], the residential
building Champlain Towers South (Florida,
USA, 2021), etc., clearly demonstrated the
relevance of this problem.

In the event that the removal time of the bearing
element is counted in fractions of a second, then
this process is accompanied by the emergence
of significant inertial forces, which leads to
dynamic loading of the remaining elements of
the bearing system of the building. This is
confirmed by the results of field tests carried out
by Sasani and Sagiroglu [6] during the
demolition of buildings, as well as by testing
scale models of flat and spatial frames of
buildings made by V.. Kolchunov, N.V.
Fedorova, P.A. Korenkov, N.T. Vu et al. [7-10],
A.L. Demyanov and Alcadi S.A. [11] and others.
According to the results of the aforementioned
studies, the elements of coatings (floors) over
the structure to be removed are the first to be
included in the dynamic process of
redistribution of power flows through the
alternate load paths.

However, a scenario is possible in which the
removal of the structural element of the building
frame can lead to the buckling of the
eccentrically compressed elements of the
deformed structural system. Such a scenario for
the development of progressive collapse can be
associated  with  the accumulation of
environmental damage  (corrosion, high
temperatures) [12-14], a change in the nature of
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the  stress-strain  state of  eccentrically
compressed elements due to an increase in the
span of the floor structure or an increase in the
eccentricity of the application of a longitudinal
force, an increase in the effective length of the
considered eccentrically compressed element,
due to removal of vertical ties or degradation of
the fastening [15,16].

V.A. Gordon and V.I. Kolchunov [17]
investigated the stability of the columns of the
reinforced concrete building frames under the
degradation of the conditions of fastening in the
nodes. V.I. Kolchunov, N.O. Prasolov and
Kozharinova L.V. [16] carried out numerical
and experimental studies of the stability of
reinforced concrete frames with a sudden
change in the effective lengths of the elements.
V.M. Bondarenko [18] investigated the issues of
survivability exposure of reinforced concrete
corrosively damaged eccentrically compressed
bar elements. Investigations of the dynamic
stability of reinforced concrete compressed bar
elements taking into account the partial absence
of adhesion of reinforcement to concrete were
carried out by A.G. Tamrazyan, D.S. Popov.
and Ubysz A. [19]. D.G. Utkin [20] carried out
the study of the bearing capacity and methods of
strengthening reinforced concrete columns
subjected to transverse impact. In the work of
Alekseytsev A.V. [21], it was carried out a
numerical study of the mechanical safety of
reinforced concrete frames of buildings under
transverse impact using NX Nastran, in which,
among other things, the bearing capacity of
eccentrically compressed elements was assessed
according to the strength and stability criteria.

A brief analysis of the mentioned above and
other scientific publications on the issue of
buckling and stability of columns of reinforced
concrete frames of buildings during structural
alterations caused by the occurrence of local
damage or destruction of load-bearing structures
allows us to conclude that by now the
parameters of dynamic deformation of
reinforced concrete bar structures remain
insufficiently studied. during their buckling and
the influence on this process of the dissipative
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properties of the bearing structural system of a
building or structure.

In this regard, the purpose of the presented
study was to obtain an analytical solution to the
problem of dynamic buckling of a reinforced
concrete column when it is loaded with a shock
load, taking into account the presence of initial
geometric and (or) physical imperfections and
damping properties of the system, as well as to
estimate the column deformation parameters
based on the obtained analytical solution

MATERIALS AND METHODS

Let us consider a reinforced concrete frame of a
multi-storey civil building. Figure 1 shows a
variant of its secondary design scheme for the
analysis of resistance to progressive collapse.
The column of the first floor in the axes "A" -
"2" of such a frame with a sudden removal of
the column of the first floor in the axes "A" -
"1" can be considered as an eccentrically
compressed element, loaded with a rapidly
increasing load. As shown by the results of
experimental studies [6], the redistribution of
power flows along alternative paths can occur in

gy m—w) |

Pﬁzwl +y-A O*w
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tenths, and in some cases hundredths parts of a
second.

Material parameters adopted in the study are the
follows: concrete B25, reinforcement bars
A400. The axial force in the column from the
operating load P = 5000 kN. After a sudden
failure of the outermost column of the frame,
the considered column is loaded with an axial
force of 2000 kN during 0.01 s.

It’s should be noted that the issue of assessing
the time of redistribution of efforts during a
sudden failure of the structural member is not
considered in this study. Therefore, we have
assumed that the magnitude of the force and the
time of its application to the considered
eccentrically compressed bar element of the
column are known preliminary. The problem is
solved under the assumption that there are no
longitudinal inertial forces in the bar when it is
dynamically loaded.

The differential equation of motion of an
eccentrically compressed bar (Figure 2, a) when
it is loaded with a high-speed shock load, taking
into account the damping properties of the
system, can be written in the following form:

ow

+k—=0,

ox* ox’

where wo = wo (x) is the initial deviation of the
elastic axis of the rod from the vertical axis
passing through the center of gravity of one of
the end sections. The appearance of the initial
deviation is due to the geometric and (or)
physical imperfections of the column sections,
acquired during manufacture and operation, as
well as buckling from a statically applied
operational load.

w1 = w1 (x, ?) is the total deflection of the elastic
axis of the bar at time #;

w = w1 - wo - additional deflection of the elastic
axis of the rod at time ¢;

E is the initial modulus of elasticity of concrete;
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J is the moment of inertia of the reduced section
of a reinforced concrete bar element, taken
constant along the length of the bar along the
section with the lowest bending stiffness;

P = P (¢) - the law of variation in time of the
longitudinal force (Figure 2, b), adopted in the
form:

or 0<t<t¢t;
1

P B +Q-t )
{ for )

| B+Qt, t>1t,

where Po is a statically attached axial force;
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Figure 1. Secondary design scheme of a reinforced concrete frame of a building for analysis
of resistance to progressive collapse

B
L 2

(a) (b)

Figure 2. Design scheme of an eccentrically compressed bar member (a) and the law of variation of
the axial compressive force in time (b)

Q is a velocity of the bar member dynamic A is an area of reduced cross section;

loading, N/s; g is the acceleration of gravity;
t1 is a time of dynamic loading of the bar £ is proportionality factor accounting damping
member by shock load; properties, taken as a first approximation

v is a specific gravity of the material;
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Here 6 = 0.31 is — vibration decrement for
reinforced concrete structures, adopted according
to [22], o is the circular vibration frequency.

In order to solve equation (1), we used the
separation of variables, setting the shape of the
elastic line of the deformed column bar, as well
as the shape of the initial deviation in the form
of a half-wave of a sinusoid:

e {5,
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w1=ﬁ(t)-sm(m‘;""], 3)

where fo is amplitude value of the initial
deviation along the length of the rod;

fi(?) is amplitude value of total deflection along
the length of the rod at time #;

m is the number of half-waves of a sinusoid
along the length of the bar;

[ is an effective length of the bar.

Substituting (3) into equation (1) and excluding
the variable x, we obtain:

dfiz k * 12 * (X)z dﬁ 2 2 2 P 2 4
t————tom | m —— | fi=0"m"f,. 4
a’  nw-P, dt P, S Sy @)
In equation (4), the following designations are stage. When performing operations of
adopted: differentiation, integration and search for

n |E-g J nE-J
(D:—2 —-—,‘ PE=—2
/ y 4 [

Here o is the frequency of the first vibration
tone,

Pe is Euler critical force.

We solved equation (4) during two stages. At
the first stage, accepting the law of variation of
the axial force in time P (f) = Po + Qt, we obtain
a solution to equation (4) for the time interval 0
< t < #. At the second stage, taking the
longitudinal force P = Po + Qi = const, we
obtain a solution to equation (4) for the time
interval ¢ > 1. In this case, the initial conditions
at the second stage are the deviation of the
elastic axis and the velocity of transverse
displacement at time ¢ = #1, obtained from the
solution of the differential equation at the first

124

numerical values of wvariables, we used the
MathCAD software package.

RESULTS

Solution to the problem of dynamic buckling
with a load increasing in time and damping.
In order to simplify the form of writing the
differential equation (4), taking into account the
law of variation of the longitudinal force in time
P (t) = Po + Qt, we introduce the change of the
variable fo =t
k-w-1*

- E-J

f,=y-e *, where o=

Then, taking into account the adopted law of the
change in the longitudinal force in time, we
obtain:
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4

P, am’ e
y"+(m4—F°m2—a—— e twjy:m4-ﬁ)'ez. (5

E

Let us the following substitute into the equation

(5):

1

y(t,)=n(C); t,=b=a’C,

2 2
=glrm ) (3.

m

taking into account which we get:

- P,

We exclude the parameter a from the left-hand
side of Eq. (6) by performing an additional
substitution y (z) = n ({), z = a'*¢, as a result of
which we obtain the inhomogeneous equation:

2 1

1 0{h—a;zl
%”'ww-m“-n-eZ{ : )

the solution of which we found in the form of
the sum of the solution of the homogeneous

pe a[,,_a;g] equation known in the scientific literature [23]
_12]+ a-¢m=m"-f, o ) (6)  and the particular solution, selected according to
dg the form of the right-hand side:
1 of L
1 3 1 3 3 4 —| b—ab-z
A T 4
\lj:Cl.Zz.‘]1/3(_22]-'_(:2.22.J1/3(_22j+w.62 X (8)
o -a’+4-z

2 3 2 2
In the expression (8), J, , (522 J J s (EzzJ

are Bessel functions;
C1, C2 are the arbitrary constants determined
from the initial conditions of the problem:

1

v = £, 62—W=0 for t=0 or z=b-a®.
z

It should be noted that the parameter z decreases
with increasing time ¢. Therefore, when it goes
into the negative range of values in expression

(8), the Bessel functions
3 3

Jis [%ZZJ, J s (%zZJ must be replaced by

modified Bessel functions

\Volume 17, Issue 3, 2021

2 2 2 2
11/3[522], 1_1/3(522}, and the arbitrary

constants Ci1, C> must be redefined under the
initial conditions for z = 0 obtained by solving
the original equation (8).

For the reinforced concrete column under
consideration, the graphs of the change in the
parameter z, lateral deviation fi, velocity and
acceleration for the time interval 0 < ¢ < #1 with
and without damping are shown in Figure 3.

Solution to the problem of dynamic buckling
of a bar with a constant axial force and
damping. At the second stage of the study,
taking the longitudinal force constant P = Po +
Q# = const, for P < Pr we obtain a solution to
equation (4) for the time interval ¢ > #1:
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S At (ot fi
fi=e * - Dl-cos(sz+Dz-sm[ 22) +1 OP : )

in which a particular solution (the last term) is a elastic axis and the speed of transverse
static deflection of an eccentrically compressed displacement at time ¢ = ¢, obtained from
rod with an initial deflection fo; expression (8) and its first derivative,
D1, D> - arbitrary constants determined from the respectively;

initial conditions, which are the deviation of the

A
A
z(t
w5t 20 00136+ fi,m
67 0.0132+
4.5¢ ) 0.0128+
damping
3+ 1
without damping 0-0124 damping
Bl -+
L5 0.0120 without damping
ot LS 0.0116
{ 0.3
1.5+ 0.0112+
3l 0.0108+
45 0.0104+
1 0.0100F
_6 t, s
- [Ll’}{]ﬂ{: 4 4 4 4 »
—7.5 0.002 0.004 0.006 0.008 0.01
(a) (b)
A
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0. a, mls
ol Vv, mls
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0.63
61+
0.56- ,
damping 56.5
0 without damping
524
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29.5
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0 0.002 0.004 0.006 0.008 0.01
() (d)

Figure 3. Parameters of reinforced concrete column deformation for the time interval
0 <t <ti: dimensionless time parameter z (a), deflection of the elastic axis of the bar element (b),
lateral displacement rate (c), acceleration of the lateral displacement (d)
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k-1 o
B=——-.

P
A =B -4’ -m*|1- 2P .
m”- P,

It should be noted that the above assumption P <
Pk corresponds to the case A2 < 0. Analysis of the
expression for the parameter A’ shows that if the

1>t

1’

for

t,=t—t,

A
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value of the longitudinal force approaches Pz, then
A2 changes its sign, and the first term in expression
(9) must be written in hyperbolic functions.

For the reinforced concrete column under
consideration, the graphs of changes in the
lateral deflection fi, speed, acceleration and the
ratio of dynamic to static deflection for the time
interval ¢ > #1 (in the presence and absence of
damping are shown in Figure 4.

A
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Figure 4. Parameters of deformation of a reinforced concrete column for the time interval t > t1:
deviation of the elastic axis of the bar element (a), the rate of lateral displacement (b), acceleration
of the lateral displacement (c), the ratio of the dynamic deflection of an eccentrically compressed
bar element to the static one (d)
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Considering that on the first wave of transverse
vibrations in the time interval ¢ > #1, the decrease
in the value of dynamic deflection when taking
into account damping compared to dynamic
deflection without taking into account damping

k, =1+(D1 ~cos(}v212]+D2

DISCUSSION

Analysis of the plots presented in the previous
section shows that the maximum deviation of
the elastic axis of the column under the
considered shock impact was achieved at r = 1 +
t» = 0.04 s. In this case, the total dynamic
deflection taking into account damping was 16
mm, which is 4.8% less than the deviation
without taking into account damping and 1.18
times more than the corresponding static value.
Attention should be paid to the fact that the time
to reach the maximum deflection of the elastic
axis of the column is comparable to the time the
elastic wave running the length of the bar.
Therefore, in further studies, it is advisable to
take into account the forces of longitudinal
inertia.

Based on the results obtained in the previous
section, the amplitude values of the dynamic
transverse deflections of the elastic axis of the
bar, it can be assumed that the transverse
vibrations of the bar have practically no effect
on the magnitude of the longitudinal forces due
to the small deviations compared to the
dimensions of the cross-section of the bar. Thus,
a possible way to solve the problem can be the
search for the function P (¢) from the solution of
the wave equation with substitution this one into
the differential equation of dynamic buckling.

CONCLUSION

Summarizing the results of the study, the
following conclusions can be drawn:
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is within 5% (see Figure 4, d), then for practical
calculations of bar structures in a quasi-static
formulation, the dynamic factor ks can be
calculated by the formula:

.sin(k%jj mz'PE_
2 o

1. In an analytical form, an expression was
obtained for the dynamic deflection of the
elastic axis of a bar element under its
longitudinal loading with a high-speed shock
load, taking into account damping.

2. For practical calculations in a quasi-static
formulation, an expression is proposed for the
dynamic factor ks of bar structures under axial
shock load.

3. It was found that for the reinforced concrete
column under consideration, the maximum
deviation of its elastic axis under impact action
was achieved at t = 0.04 s. In this case, the total
dynamic deflection taking into account damping
was 16 mm, which is 4.8% less than the
deviation without taking into account damping
and 1.18 times more than the corresponding
static value.

4. In the considered example, the time to reach
the maximum dynamic deflection of the elastic
axis of the column is comparable to the time the
elastic wave running the length of the bar.
Therefore, when studying the dynamic buckling
from the shock load, it is advisable to take into
account the forces of longitudinal inertia.

(10)
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TO PARAMETRIC OPTIMIZATION OF STEEL LATTICE
PORTAL FRAME
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Abstract. The paper has proposed a mathematical model for parametric optimization problem of the steel lattice portal frame.
The design variable vector includes geometrical parameters of the structure (node coordinates), as well as cross-sectional
dimensions of the structural members. The system of constraints covers load-carrying capacities constraints formulated
for all design sections of structural members of the steel structure subjected to all ultimate load case combinations. The
displacements constraints formulated for the specified nodes of the steel structure subjected to all serviceability load case
combinations have been also included into the system of constraints. Additional requirements in the form of constraints on
lower and upper values of the design variables, constraints on permissible minimal thicknesses, constraints on permissible
maximum diameter-to-thickness ratio for the structural members with circle hollow sections, as well as the conditions for
designing gusset-less welded joints between structural members with circle hollow sections have been also considered in
the scope of the mathematical model. The method of the objective function gradient projection onto the active constraints
surface with simultaneous correction of the constraints violations has been used to solve the formulated parametric
optimization problem. New optimal layouts of the steel lattice portal frame by the criterion of the minimum weight, as
well as minimum costs on manufacturing and erection have been presented.

Keywords: optimization, steel lattice frame, nonlinear programming, strength, buckling, stiffness,
gradient projection method, finite element method, numerical algorithm

NPUMEHEHUE METOJIA IMTPOEKIIUU I'PAANEHTA
JIJISI TAPAMETPUYECKOHN ONITUMU3ALIMU CTAJIBHOM
PEIIETYACTOM PAMBI

B.B. IOpuenxo ', U./]. llenewro °, H.A. bunses*

! KuieBckuit HAMOHANBHBIN YHUBEPCUTET CTPOUTENLCTBA U apXUTEKTyphl, Kie, YKPAHA
2 HarmoHambHBIN yHUBEpCHUTET «JIBBOBCKaS MONMTEXHUKa», JIbBOB, YKPAHA
3 BM Prefab Engineering, Kues, YKPAHA

AHHOTanus. B cratbe npeayioxkeHa MareMaruyeckast MOJeb JUlsl 3a/1a4l NapaMeTpUUECKO ONTUMU3ALUU CTAaJbHON
perIeTyaroil monepevHoi paMbl KapKaca 31aHus, HECYIIHE SIEMEHTHl KOTOPOl BRIITOIHEHBI U3 KPYTIIBIX TpyO. BexTop
MIEPEMEHHBIX MPOEKTUPOBAHMS COAEPIKUT FEOMETPHUECKUE MAapaMeTPbl KOHCTPYKIMH (KOOPIMHATHI Y3JI0B), a TaKXKe
pa3Mepsl MONEPEUHBIX CEUCHUN HECYIINX IEMEHTOB KOHCTPYKIUH. CrcTeMa OrpaHUYeHHH BKIIOYAET OrpaHUYCHUS
Hecymiel crmocoOHOCTH, C(HOPMYITUPOBAHHBIE TSI BCEX PACUETHBIX CEUEHHWH 3IEMEHTOB KOHCTPYKINH, MOJJIEKAIICH
JIEHCTBHIO BCeX KOMOMHAIINI HATPYy30K IIEPBOM TPYTIIHI MPEeTbHBIX COCTOSIHAN. B crcTeMy orpaHmdeH Takke BKITIO-
YEeHbI OTPAHUYEHUSI IEPEMEIICHUH Y3710B, c(hOopMyInpOBaHHbIE AJIS OTIPEIEIEHHBIX Y3JI0B KOHCTPYKIINH, MOJIEKAIIeH
JMEHCTBUIO BCEX KOMOMHAIMIM HAarpy30K BTOPOH TPYIIIBI MPEACTBHBIX COCTOSHAN. J[OMOTHUTENBHBIE OTPAaHIMYCHUS B
(opme orpaHnYEHUI Ha BEPXHIOIO U HIDKHIOIO I'PaHMIBI BAPbUPOBAHUS [IEPEMEHHBIX IPOSKTHUPOBAHMS, OTPAHUIECHUS
Ha IOy CTUMYI0 MUHUMAJIbHYIO TONIINHY CEYEHHsI, OTPAHNYEHH Ha JOIyCTUMOE MaKCHMAaJIbHOE OTHOIIEHHUE JHaMeTpa
K TOJIIMHE TPYOBI, a TAKIKE YCIOBHUS KOHCTPYHPOBAaHUS OeC(PACOHOUHBIX Y3TI0B PEIIETUATON KOHCTPYKIHH C JJIEMEH-
TaMU UX KPYIIBIX TPYO Takke ObLIM PACCMOTPEHBI B COCTABE CHCTEMbI OTPaHMUEHHUH MaTeMaTndeckoil mopenu. s
pemeHust copMyIHMPOBAHHON 3a/1a4u MapaMeTPUIEeCKOW ONTHMM3ALNNHN NCIIONb30BAJICS METO MPOCKIMH TPaJUCHTa
(YHKIUH 1IETTH Ha TIOBEPXHOCTh AKTHBHBIX OTPAHUYEHUH NMPH OAHOBPEMEHHOM JIMKBUIALNY HEBSI30K B HAPYIICHHBIX
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OTpaHHYEHUSX. B pe3ynprare moxydeHsl HOBbIE ONTHMAIbHBIC IPOSKTHBIEC PEIICHNS CTAIbHON PEHIeTYaTo! moneped-
HOW paMbl 110 KPUTEPHUIO MUHIMYMa MacChl KOHCTPYKIINH, a TAK)KE IO KPUTEPHIO MUHIMYMa CMETHOH CTOMMOCTH Ha

€€ U3TOTOBJICHUEC U BO3BCICHHEC.

KoroueBble cjI0Ba: ONTHMU3AINs, CTAJIbHAS PEIIeTYaTasi paMa, HeJIMHEHHOE MPOrpaMMUPOBAHHUE, TIPOYHOCTD,
YCTOWYNBOCTB, KECTKOCTh, IPAJANCHTHBIN METO, METO/I KOHEUHBIX JIEMEHTOB, YNCIICHHBIN aJTOPUTM.

INTRODUCTION

Over the past 50 years, numerical optimization
and the finite element method have individually
made significant advances and have together
been developed to make possible the emergence
of structural optimization as a potential design
tool. In recent years, great efforts have been also
devoted to integrate optimization procedures
into the CAD facilities. With these new
developments, lots of computer packages are
now able to solve relatively complicated
industrial design problems using different
structural optimization techniques.

Applied optimum design problems for bar
structures in some cases are formulated as
parametric optimization problems, namely as
searching problems for unknown structural
parameters, which provide an extreme value of
the specified purpose function in the feasible
region defined by the specified constraints [1].
In this case, structural optimization is performed
by variation of the structural parameters when
the structural topology, cross-section types and
node type connections of the bars, the support
conditions of the bar system, as well as loading
patterns and load design values are prescribed
and constants.

Kibkalo et al. in the paper [2] formulated a
parametric optimization problem for thin-walled
bar structures and considered methods to solve
them. The searching for the optimum solution
has been performed by varying the structural
parameters providing the required load-carrying
capacity of structural members and the
minimum value of manufacturing costs.
Alekseytsev has described the process of
developing a parametrical-optimization
algorithm for steel trusses in the paper [3].

\Volume 17, Issue 3, 2021

Parametric optimization has been performed
taking into account strength, stability and
stiffness constraints formulated for all truss
members.

Serpik et al. in the paper [4] developed an
algorithm for parametric optimization of steel
flat rod systems. The optimization problem has
been formulated as a structural weight
minimization problem taking into account
strength and displacement constraints, as well as
overall stability constraints. The cross-sectional
dimensions of the truss members and the
coordinates of the truss panel joints have been
considered as design variables. The structural
analysis of internal forces and displacements for
considered structures has been performed using
the finite element method. An iterative
procedure for searching for optimum solution
has been proposed in [5].

Sergeyev et al. in the paper [6] formulated a
parametric ~ optimization  problem  with
constraints on faultless operation probability of
bar structures with random defects. The weight
of the bar structures has been considered as the
objective function. Initial global imperfections
have been considered as small independent
random variables distributed according to
normal distribution law, as well as buckling
load value has been also considered as a random
variable.

The mathematical model of the parametric
optimization problem of structures includes a
set of design variables, an objective function,
as well as constraints, which reflect generally
non-linear dependences between them [7]. If
the purpose function and constraints of the
mathematical model are continuously
differentiable functions, as well as the search
space is smooth, then the parametric
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optimization problems are successfully
solved using gradient projection non-linear
methods [8]. The gradient projection methods
operate with the first derivatives or gradients
only both of the objective function and
constraints. The methods are based on the
iterative construction of such a sequence of
the approximations of design variables that
provides convergence to the optimum
solution (optimum values of the structural
parameters) [9].

Additionally, a sensitivity analysis is a useful
optional feature that could be used in scope
of the numerical algorithms developed based
on the gradients methods [10]. Thus, in the
paper [11] Sergeyev et al. formulated a
parametric optimization problem of linearly
elastic space frame structures taking into
account the stress and multiple natural
frequency constraints. The cross-sectional
parameters of structural members as well as
node positions of the considered bar
structures has been considered as design
variables. The sensitivity analysis of multiple
frequencies has been performed using
analytic differentiation with respect to the
design variables. The optimal design of the
structure has been obtained by solving a
sequence  of  quadratic  programming
problems.

In this paper, steel lattice portal frame is
considered as research object, which
investigated for the searching for optimum
parameters of the structural form. The
following research tasks are formulated: to
develop a mathematical model for parametric
optimization of the considered steel structures
taking into account load-carrying capacities
and stiffness constraints; to propose a
numerical algorithm for parametric
optimization of the steel structures based on
the gradient projection method; to confirm the
validity of the optimum solutions obtained
using the proposed methodology based on
numerical examples.
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1. PROBLEM FORMULATION FOR
PARAMETRIC OPTIMIZATION OF
STEEL STRUCTURES

Let us consider a parametric optimization
problem of a structure consisting of bar
members. The problem statement can be
performed taking into account the following
assumptions widely used in structural mechanic
problems: the material of the structure is ideal
elastic; the bar structure is deformable linearly;
external loadings applied to the structure are
quasi-static.

Let us also formulate the following pre-
conditions for calculation: cross-section types
and dimensions of structural members are
constant along member lengths; external
loadings are applied to the structural members
without eccentricities relating to the center of
mass and shear center of its cross-sections; an
additional restraining by stiffeners are provided
in the design sections where point loads
(reactions) applied with the exception of cross-
section warping and local buckling of the cross-
section elements; load-carrying capacity of the
structural joints, splices and connections are
provided by additional structural parameters do
not covered by the considered parametric
optimization problem.

A parametric optimization problem of the
structure can be formulated as presented below:
to find optimum values for geometrical
parameters of the structure, member’s cross-
section dimensions and initial pre-stressing
forces introduced into the specified redundant
members of the bar system, which provide the
extreme value of the determined optimality
criterion and satisfy all load-carrying capacities
and stiffness requirements. We assume, that the
structural topology, cross-section types and
node type connections of the bars, the support
conditions of the bar system, as well as loading
and pre-stressing patterns are prescribed and
constants.

The formulated parametric optimization
problem can be considered integrally using the
mathematical model in the form of the non-
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linear programming task including an objective
function, a set of independent design variables
and constraints, which reflect generally non-
linear dependences between them. The validity
of the mathematical model can be estimated by
the compliance of its structure with the design
code requirements.

The parametric optimization problem of steel
structures can be stated in the following
mathematical terms: to find unknown structural

parameters X ={X,}", 1=,N, (N, is the

total number of the design variables), providing
the least value of the determined objective
function:

/(X))

in a feasible region (search space) 3 defined by
the following system of constraints:

(1.1)

W(X):{WK(X)=O|K:1’NEC};

o(X)=1{4,(X)<01n=N,c +1.N,}:

(1.2)
(1.3)

<

where X is the vector of the design variables
(unknown structural parameters); f, w,, @,
are the continuous functions of the vector

argument; X is the optimum solution or
optimum point (the vector of optimum values of

the structural parameters); f is the optimum

value of the optimum criterion (objective
function); N,. 1s the number of constraints-

equalities (f( ), which define hyperplanes of
the feasible solutions; N,. is the number of
constraints-inequalities ¢, ()? ) , which define a

feasible region in the design space 3.

The vector of the design variables comprises of

unknown geometrical parameters of the

structure )?G:{XG,Z}T, 2=LNyg, and

unknown cross-sectional dimensions of the
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— T
structural members Xeg = {X S } )

a=LNy

Xz{XG’XCS}T={{XG,;(}’{XCS,11}}T; (1.4)

where N, is the total number of unknown
node coordinates of the steel structure; N, ¢ is

the total number of unknown cross-sectional
dimensions of the structural members,
NX,G +NX,CS = NX‘

The specific technical-and-economic index
(material weight, material cost, construction
cost etc.) or another determined indicator can be
considered as the objective function Eq. (1.1)
taking into account the ability to formulate its
analytical expression as a function of design

variables X .

Load-carrying capacities constraints (strength
and stability inequalities) formulated based on
the design code requirements [12] for all design
sections of the structural members subjected to
all design load combinations at the ultimate
limit state as well as displacements constraints
(stiffness inequalities) for the specified nodes of
the bar system subjected to all design load
combinations at the serviceability limit state

should be included into the system of
constraints Egs. (1.2) — (1.3). Additional
requirements, which  describe structural,

technological and serviceability particularities
of the considered structure can be also included
into the system Egs. (1.2) — (1.3).

The design internal forces in the structural
members used in the strength and stability
inequalities of the system Egs. (1.2) — (1.3) are
considered as state variables depending on

design variables X and can be calculated from
the following linear equations system of the

finite element method [13], k=1, N, :

K(XG’XCS)XEULM :ﬁULS,k (XG); (1.5)
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where K ()? X CS) is the stiffness matrix of the

finite element model of the bar system, which
should be formed depending on the unknown
(variable) cross-sectional dimensions of the

structural members X as well as unknown

cs»

(variable) node coordinates of the structure X G
Durs. ()? G) is the column-vector of the node’s

loads for kth design load combination of the
ultimate limit state, which should be formed
depending on unknown (variable) node

coordinates of the structure X, ; Zysi 18 the

result column-vector of the node displacements
for kth design load combination of the ultimate

.. = ULS v v ULS AR
limit state, Zs, = Zggy, (XG, XCS) =Zgn s (X) ;
N[ is the number of the design ultimate load

combinations. For each ith design section of
jth structural member subjected to kth
ultimate design load combination the design
internal forces (axial force, bending moments
and shear forces) can be calculated depending
on node displacement column-vector Z , .

The node displacement of the bar system used
in stiffness inequalities of the system
Egs. (1.2) = (1.3) are also considered as state

variables depending on design variables X and
can be calculated from the following linear
equations system of the finite element method

[13], k=1, N2 -

K()?G’XCS)XZSLS,k = Psisi ()?(;)5 (1.6)

where pg, (X G) is the column-vector of the

node’s loads for kth design load combination
of the serviceability limit state, which should
be formed depending on unknown (variable)

node coordinates of the structure X.; Z,¢, 18

the result column-vector of the node
displacements for & th design load combination
of the serviceability limit state,
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Zosu = ZiLEfvl,k (XG’ XCS) = Z%ﬂf\/{,k (X) ’ NLSéS is
the number of the design serviceability load
combinations. For each m th node of the finite
element model subjected to & th serviceability
design load combination the design vertical
and horizontal displacements can be calculated
depending on node displacement column-
vector Zg g, .

2. IMPROVED GRADIENT PROJECTION
METHOD TO SOLVE THE
FORMULATED PARAMETRIC
OPTIMIZATION PROBLEM

The parametric optimization problem stated as
non-linear programming task by Eqgs.(1.1) —
(1.3) can be solved using a gradient projection
method. The method of objective function
gradient projection onto the active constraints
surface with simultaneous correction of the
constraints ~ violations  ensures  effective
searching for solution of the non-linear
programming tasks occurred when optimum
designing of the building structures [14, 15].

The gradient projection method operates with
the first derivatives or gradients only of both the
objective function Eq.(1.1) and constraints
Egs. (1.2) — (1.3). The method is based on the
iterative construction of such sequence Eq. (2.1)
of the approximations of the design variables

)?:{XZ}T, t=1,N,, that the

convergence to the optimum solution (optimum
values of the structural parameters):

provides

X, =X +AX,, (2.1)

)?:{XI}T, t=1,N, is the current

where X,

approximation to the optimum solution X~ that
satisfies both constraints-equalities Eq. (1.2) and
constraints-inequalities Eq. (1.3) with the
extreme value of the objective function

Eq. (1.1); AX,={AX,}, :=1,N,, is the

increment vector for the current values of the
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X : ¢ is the iteration’s index.

design variables X,

The start point of the iterative searching process
Xt:O
of the admissible design of the structure.

The active constraints only of constraints system
Egs. (1.2) — (1.3) should be considered at each

iteration. A set of active constraints numbers A

can be assigned as engineering estimation

calculated for the current approximation X ., to

the optimum solution (current design of the
structure) is determined as:

A=xuUn,
<={s] b (%)

n={NEc+77 | ¢U(5(,)2—8},

= “9}° (2.2)

where ¢ is a small positive number introduced
here in order to diminish the oscillations on
movement alongside of the active constraints
surface.

The increment vector AX, for the current values

of the design variables X . can be determined by

the following equation:

AX, = AX! + AX', (2.3)
where AX'! is the vector calculated subject to
the condition of elimination the constraint’s
violations; AX is the vector determined taking
into consideration the improvement of the
objective function value. Vectors AX' and

AX ' are directed parallel and perpendicularly

accordingly to the subspace with the vectors
basis of the linear-independent constraint’s
gradients, such that:

— T —
(AX1) AX' =0. (2.4)
The values of the constraint’s violations for the

current approximation X,

of the design

\Volume 17, Issue 3, 2021

variables are accumulated into the following
vector:

VZ(I//K(X)VK‘EK; ¢U(X)V77en).

Let us introduce a set L, Lc A, of the
constraint’s numbers, such that the gradients of

the constraints at the current approximation X ,

to the optimum solution are linear-independent.

Component AX' is calculated from the
equation presented below:
AXL=[Vo]a., (2.5)

where [Vg| is the matrix that consists of

0
% and ﬂ, here =1,N, ,
oX

l l

xkelL, nel; pa, 1is the column-vector that

components

defines the design variables increment subject to
the condition of elimination the constraint’s
violations. Vector i, can be calculated as

presented below.
In order to correct constraint’s violations V,

vector AX | to a first approximation should also

satisfy Taylor’s theorem for the continuously
differentiable multivariable function in the

vicinity of point X , for each constraint from set
L, namely:

~V =[Vp] AX". (2.6)

With substitution of Eq. (2.5) into Eq. (2.6) we
obtain the system of equations to determine
column-vector fi :

[Vo] [Vela, =-V. (2.7)

Component AX' is determined using the

following equation:
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A)?ﬂtzgxf)w:f(Vf—[Vgo][{r), (2~8)
where Vf is the vector of the objective function
the
approximation of the design variables) X .5 Py

gradient in current point (current

is the projection of the objective function
gradient vector onto the active constraints
X,
column-vector that defines the design variable’s
increment subject to the improvement of the

objective function value. Column-vector z, can

surface in the current point 4, 1is the

be calculated approximately using the least-
square method by the following equation:

[Voli ~Vf, 2.9)
or from the equation presented below:
Vol [Voli=[Ve] Vi  (2.10)

where & is the step parameter, which can be
calculated subject to the desired increment Af of

the purpose function on movement along the
direction of the purpose function anti-gradient. The
increment Af can be assign as 5...25% from the

current value of the objective function f ()? ,) :

AN
-\T =

A =E(VF) VF, &=

(2.11)

where in case of minimization Eq. (1.1) Af and
& accordingly have negative values. The
parameter & can be also calculated using the
dependency presented below:

(2.12)

that follows from the condition of attainment the
desired increment of the objective function Af

138

Vitalina V. Yurchenko, Ivan D. Peleshko, Nikita A. Biliaiev

on the movement along the direction of the
objective function anti-gradient projection onto
the active constraints surface. Step parameter &

can be also selected as a result of numerical
experiments performed for each type of the
structure individually [16, 17].
Using Egs. (2.5) and (2.8), Eq.(2.3) can be
rewritten as presented below:

AX, =[Vo] i, +&(Vf -[Vo] &),  (2.13)

Or
AX, =ENf+[Vol(i, —¢ i), (2.14)

where column-vectors g, and /i, are calculated

using Eq.(2.7) and Eq.(2.9) or Eq.(2.10),
respectively.

The linear-independent constraints of the system
Egs. (1.2) —(1.3) should be detected when
constructing the matrix of the active constraints

gradients [V¢] used by Eq. (2.7) and Eq. (2.9)

or Eq.(2.10). Selection of the linear-
independent constraints can be performed based
on the equivalent transformations of the
resolving equations of the gradient projection
method using the non-degenerate transformation
matrix H, such that the sub-diagonal elements

of the matrix H[Vg] equal to zero. An

orthogonal matrix of the elementary mapping
(Householder’s transformation) [18] has been
used to select linear-independent constraints of
the system Eqgs. (1.2) —(1.3) as well as to form
triangular structure of the nonzero elements of
matrix H[Vgo] [14].

Using Householder’s transformations described
above triangular structure of the nonzero
elements of matrix H[V¢] is formed step-by-

step. Besides, Eq.(2.7) and Eq.(2.9) can be
rewritten as follow:

([V(/)]T HT)(H[V(p])ﬁL =-V; (215
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H[Vo|zi ~HVf. (2.16)
Equivalent Householder transformations of the
resolving equations Egs. (2.15), (2.16) have
been proposed by the paper [14]. They increase
numerical efficiency of the algorithm developed
based on the considered method.

In order to calculate column-vectors z, and /i,

it is required only to perform forward and

backward substitutions in Eq.(2.15) and
Eq. (2.16).
To accelerate the convergence of the

minimization algorithm presented above, 4 th
columns should be excluded from matrix

H[Vg]. These columns correspond to those
constraints from Eq.(1.3), for which the
following inequality satisfies:

S Xy, >0 (2.17)

As presented by the papers [14, 15], when
1 —&x ey, >0, then the return onto the active

constraints surface from the feasible region J is
performed with simultaneous degradation of the
objective function value. At the same time, in
case of u,, —&xu, <0, both the improvement

of the objective function value and the return
from the inadmissible region onto the active
constraints surface are performed.

When excluding Ath columns from matrix

H[V(p] corresponded to those constraints for
which Eq.(2.17) is satisfied, the
(H[V(/)])red with a broken (non-triangular)
structure of the non-zero elements is obtained. The

set L. of the linear-independent active constraints
numbers transforms into the set L, respectively.

matrix

At the same time, the vector of the constraint’s
violations V reduced into the vector V _,

accordingly. In order to restore the triangular
structure of the matrix (H[V (p])md with zero sub-

diagonal elements, Givens transformations
(Givens rotations) [18] can be used.

\Volume 17, Issue 3, 2021

Considering Givens transformations, Eq. (2.15)

and Eq. (2.16) for column-vectors ( i, )red and
('ZZL)red can be rewritten as:
([V(D]T HT) G’ x
red (218)
X (H V(/’) 'Z‘ )red Vi
G(H[Vy]) (&) ~GHV/. (219

Equivalent transformations of the resolving
equations Egs. (2.18), (2.19) wusing Givens
rotations (transformations with matrix G)
ensure acceleration of the iterative searching
process Eq. (2.1) in those cases when Eq. (2.17)
takes into account due to decreasing the amount
of calculations [14].

The main resolving equation of the gradient
method Eq.(2.13) and Eq.(2.14) can be
rewritten as presented below:

AX, =(H[Ve]),,, (£.),, +

ce(vi-(nve)) (a), ) O

Or

AX, =& Vf+
+(H[V¢])md ((ﬁi )red _93('[47),@61)'

It should be noted that the lengths of the gradient
vectors for the objective function Eq. (1.1), as
well as for constraints Egs. (1.2) —(1.3), remain
as they were in scope of the proposed equivalent
transformations ensuring the dependability of the
optimization algorithm [14].

The determination the convergence criterion is the
final question when using the iterative searching
for the optimum point Eq. (2.1) described above.
Considering the geometrical content of the
gradient steepest descent method, we can assume

2.21)

that at the permissible point X . the component of

the increment vector AX' for the design variables
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should be vanish, AX'—0, in case of

approximation to the optimum solution of the non-
linear programming task presented by Eqgs. (1.1) —
(1.5). So, the following convergence criterion of
the iterative procedure Eq. (2.1) can be assigned:

”A;(ﬂk ” - \/m <&, (2.22)

where g, is a small positive number. In the paper

[14] the convergence criteria for the iterative
procedure Eq. (2.1) has been presented in detail.

3. MATHEMATICAL MODEL FOR
PARAMETRIC OPTIMIZATION OF THE
LATTICE PORTAL FRAME

A parametric optimization task for lattice portal
frame of the steel warehouse framework
designed as repository for the granulated sulfur
has been considered. Building object locates in
seaport Ust-Luga of Russian Federation The
general building sizes are length 247.25 m and
width 69.0 m. Steel framework of the building

|
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consists of portal frames with span 69.0 m
positioned along building length with bay 7.5 m.
Steel portal frames consist of the lattice
structural members fabricated from pipes with
steel grade St20 according to design code [12].
Joints in the lattice structural members were
designed using welded connections without
gussets.

There is a service platform at the level +28.25 m
provided for supporting the crane-loader and
conveyor (see Fig. 3.1). The load-bearing
structures of the platform are suspended to the
structural members of the portal frames. Welded
I-beams of this platform were manufactured
from the universal steel sheets of grade S245.
Design scheme of the steel lattice portal frame
was assumed as a hinged-bar structure with
hinged column bases. Geometrical scheme of
the portal frame was described using the set of
nodes and bars with orientation on
implementation of the finite element method for
linear static analysis. Node coordinates of the
design scheme were determined in Cartesian
coordinate system and presented as expressions
in dependence of geometrical design variables
of the optimization task.

Figure 3.1. Assembling process on job site (Photo has been provided by V. Shymanovsky Ukrainian
Research and Design Institute of Steel Construction)

Dead loads included self weight of the portal
frame, roof purlins, roof bracings, fire escape
staircase and mezzanines, profiled panels which is
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used as non-warmth-keeping walling as well as
service loads on fire escape staircase and
mezzanines. Safety factors for the design loads
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and effects as well as safety factor for the building
responsibility were defined according to [12].
Live loads (or technological loads) were accepted
according to the target specification. Calculation
the design values for climate loadings has been
performed according to the requirements [12]. So,
tree types of snow loads and two types of wind
load have been considered when optimum
designing of the steel portal frames.

Design loads and effects have been combined in
16 design load case combinations taken into
account the combination factors according to
requirements of design code [12]. All loads and
effects on the structure were presented as
concentrated loads at the nodes and were
determined analytically depending on the
variable parameters of the geometrical scheme.
Mathematical model of the parametric
optimization task for the steel portal frame with
lattice structural members has been formulated
as nonlinear programming task including the set
of design variables, system of constraints as
well as specified purpose function.

3.1. Design variables

Parameters of the geometric scheme of the portal
frames have been considered as design variables.
Variable parameters of the geometrical scheme
were building height at the eave node H_, and at

the ridge H _,, distance between upper and lower

chords of the lattice rafter at the eave node hop
and at the erection joints A,, h,, h, 1 h,, distance

between chords of the lattice column at the eave
node bop and parameter b, (see Fig. 3.2). Start

values for the design variables were accepted
according to the design decision of the steel
framework developed by Open Join-Stock
Company “V. Shymanovsky Ukrainian Research
and Design Institute of Steel Construction”,
namely: H_,=39.58m, H_, =10.63m,

hy=h,=hy=h =h, =b, =2.6m, b,=0.56m.

Additionally, cross-sectional sizes of the structural
members with circle hollow sections (CHS) for
each stiffness type were considered as design
variables (see Table 3.1).

Table 3.1. Variable cross-sectional sizes for the CHS structural members of the portal frame

Destination and | Stiffness | Design variables | Start Stiffness | Design variables | Start

location of | type name, diameterx | values, type name, diameterx | values,

structural number | thickness mmxmm | number | thickness mmxXmm

member

Chords of the | 1 d, xt, 299%25 7 d,xt, 299x16

lattice

structural 2 d, xt, 299x14 8 dy x 1 299x10

members 3 d, xt, 299x10 9 d, xt, 299x10
4 d, xt, 299x14 10 d,, xt, 299x14
5 d, xt, 299x14 11 d, xt, 180x12
6 d, xt, 299x10 - - -

Elements of the | 12 d, xt, 152%8 14 d, xt, 102%5

lattice rafters 3 d <, 121x8 ~ ~ ~

Frame ridge 15 d s Xt 152%8 17 d,, xt, 18012
16 d,xt, 102x5 18 d,g X1, 180x12

Elements of the | 19 dyxt, 299%10 21 d, xt, 299x25

lattice columns 20 d, <1, 209x25 | 22 dy, xt, 102x5

Suspension arm | 23 d,, xt,, 180x12 - - -

of the service

platform
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Figure 3.2. The design scheme of the portal frame with specification of the variable geometrical

parameters

3.2. System of constraints

The system of constraints Eqgs.(1.2)—(1.3)
should cover strength and stability constraints
formulated for all design sections of all
structural members of the considered steel
structure  subjected to all design load
combinations at the ultimate limit state. The
following strength constraints have been
included in the system of constraints
Egs. (1.2) - (1.3), formulated for all design

sections, Vi=1L, N ,; (N, is the total number

of the design sections in structural members), of
all structural members, Vj=1,N, (N, is the

total number of the structural members),
subjected to all ultimate load case combination,

Vk=1,N;2, namely normal  stresses
verifications:
N, (X
() ~1<0; 3.1)

1s the value of the
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normal stresses caused by axial force N, ()Z' )

acting in ith design section of jth structural

member subjected to kth ultimate load case
combination calculated from the linear
equations system of the finite element method

presented by Eq.(1.5); An,j()?CS) is the net

cross-sectional area of jth structural member

calculated depending on the variable cross-
sectional dimensions of the structural members

Xcss 7. 1s the safety factor [12]; R is the

design strength for steel member subjected to
tension, bending and compression; Ry, are

[12];
Ok ()? ) are normal stresses at the specified

allowable value for normal stresses

cross-section point caused by internal forces
acting in ith design section of jth structural
member subjected to kth ultimate load case
combination calculated from the linear
equations system of the finite element method
presented by Eq. (1.5). The value of the normal

stresses o, ()? ) at the specified cross-section

point has been calculated depending on the
variable geometrical parameters of the structure
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X, and variable cross-sectional dimensions of

the structural members X .

The following constraints on slenderness of the
structural members have been included in the

system  of  constraints  Egs. (1.2) —(1.3),
Vi=1N,:
L, (X
L =l “’y;’( ‘) ~1<0; (3.2)
ly,j (XCS )ﬂ”uy,j
L. (X
‘?f’z;"( o) ~1,0<0; (3.3)
lz,j (XCS)/qu J

where i (XCS) and I (XCS) are radiuses of

inertia for jth structural member’s design

cross-section relative to the main axis of inertia
and calculated depending on the variable cross-

sectional dimensions of the structural members
X Ly ()?G) and [, ()?G) are design
lengths for jth structural member in the main

planes of inertia calculated depending on the
variable geometrical parameters of the structure

X.: A

».; and A, are the ultimate slenderness

for jth structural member. Design lengths of

the structural ~members Iefw(XG) and

lef’z,j()ﬁ(G) were defined according to [12] as:

for chords, support diagonals and support
columns of the lattice structural members —

Ly s (XG ) =1 (XG ) S Ly (XG ) =1, ;; for other
elements of the lattice structural members —

Loy (X6)=0850(X,)s L., (Xo)=0850;

here /; is the geometrical length for ; th bar of

lattice structural member; / ; is the distance

between out-of-plane restraints of the member
from the horizontal displacements in out-of-
plane direction. Ultimate values for the
slenderness of the lattice structural members
were specified according to [12] as:

\Volume 17, Issue 3, 2021

Ay =4.; =400 for all tensioned members;
A i =4

uy,j uz,j
The following stability constraints have been
included in the system of constraints
Egs. (1.2) = (1.3), formulated for all design

sections, Vi=1, N ,, of the structural members

=150 for all compressed members.

subjected to all ultimate load case combination,
Vk=LNS |
verifications

namely  flexural  buckling

for all
subjected to axial compression force N, ()? ) ,

structural members

Vji=1,N,
_ ﬁN”k(#)ﬁ ~1<0;  (3.4)
¢7y](XGaXcs)A_/(XCS)Ry,j ¢
qN” (X) -1<0; (3.5)

where 4, ()? CS) is the gross cross-sectional area
of jth structural member calculated depending
on the variable cross-sectional dimensions of

the structural members X ?,; ()? X CS) and

Q. (f( X, CS) are column’s stability factors
corresponded to flexural buckling relative to the
main axes of inertia and calculated depending
on the design lengths /, (XG), Ly (XG),

cross-section type and cross-section geometrical
properties for the jth structural member [12].

The flexural buckling factors ¢, ()?G,X CS)

and ¢_; ()? X CS) calculated depending on the
variable geometrical parameters of the structure

X, and variable cross-sectional dimensions of

the structural members X .

The following local buckling constraints have
been also included into the system of
constraints:
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o (st) ~1<0; (3.6)
.09
lﬁ""( fs) ~1<0 (3.7)
5 (X)

where A

" ()?CS) and /TM ()?CS) are the non-
dimensional slenderness of the web and flange

respectively of the cross-section for jth
structural member; 4, ; (X ) and 4, (X ) are

the maximum values for corresponded non-
dimensional slenderness for column structural
members calculated depending on the internal
forces (ration of the bending moment to the
axial force), as well as depending on the design

lengths [, ., [,.,, cross-section type and

cross-section geometrical properties for the jth
structural member [12]. The non-dimensional

Z! (X cs ) and 4, ()?CS )

calculated depending on the variable cross-
sectional dimensions of the structural members

slenderness

X.s only. At the same time, the maximum

values for corresponded non-dimensional

()? ) and Zuf’ ; ()? ) calculated

the
parameters of the structure X, and variable

slenderness A

uw, j

depending on variable  geometrical

cross-sectional dimensions of the structural
members X .

The system of constraints Egs. (1.2) — (1.3)
has been also covered the displacements
constraints (stiffness inequalities) for the
specified nodes of the considered steel
structure subjected to all design load
combinations at the serviceability limit state.
The following horizontal and vertical
displacements constraints have been included
into the system of constraints Egs. (1.2) -

(1.3), formulated for all nodes, Vm=1,N,
(N, 1is the total number of nodes in the
of the

considered steel structure), steel
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structure subjected to all serviceability load

case combination, Vk =1, N;%’ , namely:

X
o | )—130, (3.8)
5ux,m
5. (X
= )—130, (3.9)
where &, ()? ) and o, (f( ) are the
horizontal and  vertical displacements

respectively for/th node of the steel structure
subjected to kth serviceability load case
combination calculated from the linear
equations system of the finite element method
presented by Eq.(1.6); 6, and o _ are the

allowable horizontal and vertical displacements
for mth structural node. Ultimate values for
linear node displacements of the steel lattice
portal frame were calculated according to [12]
as o, , =H_,/210 and 6_, =L/300=230 mm.

Additional requirements that describe structural,
technological and serviceability particularities
of the considered structure, as well as
constraints on the building functional volume
(see Fig.3.3) can be also included into the
system Eqgs. (1.2) —(1.3). In particular these
requirements can be presented in the form of
constraints on lower and upper values of the

design variables, Vi=1,N, :

Xl

1- (3.10)

Xl
S 1<0;

1

(3.11)

where X* and XY

1 1

are the lower and upper

bounds for the design variable X, ; N, is the
total number of the design variables.
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Figure 3.3. Technological equipments and constraints that describe useful space in the building

Additional constraints on cross-sectional sizes
of the structural members with circle hollow
sections type have been formulated according to
the requirements of [12]. There were constraints
of permissible minimal thickness and

permissible maximum diameter-to-thickness
ratio for the structural members, namely,
VIi=1LNg :
tl
1,0-——<0; (3.12)
min,/
DI
-1,0<0;
5 (3.13)

1™~ max,/

where [ is the number of the stiffness type; N,
is the overall quantity of the stiffness types in
the considered steel lattice portal frame; ¢, and
D, are thickness and diameter of the circle
hollow section for /th stiffness type (see
Table 3.1) respectively; 7., is the minimum
thickness of the circle hollow section in

accordance with design code [12] as
t . =3mm for chords, support diagonals and

min,/

support columns of lattice structural members
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and ¢
)

max,/

=2.5mm for other lattice elements;

min,/
1s the maximum diameter-to-thickness
ratio for the structural member with circle

hollow section in accordance with design code
[12] depending on the yield stress value

R, =245MPa <295MPa as ¢, ,=30 for
chords elements of the Ilattice structural
members and &, , =90 for other Ilattice
elements.
The following constraints that describe
conditions for designing gusset-less welded
joints between CHS structural members
formulated according to the requirements [12]
have been also included in the system
Egs. (1.2) - (1.3), ¢, p=1..Ng;:

0,3d,<d, <d,; (3.14)

where p and ¢ are the numbers of the stiffness

types of structural members connected in the
joint, here p 1is the number of the chord’s

stiffness type; ¢ is the number of the lattice
stiffness type.
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3.3. Objective function

Minimum weight as well as minimum
construction budget has been considered as
purpose function. Analytical expression for the
structural weight depending on the variable
cross-sectional sizes of the members can be
written by the following formula:

N
M(XG’XCS):prIA_/Zj =
=

. (3.15)
= 4”60/?2 g (Dj —1 )l/ — min;

J=1

where 4, and [, are gross cross-sectional area

and geometrical length for jth structural
member respectively; p — steel density,
p =7850kg/m3; ¢ is the factor that takes into

account the increment of structural weight due
to the present of the adjunct elements in the
structural members and joints (stiffeners, ribs,
end-plates, gussets etc.), ¢ was defined

according to the steel specification mentioned in
the source project for the warehouse framework,
pU11.

Construction budget of the steel portal frame
with lattice structural members taken into
account construction budget of mezzanines
erected at the level +28,25 can be presented as
follow:

_ it sl wil
K= Cmnf + Cmnf + Casm + Casm +
+Czr.p. + Cq.c. + Cmat;

where C ,an is the manufacturing cost of lattice

sl
Cmnf

cost of mezzanine’s structural members; C,, is

structural members; is the manufacturing

the assembly cost for steel portal frame; C is

asm

the assembly cost for walling; C,, is the cost

on the work package for corrosion protection of
the steel framework; C, . is the cost for the

quality control of welded connections; C, , is
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the material cost for structural members of the
steel portal frame. Analytical expression of the
construction budget for manufacturing and
erection of the steel lattice portal frame
depending on the design variables have been
presented by the following, UAH:

K =20670M (X, X )+1525D,, (X, )+

F1300H,, +110A, (X, Xy )+ (3.16)

+21120 — min;

half-rafter
1

DOVZ((O,SL)2+(sz_ szk)z)i; P

where D is the

ov

length,

portal frame span, L =69 m; AS(XG,XCS) is

the total surface area of the steel lattice portal
frame to be subjected to anti-corrosion
treatment.

4. PARAMETRIC OPTIMIZATION
ALGORITHM BASED ON THE
GRADIENT PROJECTION METHOD

Let present the following numerical algorithm
to solve the parametric optimization problem for
steel structures formulated above.

Step 1. Describing an initial design (a set of
design variables) and initial data for structural

optimization.
— T

The design variable vector X, = ()? cr X CS)

k
has been specified, where k 1is the iteration
index, £=0. The structural topology, cross-
section types and node type connections of the
bars, the support conditions of the bar system,
as well as loading patterns, load case
combinations and load design values are
prescribed and constants.

Initial data for optimization of the considered
steel structure are design strength for steel
member R , safety factor y,, factors to define
flexural design lengths [, ., [ for all

ef.z,j
column structural members; allowable values
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for horizontal and vertical displacements o

ux,!
and o, , of the specified nodes of the

considered steel structure; lower X’ and upper
XY bounds for the design variables; as well as

specified objective function f(X )

Step 2. Calculation of the geometrical and
design lengths for all structural members.
The geometrical lengths /, of all structural

members are calculated based on the node
coordinates of the considered steel structure.
The latter depend on the unknown (variable)

geometrical parameters of the structure X .
[

ofy.j 2 Tefz]
structural members are calculated using
calculated geometrical lengths /; and initial data

The design lengths [ of all column

relating to the design length factors. The latter
are constant during the iteration process
presented below. Variation of the geometrical
lengths /., and corresponded design lengths

/ /

o tefz
performed based on the current values of the
X, of the

on the further iterations has been

variable (unknown) parameters

geometrical scheme.

Step 3. Calculation of the cross-section
dimensions and geometrical properties for all
design cross-sections.

Geometrical properties of the design cross-
sections (areas, moments of inertia, elastic
section moments, radiuses of inertia, etc.), as
well as non-dimensional slenderness for cross-

section elements (webs and flanges) /Tw’j (/? CS)

and ﬂ_gm (X’ CS) have been calculated depending

on the current values of the unknown (variable)
cross-section dimensions X .

Step 4. Linear structural of the
considered steel structure.

For each m th node of the finite element model
subjected to kth serviceability load case

combination the displacements and rotations, as

analysis

well as the design horizontal &, ,, ()? ) and
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vertical o, ()Z' ) displacements can be

calculated using the linear equations system of
the finite element method presented by
Eq. (1.6).

For each ith design section of jth structural
member subjected to kth ultimate load case
combination the design internal forces can be
calculated using the linear equations system of
the finite element method presented by
Eq. (1.5).

Step 5. Calculation of the
(stresses, buckling factors,
dimensional slenderness etc.).

state  variables
allowable non-

The value of the normal o, (X’ ) stresses at

the specified cross-section point has been
calculated depending on the axial force acting in
ith design section of jth structural member

subjected to £ th ultimate load case combination
as presented by the design code.

The flexural buckling factors (ﬂy,_,-()? G X ),

> CS
®.; ()? G,)? CS) have been calculated depending

on the corresponded design lengths, cross-
section type and cross-section geometrical
properties for the structural members according
to the design code [12].

The maximum values for corresponded non-

dimensional  slenderness /TMW’ ; ()? ) and
qu, ; ()? ) for column structural members have

been calculated depending on the design lengths

lyy;» lys.;» cross-section type and cross-

section geometrical properties for the jth
structural member [12].

Step 6. Verifications of the constraints and
construction the set of active constraints
numbers A .

Verification of the constraints Egs. (3.1), (3.4),
(3.5) has been performed for all ultimate load
case combinations and all design cross-sections
of all structural members. Verification of the
constraints Egs. (3.8), (3.9) have been also
conducted for all serviceability load case
combinations and all design structural nodes.
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Additional requirements in the form of
constraints Egs. (3.10), (3.11) on lower and
upper values of the design variables, local

buckling constraints Egs. (3.6), (3.7),
constraints on the member’s slenderness
Egs. (3.2), (3.3), constraint Eq.(3.12) on
permissible minimal thickness, constraint

Eq. (3.13) on permissible maximum diameter-
to-thickness ratio for the structural members, as
well as the conditions Eq. (3.14) for designing
gusset-less welded joints between structural
members with circle hollow sections have been
also verified. Set of the active constraints
numbers A  calculated for the current

Xk
according to Eq. (2.2).
Step 7. Calculation of the current objective

approximation has been constructed

function value f(X,), objective function

gradient V£ (X ,) and determination of the

desired decrement of the objective function
value Af(X,).

The objective function gradient Vf(X,) can be

calculated by the numerical differentiation with
respect to the design variables using the finite
difference  approximation. = The  desired
decrement of the objective function value

Af()?k) can be assigned as 5...25% from the

current objective function value f(X )

Step 8. Construction of  the  constraint’s
violations vector V and the matrix of the active

constraint’s gradients [V¢]. The vector of the

values of the constraint’s violations V and the
matrix of the constraint’s gradients [Vgo] are

constructed for active constraints only according
to the set of active constraints numbers A .

Step 9. Construction the matrix of active linear-
independent  constraint’s  gradients  with
triangular  structure. The set of linear-
independent constraint’s numbers L and the
matrix of active linear-independent constraint’s

gradients H[V(p] with triangular structure are

constructed according to the

presented by the paper [14].

algorithm
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Step 10. Step parameter & calculation. Step
parameter £ has been calculated according to
Eq. (2.11) or Eq. (2.12) and can be modified on
the further iterations depending on convergence
of the iterative process presented by Eq. (2.1).

Step 11. Calculation the column-vectors £, and

4, which define the design variables increment

subject to the condition of elimination the
constraint’s violations and subject to the
improvement of the objective function value.
The vectors £, and zi, can be calculated using
Eq. (2.18) and Eq. (2.19) respectively.

If some /4th component of the column-vectors

a4, and g satisfies Eq.(2.17), the
corresponded constraint gradient V¢, has been
excluded from the matrix [Vg], and

corresponded violations ¥, has been excluded

from the vector V, as well as the return to step
9 has to be conducted. In contrary case
transition to the step 11 has been performed.

Step 12. Calculation the increment vector for the
current design variables and determination the
improved approximation to the optimum

solution. The increment vector AX, for the

current design variables values X, has been
calculated according to Eq. (2.20) or Eq. (2.21).
The improved approximation X . to the

optimum solution has been determined
according to Eq. (2.1).

Step 13. Stop criteria verification of iterative
searching for the optimum solution. If all
constraints Eqgs. (3.1) — (3.14) are satistied with
appropriate accuracy, as well as inequality
Eq. (2.22) or one of the stop criteria described
by the paper [14] is also satisfied, then transition
to the step 13 has been performed. In contrary
case return to the step 1 has been conducted
with k<« k+1.

Step 14. Discretization the optimum solution
X, obtained in the continuum space of the
design variables.
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Y

optimization. & is the

Step 1. Describing an initial design (a set of design variables) and initial data for structural

iteration index, k=0.

(D—

i

Step 2. Calculation of the geometrical and

design lengths for all structural members.

\

y

Step 3. Calculation of the cross-section dimensions and geometrical properties for all
design cross-sections.

Y

Step 4. Linear st

ructural analysis

\

i

Step 5. Calculation of the state variables (internal forces, stresses, etc.)

/

X

Step 6. Verifications of the constraints and
construction the set of active constraints numbers A

\

i

Step 7. Calculation the current
objective function gradient Vf(f(k

objective function value f()?k) ,
) and desired decrement Af()?k)

Y

and the matrix of the active

Step 8. Construction of the constraint’s violations vector V

constraint’s gradients [V¢]

O—

Step 9. Construction the matrix of active

H[ Vo] with triangular structure and vector Hv/

linear-independent constraint’s gradients

Figure 4.1. The flow chart for structural optimization according to the searching technique based
on the gradient projection method
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Step 10. Step parameter & calculation

Y
Step 11. Calculation the column-vectors 4, and z, determining the design variables

increment subject to the condition of elimination the constraint’s violations and subject to the
improvement of the objective function value

Excluding the constraint gradient
Vg, from the matrix [Ve] and

violation ¥, from the vector V

ﬂ\ Verification the inequali
quality
1E3 Eq. (2.12) for all columns

of the matrix [V |

Step 12. Calculation the increment vector AX, for the current
design variables and determination the improved
approximation to the optimum solution )Z',H

Iteration index
ke«k+1

Step 13. Stop
criteria verification

Step 14. Discretization the optimum solution )?,c

Y

Step 15. Optimum parameters of the structure is )?k with optimum

value of the objective function f()?k)

Figure 4.1. (continuation). The flow chart for structural optimization according to the
searching technique based on the gradient projection method

Step 15. Optimum parameters of the structure i function f/( )}k)_

X, with optimum value of the objective Figure 4.1 presents the flow chart for structural
optimization according to the searching
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technique describing by the gradient projection
method considered above.

5. OPTIMIZATION RESULTS

A parametric optimization methodology
presented above has been realized in software
OptCAD [19]. This software provides
solutions to a wide range of problems,
namely: (i) linear static analysis of bar
structures; (ii) verification of the load-bearing
capacity of the structural members according
to specified design code; (iii) searching for

values of the structural parameters when
structure  complies with design code
requirements and designer’s criterions; (iv)
parametric optimization of the steel bar
structures by the determined criterion.
Mathematical apparatus of the software
combines the finite element method to
perform linear static analysis of the bar
system, as well as improved gradient
projection method to solve parametric
optimization problems formulated as non-
linear programming tasks [19].

Table 5.1. Optimal values for variable geometrical parameters of the portal frame’s design scheme

Design variable | Start value, Optimum values, m, by the criterion of minimum
weight costs on fabrication and erection
when lower chord of lattice rafter is
straight-line polygonal straight-line polygonal
. 39.58 38.82 39.55 38.74 39.44
H_, 10.63 11.92 11.84 12.08 12.03
h, 2.60 — 3.23 — 3.31
h, 2.60 — 3.21 — 3.23
hy 2.60 — 2.68 — 2.70
h, 2.60 2.18 2.68 2.13 2.61
b, 0.55773 1.00 0.56 1.05 0.63
h,, 2.60 3.61 3.72 3.73 3.87
b,, 2.60 3.08 3.02 3.02 2.95
Weight, 30.78 18.98 18.45
x103,kg
Costs, UAH 786681 534647 524257
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Table 5.2. Optimal values for variable cross-sectional sizes of the lattice structural members of the

portal frame
Optimum values, mmxmm, by the criterion of minimum
weight | costs on fabrication and erection
Design variable Start ‘ . when lower chord of the‘lattic.e rafter is
value, m stralght—hne‘ polygonal ‘stralght—hne‘ polygonal
in the search space
continuous discrete continuous discrete
d, xt 299x25 [183.4x8.4 |192.3x8.6 [194x9.0 (173.9x9.3 |172.9x8.6 |[168x11.0
d, xt, 299x14 [183.4x6.1 |192.3x6.4 |194x7.0 [173.9%6.9 |172.9%6.3 |168x8.0
d, xt, 299x10 [183.4%6.9 |192.3x6.5 [194x6.5 [173.9x7.3 |172.9x7.4 |168x8.5
d xt, 299x14 [183.4x8.5 [192.3x9.3 {194x9.0 (173.9x10.7 [172.9%9.3 |168x11.0
d, xt; 299x14 [183.4x6.1 |192.3x6.4 [194%x6.5 [173.9x5.8 |172.9%5.8 |168%6.0
d,xt, 299x10 [297.4x9.9 303.1x10.1 299%10.0 [298.1x9.9 [292.3x9.7 [299x10.0
d,xt, 299x16 [297.4x11.3 [303.1x11.4 299%12.0 [298.1x11.6 [292.3x11. [299x12.0
5
dg xt, 299x10 [264.4x8.8 [269.4x9.0 [299x10.0 269.0%9.0  [263.6x8.8 [273x9.5
d, xt, 299x10 [203.0x6.8 [210.7x7.0 [194x8.5 211.5%7.0 [202.8x6.8 [219x7.5
d,xt, 299x14 [143.5x4.8 |147.1x4.9 [152x5.5 [148.1x4.9 |143.3x4.8 |146%5.5
d, xt, 180x12 [183.4x9.7 [192.3x9.6 [194x9.5 (173.9x11.5 |172.9x11. |168x13.0
1
d,xt, 152x8 [161.2x4.5 [165.6x4.6 [152x5.5 |164.9x4.6 |160.8x4.5 [168%5.0
d,xt, 121x8 |110.3%x3.9 [107.4x3.6 [108x4.0 [80.7x4.9  [79.1x5.6 |83%5.0
d,xt, 102x5 [89.2x3.5  190.9x3.5 [95x3.5 [89.4x3.5 87.7x3.5 [95%3.5
dsxt; 152x8 [143.5x5.2 |147.1x5.1 [152x5.0 |133.5%5.9 |135.1x5.6 |133%6.0
d %t 102x5 [55.0x3.5  |57.9%x3.5 60x3.5 |52.2x3.5 51.9x3.5 [54x3.5
d, xt, 180x12 [112.8x4.9 |116.3x4.7 |108%5.0 (90.4x6.1 101.8%5.4 195%6.0
dg Xt 180x12 [143.5%6.3 |147.1x6.6 [152%x6.5 [148.1x6.6 |143.3x6.4 |146x7.5
dyxt, 299x10 [297.4x9.9 303.2x10.1 299%10.0 [298.1x9.9  [292.3x9.7 [299x10.0
dy xt,, 299x25 297.4x9.9 303.2x10.1 [299%10.0 [298.1x9.9 [292.3x9.7 [299x10.0
d, xt,, 299x25 297.4x21.0 303.2x21.1 [299%22.0 [298.1x22.3 [292.3x22. [299x24.0
3
d,, xt,, 102x5  189.2x3.5  90.9x3.5 [95x3.5 [89.4x3.5 87.7x3.5 [95x3.5
dyy Xty 180x12 [148.9x5.3 [151.6x5.3 [152x5.5 [79.7x11.4 |81.8%10.6 [83x1.2
Weight, 30.78 |18.45 18.98 19.70 — — —
x103,kg
Costs, UAH  [786681 — - 534647 524257 552368
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Figure 5.1. The optimum design decision by the criterion of minimum structural weight when
lower chord of the lattice rafter is straight-line

Formulated parametric optimization problem for
the steel lattice portal frame has been solved
using software OptCAD. Task dimensions are:
account of design variables is 50, account of
problem constraints is 14000.

Optimization results received using software
OptCAD are presented by the Tables 5.1 and
5.2. Figure 5.1 show optimal design decision by
the criterion of minimum structural weight of
the steel lattice portal frame (project with start
values of the design variables is indicated by the
red color, optimum project is indicated by the
blue color).

CONCLUSIONS

The results of the presented study can be
formulated as follow:

1. The paper has proposed a mathematical
model for parametric optimization problem of
the steel lattice portal frame with CHS structural
members. The design variable vector includes
geometrical parameters of the structure (node
coordinates), as well as cross-sectional

\Volume 17, Issue 3, 2021

dimensions of the structural members. The
system of constraints covers load-carrying
capacities constraints formulated for all design
sections of structural members of the steel
structure subjected to all ultimate load case
combinations. The displacements constraints
formulated for the specified nodes of the steel
structure subjected to all serviceability load case
combinations have been also included into the
system of constraints. Additional requirements
in the form of constraints on lower and upper
values of the design variables, constraints on
permissible minimal thicknesses, constraints on
permissible maximum diameter-to-thickness
ratio for the structural members with circle
hollow sections, as well as the conditions for
designing gusset-less welded joints between
structural members with circle hollow sections
have been also considered in the scope of the
mathematical model.

2. The method of the objective function gradient
projection onto the active constraints surface
with simultaneous correction of the constraints
violations has been applied to solve the
formulated parametric optimization problem.
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3. A numerical algorithm for

solving the

parametric optimization problems of steel lattice
portal frames with CHS structural members has
been presented in the paper.

4. New optimal layouts of the steel lattice portal
frame by the criterion of the minimum weight,
as well as minimum costs on manufacturing and
erection have been shown.
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LOCALIZATION OF SOLUTION OF THE PROBLEM
FOR POISSON’S EQUATION WITH THE USE OF B-SPLINE
DISCRETE-CONTINUAL FINITE ELEMENT METHOD

Marina L. Mozgaleva, Pavel A. Akimov
National Research Moscow State University of Civil Engineering, Moscow, RUSSIA

Abstract: Localization of solution of the problem for Poisson’s equation with the use of B-spline discrete-continual finite element
method (specific version of wavelet-based discrete-continual finite element method) is under consideration in the distinctive paper.
The original operational continual and discrete-continual formulations of the problem are given, some actual aspects of construction
of normalized basis functions of a B-spline are considered, the corresponding local constructions for an arbitrary discrete-continual
finite element are described, some information about the numerical implementation and an example of analysis are presented.

Keywords: localization, wavelet-based discrete-continual finite element method, B-spline discrete-continual finite element
method, discrete-continual finite element method, finite element method, B-spline, numerical solution, Poisson’s equation

JOKAJIN3AIIUA PELIEHUS 3AJTAUM JIUISI YPABHEHUS
ITYACCOHA HA OCHOBE BEUBJIET-PEAJIU3ALINA
JTUCKPETHO-KOHTUHYAJIBHOTO METOJIA
KOHEYHBIX DJIEMEHTOB
C UCITIOJIb30OBAHUEM B-CILIAMHOB

M.JI. Mo3zaneesa, I1.A. Akumoe

HauunonanbHelil ucenenoBarenbCckuii MOCKOBCKUIN IOCYIapCTBEHHBIN CTPOUTENIbHBIN YHUBEPCUTET,
. Mocksa, POCCH

AHHoOTanusi: B HacToslIel cTaThe paccMaTpuBaETCs JIOKaIU3alMsl pelieHns 3ajauu s ypaHenus [lyaccona Ha oc-
HOBE BEHBIET-peaT3aliy JUCKPETHO-KOHTHHYAJIBHOTO METOIa KOHEYHBIX 3JIEMEHTOB C HUCIIOIb30BaHNEM B-criaiiHoB.
[IpuBeneHbI NCXOAHBIE ONEPATOPHBIE KOHTHHYAIbHAS U ANCKPETHO-KOHTHHYAJIbHAs TIOCTAHOBKU 33Ja4i, PACCMOTPEHBI
HEKOTOPBIE aKTyaJIbHbIE BOITPOCHI TOCTPOCHHSI HOPMAIM30BAHHbBIX 0a3UCHBIX (DyHKIMIT B-criaiiHa, onmucaHbl COOTBETCTBY-
IOIINE JOKAJIBHBIE TTOCTPOCHUSI AJISl IPOU3BOIBHOTO JTUCKPETHO-KOHTHHYAJIBHOTO KOHEUHOTO 3JIEMEHTA, MPEICTABICHBI
HEKOTOPBIE CBEJICHNUS O YMCICHHON peaan3aiy U IPUMEp pacuerTa.

KiioueBnble ciioBa: JIOKaJIn3amus, BCﬁBHeT-pCaHI/ISaHH}I METOJAa KOHCYHBIX 3JICMCHTOB, ,Z[I/ICKpCTHO—KOHTI/IHyaJ'ILHHﬁ
METOJ KOHCYHBIX DJIEMCHTOB, MCTOA KOHCYHBIX 3JICMCHTOB, B-CHHaﬁHbI, YHCJICHHOC PEIICHUE, YPABHCHNUE HyaCCOHa

INTRODUCTION temperature field, a stress state during torsion of

a rod, membrane deflection, etc. In addition, the

Various problems of continuum mechanics are
reduced to the Poisson equation and other simi-
lar equations of elliptic type [1-6]. As is known,
boundary value problems with the Poisson
equation describe, in particular, a stationary
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operator of the corresponding problem (the La-
place operator) is part of other problems that
determine the state of structures under station-
ary and non-stationary actions. From a mathe-
matical point of view, it is the simplest qualita-
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tive analogue of other problems and an equiva-
lent operator in iterative processes [7]. In many
numerical models, at different time steps, it be-
comes necessary to solve (numerically) one or
several boundary value problems for the Pois-
son equation, and in some applications the
number of time steps during one analysis of the
model can be of the order of thousands to mil-
lions or more [8]. In this regard, the objective of
the distinctive paper is devoted to the semi-
analytical method of analysis of corresponding
structures with constant physical and geometric
parameters in one of the directions (the so-
called “basic direction”) [7, 9, 10]. This objec-
tive seems to be very relevant. The considering
method is semi-analytical in the sense that along
the basic direction of the structure the problem
remains continual and its exact analytical solu-
tion is constructed, while in another, non-basic
direction, a numerical approximation is per-
formed. In general, this paper continues a series
of papers devoted to the research and develop-
ment of various wavelet-based versions of the
discrete-continuous finite element method.

In the theory of boundary value problems for
the Poisson and Laplace equations, several clas-
sical well-tested solution methods are normally
used [1, 11-13], which, in particular, include
method of separation of variables or Fourier
method, Green's function method and a method
of reducing boundary value problems for the
Laplace equation to integral equations using po-
tential theory.

Besides, numerical methods (finite element
method, boundary element method, finite differ-
ence method, variational-difference method, fi-
nite volume method, method of point field
sources, fast Fourier transform method using
parallel computations ( with the implementation
on the cores of the central processor and on
graphic processors (GPU), etc.) for solving the
Poisson equation are normally used [8, 14, 15].

1. FORMULATIONS OF THE PROBLEM

Formulation of the problem has the form:
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Lu=F, 0<x </, 0<x,</,; (1.1)
wlo=g, (1.2)

where L is the operator of the problem within
the initial domain;

L=-02-05; 0,=0/0%; 0,=0/0x,; (1.3)

¢ is the operator of boundary conditions.

Let x, be direction along which parameters of
the problem are constant (so-called “main direc-
tion”). Let us introduce the following notations

’ —

V=0,0=0"; V'=0,V. (1.4)

Then we can rewrite (1.1) in the following form:
L,u-Lv=For LV=L,u-F, (L5

where we have
L, =—02=0,0,;

L,=1. (16)

Finally we obtain system of differential equa-
tions with operational coefficients:

U'=AU +F, (1.7)
where
0 1| = 0 . T _|u
e[ e Lo o]
(1.8)

The system of equations (1.7) is supplemented
by boundary conditions, which are set in sec-

tions with coordinates x; =0 and x> =/, .

2. SOME ASPECTS OF THE
CONSTRUCTION OF NORMALIZED
BASIS FUNCTIONS OF THE B-SPLINE

The construction of B-spline basic functions is
determined by the recursive Cox-de Boer for-
mulas [16-21]:
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. 1, X; St<X,
k=1: (D"l(t)_{o Jt<x, vt>x,, ' (21)
(t—x)o; (1)
@, (1) = —kxl +
k>2: AN 2.2
4 (X _t)¢i+1,k—1(t) 22)
Xi+k - Xi+1 .

We will consider such a construction for the
case X; =1 are integers. Let us note that,

Di x t)= Do x (t—i)

and therefore, recursive formulas (2.1)-(2.2) can
be represented in the form

: _J1, 0<t<l1
k=1: ¢°'1(t)_{0,t<0\/t21; (2.3)
1
k>2: Dok (t) =m_[t'(/’o,k—1(t)+ (2.4)

+ (k=)@ (t=D)]

The function ¢, (t) can be represented by formula

P01(0) = Slsion(® —sign(t -1~ @5)

Let us denote by A, the operator of the first dif-
ference. Then we have

Pos ) =2 A, Sign(D). (2.6)

We can substitute formula (2.5) into (2.4) in or-
der to determine ¢, (t) :

Do, (1) =1-[t- 5, (1) + (2 - )0, (t -D)] =
= %{t -[sign(t) —sign(t —1)]+
(2-t)[sign(t —1) —sign(t —2)]} =
= %[tsign(t) —2(t-Dsign(t-1) +

(t—2)sign(t—2)]:%[|t|—2|t—1|+|t—2|.

\Volume 17, Issue 3, 2021

Let us denote by A, the operator of the second
difference. Then we have

1 1
¢QAU==§HH—2H—1FHt—2F:§A2H—lL

(2.7)
We can define function ¢, (t):

1
Pos(t) = 9 [t- @, (t) + B—1)g,, (t —D].
Omitting intermediate calculations, we get

005 (1) = %[t-lt |3t [t-1] +
13(t—2) [t—2|—(t—3)|t-3] =

11
=y M (DIt (28)

Based on formulas (2.8) and (2.4), we can de-
fine the function

Do, 4 (t)= %[t "o 3 (t)+(4- t)¢o,3 (t-1].

Omitting intermediate calculations, as a result
we get

Po.4 (t) =
1 1., )
= [t |t At -1 |[t-1] +
2.3 2[| | -4t -1)" |
+6(t—2)° [t—2|-4(t-3)*|t-3|+
+(t-4)°|t-4] =

1 1 2 2
=55 012" [1-2). (29)

It can be proved that for even k =2m we have

L Lo)m@—m? t-m)

70:0 = 12

(2.10)

and for odd (uneven) k =2m+1 we have
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M »2 Y3 Ja Vs V6

[ . L & L 4 L]

X1(ie) X2 X3 X4 Xs X6(ie)
- |

=4

Figure 3.1. Finite element discretication for N, =5 (sample).

N1 )2 V3 Va4

[ 4 ]

X1(ie) X2 X3 X4(ie)
« >

e

Figure 3.2. Finite element discretication for N, =3 (sample).

B! »2

o )

X1(ie) X2(ie)

< >

(=
Figure 3.3. Finite element discretication for N, =1 (sample).
B 1 1 m omo1 an element (interval) for all components of a

Po (1 __(Zm)!EAl(AZ) ((C=m)™1t=1) - Vector functions @ and v (see (1.8)) is the

(2.11)

Note that ¢,,(t) is a polynomial of degree
k —1 with bounded support and, as follows
from the difference operator, this support is
equal to the interval [0, K].

In addition, we should note the following prop-
erty of B-spline basis functions:

> o (t—i) =1 for arbitrary t.  (2.12)

3. SOME GENERAL ASPECTS OF FINITE
ELEMENT APPROXIMATION

The discrete component of the numerical solu-
tion is represented by the direction along the
axis corresponding to x,. The fulfillment within
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same. Therefore, let us use the following nota-
tion for simplicity:

X=X, £=Ly, ¥y =Y(x), (3.1)
where y = y(x) is unknown function (compo-
nent of vector function).

Let us divide the interval (0, ¢) segment into
N, parts (elements). Therefore h, =¢/N, is the
length of the element. Besides, let us also divide
each element into N, parts. It should be noted
that on the elements of the localization of the
solution, parameter N, is of greater importance
than on the other elements. For example, on lo-
calization elements, we can set N, =5, i.e. un-

known functions will be represented by poly-
nomials (B-splines) of the 5th degree (Figure
3.1).

International Journal for Computational Civil and Structural Engineering



Localization of Solution of the Problem for Poisson’s Equation with the Use of B-Spline Discrete-Continual Finite

Element Method

Let us use the following notation system: i, is
the element number; N, =N, +1=6 is the
number of nodes within the element; Xx,(i,) is
the coordinate of the starting point of the i, -th
element; x,(i,) is the coordinate of the end
point of the i, -th element. Thus, the number of

unknowns per element with such approximation
is equal to

For the elements of localization we can take re-
duced number of N,. For instance, if we take

N, =3 (Figure 3.2) we get N, =N, +1=4

and the number of unknowns per element with
such approximation is equal to

X, (i,) 1s the coordinate of the starting point of
the i, -th element; x,(i,) is the coordinate of the
end point of the i_-th element.

Besides, let us consider the case with N, =1
(Figure 3.3). Therefor we have N, =N, +1=2

and the number of unknowns per element with
such approximation is equal to

where x,(i,) is the coordinate of the starting
point of the i,-th element; Xx,(i,) is the coordi-
nate of the end point of the i, -th element.

4. LOCAL CONSTRUCTIONS
FOR ARBITRARY FINITE ELEMENT

Let us introduce local coordinates:

t=(X=Xe) /Dy, Xyiey X< XN, (ie) 0<t<1.
(4.1)

\Volume 17, Issue 3, 2021

In this case, we have the following relations:

X=X =t =06 —X;y)/ D, 1=1.., N ;(4.2)
d* 1 d°

W—EW; dX:he'dt.

(4.3)

Since the number of unknowns on the element
is equal to N, =6, we use a B-spline of the

fifth degree in order to represent the unknown
deflection function.
Let us use the following notation:

P(t) = o6 (t+3);
11 PRV
(D(t)_af(AZ) t"|th=
:@[(t+3)4|t+3|—6(t+2)4|t+2|+

+15(t+1)* [t +1] 20t |t]+
+15(t-1)* [t-1|-6(t—2)* [t-2|+
+(t-3)* [t-3]]

(4.4)

This function is a B-spline, symmetric with re-
spect to t =0 and its support is defined by an
interval [-3,3] (Figure 4.1).

We take the following six functions as basis
functions on the unit interval (Figures 4.2, 4.3):

o) =pt+2), @,t)=pt+1),

(1) =), ¢, t)=p(t-1),

ps()=p(t-2), @s(t)=p(t-3),
0<t<l. (4.5)

Since the number of unknowns on the element
is equal to N,, =4, we use a B-spline of the

third degree in order to represent the unknown
deflection function.
Let us use the following notation:

go(t) =@ (t + 4) ;
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B-spline 5

0.7

0.6

0.5

0.4

0.3
0.2 /
0.1 /

0 s .
3 2 -1 0 1 2 3

Figure 4.1. B-spline of the fifth order o(t) = ¢, (t+3).

0.6
05 S
0.4 | —~
' Fi1
0.3 FlI2 ™
FI3 N
Fl4
0.2 FI5 T
_—
Fl6
0.1 - et
0 — — B -
0.1

0O 01 02 03 04 05 06 07 08 09 1
Figure 4.2. Basis functions ¢, (t), k=12,...,6.

11 22 B This function is a B-spline, symmetric with re-
¢(t)_§§(A2) (©fth= spect to t=0 and its support is defined by an
interval [-2,2] (Figure 4.4).

We take the following four functions as basis
+6t7 |t]—4(t-1)7 |t-1]+ functions on the unit interval (Figures 4.5):
+(t-2)%[t-2])

:Sliz[(t+2)2 |t+2]|-4(t+1) |t+1|+

(4.6)
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x 10°

10

Fl1
FI6

0 01 02 03 04 05 06 07 08 09 1
Figure 4.3. Basis functions ¢, (t) and ¢ (t) .

B-spline 3

0.7

0.6

0.5

0.4

L

0.2

0.1

0 S
2 15 1 05 0 05 1 15 2

Figure 4.4. B-spline of the third order o(t) = ¢, ,(t+2).

Since the number of unknowns on the element
o) =pt+D), @, ({t)=0(t), is equal to N, =2, we use a B-spline of the
o) =0t-1), @,t)=¢lt-2), first degree in order to represent the unknown

0<t<l. (4.7) deflection function. _ .
Let us use the following notation:

Volume 17, Issue 3, 2021 163
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0.5 FI2| |
FI3
Fl4
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0.2

0.1

0 01 02 03 04 05 06 07 08 09 1
Figure 4.5. Basis functions ¢, (t), k=1,2,3,4.

B-spline 1

0.9

0.8

0.7

0.6
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0.2

0.1

0 I I I I L I I I l
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Figure 4.6. B-spline of the first order o(t) = ¢, ,(t+1).

ot) =g, ,(t+1); This function is a B-spline, symmetric with re-
1 1 ' spect to t=0 and its support is defined by an
o(t) ZEAZ |t |=§[|t+1| =2|t|+[t-1]]. (4.8) interval [-1,1] (Figure 4.6).
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Figure 4.7. Basis functions ¢, (t), k=12.

We take the following two functions as basis
functions on the unit interval (Figures 4.7):

p)=0), @) =0t-1),

0<t<l. (4.9)

We represent the unknown function y(x) with-
in the element number i, in the form

ND
y() =w(t) =D @, (1), X,y S XXy i)
K=

0<t<1l. (4.10)

We have to consider bilinear forms with allow-
ance for relations (4.2)-(4.3) in order to con-
struct local stiffness matrices corresponding to
the operators L, L, (see (1.6)):

uu

Xnplie) 42
B.(Y,Z)=<L,Yy z>=- '[ s-zdx=
X1(ie)
XNy (ie) 1
- ﬂ.%dx:ij‘d_w %dt_B (W, q):
dx dx h, 5 dt dt

X1(ie) e o

(4.10)

\Volume 17, Issue 3, 2021

XN (ie)

B, (y,2)=<L,y, z>= J.y-zdx=

) Xagie (4.11)
=h, [wqdt=B, (w,q).
0
for the following type of functions
Nie
yo) =w(t) = > ap (),
k=1
Nie
z()=a) =2 A (1), (4.12)
k=1

where we have X, <X <Xy o, 0<t<I1.
Let us substitute (4.12) into (4.9)-(4.10):

dw dq

1
B, (w,Qq)=—
(W, 0) hldt -

:—iiaﬂ Igpl )¢/ (t)dt_—(K“;a,B),

e i=1 j=1

(4.16)

where
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where

K260 = [elOe0dt 9= @)

1
B, (w,q) =h, [wqdt =
0

Marina L. Mozgaleva, Pavel A. Akimov

Let us define the parameters ¢, and g, through
the nodal unknowns on the element:

Yy =w(t) = 2ak¢k t),

For the case N,, =6 we have

where

?,(0)
¢,(0.2)
©,(0.4)
¢,(0.6)
¢,(0.8)

?,(1)

»s5(0)
¢5(0.2)
»5(0.4)
¢5(0.6)
¢5(0.8)

»s(1)

?5(0)

¢5(0.2)
¢5(0.4)
9:(0.6) |’
¢5(0.8)
?(1) ]

"=y, Yo Vs Ya Y5 Vel

VE=IYy Vo ¥ Vel

a=[lag a, a a4]T;

T.

T.

=03 > ap, [0, (0, Odt=h, (K25, B).
(4.18)
where
K@i, )= [o (e, dt;  (4.19)
i »(0) »,(0) »;(0)
»(0.2) ¢,(0.2) ¢,(0.2)
T = ?(0.4) ¢,(0.4) ¢,(0.4)
° | »(0.6) ¢,(0.6) ¢,(0.6)
¢(0.8) ¢,(0.8) ¢,(0.8)
) () ?,(1) @5(1)
For the case N;, =4 we have
ve=T,a, (4.25)
where
»,(0) »,(0)
1 _| a3 e,W3)
Y e213) 9,(213)
(1) »,(1)
For the case N;, =2 we have
ye=T,a, (4.29)
where
yie :[Y1 yz]T' (4-30)
a=le, a,]"; (4.31)
166

2,0  ¢,(0)
p,(L13)  o,(113)|.
?:(213) @, (213) |
(1) o, ()

_ (01(0) », 0)
T2= Lol O 00

Similarly, we get

for N,, =6, N,

I

t = (X — X)) /Ney i=1., N, (4.20)

(4.21)

(4.22)
(4.23)

(4.24)

(4.26)
(4.27)

(4.28)

(4.32)

(4.33)
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Figure 5.1. Example of analysis.

From (4.21)-(4.33) it follows

B=Tyz%,  (4.34)

where

TNp :{rij}i,j:l,..,Np ' Tij =Q; ). (4.35)

Generally we have the following chain of equal-
ities

(K@ B) = (K, T ¥ T 2"%) =
= (M) K, T Y™, 7). (4.36)

Therefore, substituting (4.34) sequentially in
(4.16), (4.18), we obtain local stiffness matrices

Ke and K[, corresponding to the operators
L, and L, .

5. EXAMPLE OF ANALYSIS

5.1. Formulation of the problem.

Let us consider the problem shown at Figure 5.1.
Let us consider the following geometric pa-
rameters: L, =1.2, L, =2.0 is the thickness.
Let external load parameter be equal to
P=100.

\Volume 17, Issue 3, 2021

5.2. Structural analysis with allowance for
localization.
Let the number of elements be equal to N, =4.

Then we have the following element length:
h,=¢,/N,=12/4=0.3.

Let’s define localization in the load area.
For the first element and for the fourth element
we have N, =1 and third-order spline; distance

between the coordinates of the nodes of the first
element and the sixth element is equal to

h =h, =0.3/1=0.3.

For the second element and for the third element
we have N, =3 and fifth-order spline; distance

between the coordinates of the nodes of the sec-
ond element and the third element is equal to
h, =h, =0.3/5=0.06.

The total number of nodes for all elements is
equal to

N,=2-1+2-5+1=13.

The total number of nodal unknowns is equal to
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N, =2N, =2-13=26.

5.3. Structural analysis without localization.

In this case, we will consider only the standard
linear fulfilment. In this case, the length of the
element is taken equal to the minimum distance
between the nodes, i.e. h,=0.06. Then the

number of elements is equal to
N, =1.2/0.06=20

and the total number of nodes is equal to
N, =21. In this case the total number of nodal

unknowns is equal to
Ny =2N, =2-21=42.

Graphical comparison of corresponding results
of analysis is presented at Figures 5.2-5.4
(U26 (1oc) are nodal values computed with
allowance for localization; U2 (1in) are nodal
values computed without localization).

As researcher can see, the results obtained are
almost completely identical. Besides, the use of
localization based on application of B-splines of
various degrees leads to a significant decrease in
the number of unknowns.
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BENDING WITH TORSION OF FIBER REINFORCED
CONCRETE BEAM OF CIRCULAR CROSS SECTION

Sergey A. Bulkin
CJSC "GORPROEKT", Moscow, RUSSIA

Abstract. The article provides information about the tests of circle cross-section reinforced concrete beams made of high-
strength steel-fiber concrete on combined torsion and bending. Given information contains the main results: a diagram of
the cracks with an indication of their opening width, the values of support reactions at the moment of cracking and at the
moment before destruction. It was found that as the load is applied in beams made of high-strength steel-reinforced concrete,
in the case of several cracks at the first stage, there is one crack increases. The beams are modeled in the design complex
and given description of the main design parameters. The results of the calculation are presented and a comparative analysis
of the results obtained with the experiments results. It is noted that the adopted models in the computational complexes
require the development of subroutines and refinement.

Keywords: reinforced concrete structures, combined bending and torsion, deformation, strength, circle cross section

KPYUYEHUE C U3T'UBOM CTAJE®UBPOXEJE30EETOHHOM
BAJIKU KPYIJIOI'O CEYEHUA

C.A. Bynkun
3A0 «I'OPITPOEKT», . MockBa, POCCH A

AnHoranusi. B crarbe npuBenena nHGopmanus o IpOBEICHHBIX UCTIBITAHUHN YKeJIe300€TOHHBIX 0AJIOK KPYIJIOTO CeUeHHUs
U3 BBICOKOIPOYHOTo crajedudpodbeToHa npu AeHcTBUYM KpyueHHs: ¢ u3rudom. [IpuBenena nHpopmanms mo 0CHOBHBIM
MOJIyYSHHBIM pe3yJIbTaraM: CXeMa TPEIIMH C yKa3aHHeM UX IIUPUHBI PACKPBITUS, 3HAYCHHSI ONIOPHBIX PEaKIHi B MOMEHT
00pa30BaHMs TPELIMH U B MOMEHT, IIPELIECTBYIOMUH pa3pyLIeHHI0 00pa3na. YCTaHOBICHO, YTO 0 Mepe IPHIOKESHHS
Harpy3Kky B Oajlkax U3 BHICOKOIPOYHOTO cTae(uOpoOeTOHa yBEIMYMBACTCSI B OCHOBHOM OJIHA TPEIMHA, JaKe B clIydyae
BO3HHUKHOBEHHMSI HECKOJILKUX TPEIMH Ha IIepBoM dTarne. [IponsBeieHo MojennpoBanue 0ajJoK B pacCieTHOM KOMILIEKCE C
OITMCaHUEM OCHOBHBIX PACUETHBIX ITPEANOChUIOK. [IpruBeIeHbI pe3ynbTaThl pacueTa 1 BHIIIOJIHEH CPAaBHUTEIIbHBIN aHAN3
HOJIyYECHHBIX PE3YJILTATOB C PE3yJIbTaTaMy IPOBEACHHBIX IKCIIEPUMEHTOB. OTMEUEHO, YTO MPUHSTHIC MOJIENN B PACYETHBIX
KOMIIIEKCax TpeOyIoT pa3padOTKH NOANPOrpaMM U YTOYHEHHS.

KiroueBbie ci10Ba: ’Keae300eTOH, KPyUYECHUE C U3rHO0M, ehOpMaIlii, TPOYHOCTh, KBAIPATHOC CCUCHUE

INTRODUCTION

The designed elements of reinforced concrete
structures, especially unique buildings and
structures that operate in conditions of a
complex stressed state - torsion with bending. A
separate group of elements can be distinguished
(beams with consoles, edge beams, stiffening
cores of high-rise buildings, spatial frame
structures, etc.) in which torsion plays a primary
role in the work.
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Work in the field of investigation of the torsion
of reinforced concrete structures was carried out
and is being carried out by many specialists,
both Russian and foreign: V.M. Bondarenko,
P.F. Vakhnenko, A.[. Demyanov, N.L
Karpenko, V.I. Kolchunov, V.I, AM.
Kuzmenko, V.I. Morozov, V.I. Travush, A.
Bishara, H. Gesund, E. Rausch, T.T.C. Hsu et
al. [1-15]. At the same time, only individual
authors have dealt with the issue of the
operation of structures with the combined action
of torsion and bending, and the issue of the

173



operation of reinforced concrete structures made
of high-strength fiber-reinforced concrete is at
the initial stage.

Despite the fact that technological progress and
existing needs require the use of new materials,
regulatory documents cannot cover the entire
range of emerging tasks, and the responsibility
for the choice of both the design model and the
obtained calculation results lies directly with the
designer, who is faced with a difficult choice
issue a calculation model that allows you to
properly reflect the actual performance of the
structures. In most cases, the solution to the
problem arises comes down to assumptions, due
to the lack of results of the conducted field
experiments.

Considering the above, the development of a
methodology for calculating reinforced
concrete structures made of high-strength
steel-fiber reinforced concrete in torsion with
bending, taking into account the occurrence
of cracks, is an urgent task. In this case, the
refinement of the main design parameters
(deflections and angles of rotation of
sections, the scheme of cracks and their
opening width, the moment of crack
formation) adopted in the design model
should be carried out on the basis of
comparing the calculation results with the
results of the experiments performed.

RESULTS AND DISCUSSION

A number of experiments were carried out to
study the work of reinforced concrete beams of
a circular cross-section on the joint action of
bending with torsion to determine the actual
bearing capacity.

For the study, beams of circular cross-section
with a diameter of 20 cm and a length of 1.2 m
were made. The beams were made of steel fiber
reinforced concrete B130 with steel fiber 13 mm
long, 0.3 mm in diameter and a temporary
resistance of at least 1200 MPa.

Reinforcement of beams is made in the form of
welded frames with longitudinal and transverse
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reinforcement A240 @6 mm. The longitudinal
reinforcement is provided with eight rods, the
transverse reinforcement is located in 100 mm
increments. To be able to transmit torque,
embedded parts were provided at the ends of the
beams.

During the experiment, a beam with 720 mm
long consoles welded to the embedded parts
installed at the ends was installed by the middle
part on a support, and a vertical force was
transmitted to the consoles through the traverse
(Fig. 1). The loading was carried out in stages -
in steps equal to 10% of the cracking load. The
fixation of instrument readings (indicators of
deflection meters) was carried out at each stage
before and after exposure.

In the course of the experiments, the moment of
occurrence of cracks, as well as the moment of
destruction of the samples, were recorded with
the determination of the corresponding forces
(Fig. 2).

According to the results of the experiment, data
on the complex stress-strain state during
bending with torsion in the studied areas of the
beams were obtained and the main parameters
were determined:

- the experimental value of the support reaction
at the time of the formation of spatial cracks
was 12.5 kN, with the destruction of reinforced
concrete structures - 17.5 kN;

- coordinates of the formation of spatial cracks;

- deflections of the consoles and, accordingly,
the angles of rotation;

- change in the length of the projections of
spatial cracks, depending on the increase in the
loading steps;

Based on the analysis results, a fracture pattern
was drawn up. A diagram of cracks with
indication of their numbers and opening width is
shown in Fig. 3.

During the experiments, it was noted that as the
load is applied in the beams made of high-
strength steel-fiber reinforced concrete, mainly
one crack increases, even if several cracks
appear at the first stage.

The formation of a single spatial crack in the
considered samples led to a rapid opening of
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this crack, a significant increase in
deformations, with a corresponding increase in
deflections and angles of rotation.

For comparison with the results of the
experiments carried out, the beam was modeled
in the ANSYS environment and the calculation
was performed.

As a design model, a beam with consoles was
considered, which has a support in the middle.
All dimensions are shown in the figure.

The formation of a geometric model in the
software package was carried out on the basis of
data on the samples used in the experiments.
The geometric model is a concrete model of a
circular beam with a diameter of 200 mm.

Inside the concrete is a reinforcing cage,
consisting of longitudinal reinforcement -
located at a distance of 25 mm from the edge to
the center of the rods, and transverse
reinforcement, located with a step of 100 mm.
Consoles in the form of elements of rectangular
section 50x200 mm and length 720 mm were
rigidly attached to the geometric models of
concrete and reinforcement.

The next stage of computational modeling was
the assignment of element types and the
construction of a finite element mesh.

The concrete of the beam is represented by
solid finite elements of the SOLID65 type, the
beam reinforcement was modeled with bar
finite elements of the BEAMI188 type. The
consoles and the supporting part of the beam
are modeled with solid elements of the
SOLIDI18S5 type.

Volumetric finite elements of the SOLID65 type
are designed to simulate elements that allow
cracking during tension, and they also allow the
possibility of material destruction during
compression. Taking into account the fact that,
according to the results of the experiments,
destruction  occurs  after the  tensile
reinforcement reaches the yield point, for the
purposes of the research, the possibility of
concrete destruction during compression was
not considered (the option of destruction of
compressed concrete was not used).
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Additionally, shear transfer coefficients (0.7)
are introduced, and the ultimate tensile stresses
(9.6 MPa) and ultimate compressive stresses
(132.5 MPa) are limited. The range of shear
transfer ratio is set from 0 to 1, where 0
corresponds to no transfer of shear (smooth
crack), and 1 corresponds to full transfer of
shear.

For concrete modeling in the ANSYS
environment, a combination of the following
materials is adopted: Linear Isotropic,
Multilinear Isotropic and Concrete. Linear
Isotropic is used to set the initial modulus of
elasticity and Poisson's ratio of concrete. The
Multilinear Isotropic material implies the
creation of a curvilinear diagram by
multilinear approximation. Concrete material
provides for the formation of cracks when the
principal stresses exceed the specified tensile
strength, as well as taking into account the
triaxial stress state.

The physical and mechanical characteristics of
concrete were determined from the results of
statistical processing of tests of cubes and
prisms. The results are shown in Table 1.

The modulus of elasticity, ultimate compressive
strength and tensile strength in bending for
concrete in this design study were taken in
accordance with the data obtained on the
samples made from high-strength fiber-
reinforced concrete: Eb = 48.4 GPa, Rb = 132.5
MPa, Rbt = 9.6 MPa.

The diagram of work for reinforcing steel A240
was taken as two-line with hardening in
accordance with the recommendations of SP
63.13330. The ultimate tensile and compressive
strength in the calculations was taken equal to
240 MPa.

The load was applied to the ends of the
cantilevers in accordance with a certain design
scheme, making it possible to obtain a complex
stress-strain state in the beam during torsion
with bending.

175



Sergey A. Bulkin

Figure 2. Crack in the beam at the time of

destruction
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A
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b
B
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Figure 3. Crack diagram

Table 1. Physical and mechanical characteristics of concrete

TpourocTs GeToHa B 28 CyT Elastic modulus, Actual class of concrete at
MITa ’ a coefficient of variation of
No | Concrete type GPa o
10%
R Rb Rbt Rtt Eb Edyn

Ultra high strength concrete

1. | Fiber concrete [152.6| 132.5 | 9.6 | 22.6 48.4 54.6 B134
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Figure 4. Arrangement of cracks in a beam

-4.5032 -1.46637 1.57045 4.60727 7.64409
-2.98479 .05203¢ 3.0888¢ 6.12568 G.1625

Figure 5. Principal stresses in concrete prior to cracking

-21.9346 -12.4024 -2.87012 6.66211 16.1943
-17.1685 -7.63624 1.896 11.4282 20.9605

Figure 6. Reinforcement stresses preceding the moment of cracking in concrete

Figure 7. Arrangement of cracks in a beam
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The loading of the model was carried out
nonlinearly with the definition of an automatic
step at the initial stages of 0.5 kN and a decrease
in the step to 0.05 kN at the stage preceding the
formation of cracks.

The fixing of the support platform of the beam
was carried out by imposing displacement
restrictions in three directions along the lower
surface of the platform.

Based on the calculation results, the stresses in
the beam elements, deformed schemes, crack
locations at various loading stages were
obtained, and the moment of crack initiation
was determined.

The moment of crack initiation was determined
at step 21 and corresponds to loads on the beam
cantilevers of 9.8 kN. The crack locations at this
moment are shown in Fig. 5.

Tensile stresses in concrete, preceding the
moment of cracking, were 9.16 MPa (Fig. 5).
Tensile stresses in reinforcement - 21 MPa (Fig.
6).

The displacement of the ends of the cantilevers
at the moment of cracking was 1.4 mm.

The moment of failure of the beam is
determined at step 149 and corresponds to loads
on the beam cantilevers of 16.2 kN. The crack
locations at this moment are shown in Fig. 7.
Tensile stresses in reinforcement in almost all
longitudinal bars amounted to - 272 MPa.

The displacements of the ends of the consoles at
this moment were 48 mm.

Based on the results of the calculations, the
values of the forces transmitted to the beams'
consoles at the moments of cracking and at the
moment of destruction were determined. At the
same time, the forces obtained at the time of
cracking in the beam during the calculation (9.8
kN) are slightly lower than the values obtained
as a result of the experiment (12.5 kN). Also,
the efforts obtained at the moment of fracture in
the calculation (16.2 kN) slightly differ from the
experimental data (17.5 kN).

The deformed beam pattern is determined by
significant displacements of the cantilevers,
which is due to the rotation of the section with
the formation of a plastic hinge (due to the
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reinforcement reaching the yield point) in the
center of the beam, which corresponds to the
moment of cracking and was 9.8 kN.

The actual destruction of the beam during the
experiment, similar to the calculation, did not
occur quickly, with the formation of plastic
deformations and the absence of brittle fracture.
Also, one of the distinctive features revealed
during the experiments was the growth of one
main crack, however, according to the results of
the calculations, a network of cracks is formed,
which, as the load increases, captures an ever
larger surface of the considered beam.

Such a significant difference requires the
development of subroutines for the possibility
of correcting the computational model and
bringing the results obtained in line with the
experimental data.

CONCLUSIONS

1. During the experiments, it was noted that as
the load is applied in the beams made of high-
strength steel-fiber reinforced concrete, mainly
one crack increases, even if several cracks
appear at the first stage.

2. The formation of a single spatial crack in the
considered samples led to a rapid opening of
this crack, a significant increase in
deformations, with a corresponding increase in
deflections and angles of rotation.

3. The ANSYS software package allows you to
perform volumetric modeling of reinforced
concrete elements, taking into account the
reinforcement and the purpose of nonlinear
diagrams of concrete and reinforcement work.

4. The ANSYS software package can be used to
assess the performance of reinforced concrete
elements, including to the stage of destruction.
5. The moment of cracking and the moment of
fracture (transmitted force), obtained as a result
of the calculation, differ slightly from the values
obtained as a result of the experiments carried
out.

6. In contrast to the experiment with the
formation of one main crack, during the
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calculation in the software package, a network
of cracks is formed, which requires the
development of subroutines.
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Abstract. This article describes a software module component integrated with the SIMULIA Abaqus engineering
analysis software package and designed to simulate random values of material parameters in a finite element model based
on specified statistical characteristics, with the possibility of taking into account the physical nonlinearity of material
behavior under various combinations of loads and influences. The target group of materials under study is materials of
load-bearing elements of building structures, such as concrete, stone, steel. This software module can be recommended
for use by specialists, engineers and scientists engaged in probabilistic analysis of the reliability of structures of buildings
and structures, apparatus, machines, devices, with the combined use of complexes of computer modeling and engineering
analysis. Has a certificate of state registration of the computer program "AS for modeling stochastic properties of materials"
No. 2019667439 dated 12.24.2019.
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OLIEHKA HAJIEXKHOCTHU CTPOUTEJIbHBIX KOHCTPYKIIUH
B SIMULIA ABAQUS: MOAEJIMPOBAHUE
CTOXACTUYECKHX CBOUCTB MATEPUAJIA
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AHHoOTanus. B naHHOH cTaThe OMMCHIBAETCS KOMIIOHEHT MPOTrPaMMHOIO MOJYJS MHTETPHUPOBAHHBIN ¢ MPOTrpaMMHBIM
KOMILIEKCOM HHkeHepHoro ananu3a SIMULIA Abaqus 1 npesiHa3HaueHHBIN JIJIsl MOACIMPOBAHUS CITyYaiHbIX 3HAaUCHUH
[1apaMeTpoB Mareprasa B KOHEUHO-JIEMEHTHOU MOJIE/ I Ha OCHOBE 33JaHHBIX CTATUCTUYECKUX XapaKTEPUCTHUK, C BOZMOXK-
HOCTBIO yu€Ta (PM3MYeCcKON HEJIMHEWHOCTH MTOBE/ICHHSI MaTepHalia Py pa3JInuyHbIX COUYETAHHUSIX HATPY30K U BO3ACHCTBHUIX.
Ilenesas rpymnma uccieayeMblX MaTepHaloB — MaTepUabl HECYLIUX JIEMEHTOB CTPOUTENIbHBIX KOHCTPYKIUM, TAKUE KaK
0eTOoH, KaMeHb, CTallb. JJaHHBIA MPOrpaMMHBIA MOJYJIb MOXKET OBITh PEKOMEH/IOBAH JJIsl IPUMEHEHUS! CIIeLHaIHCTaMy,
WH)KEHEPAaMU U yUEHBIMU, 3aHUMAIOILUMUCS BEPOSITHOCTHBIM aHAJIN30M HaJEKHOCTH KOHCTPYKLMH 31aHUI U COOPYKECHUH,
anmaparos, MaIlllH, IPUOOPOB, TPU COBMECTHOM HCIIOJIb30BAHUN KOMIUIEKCOB KOMIIBIOTEPHOTIO MOACTHPOBAHUS U MHXKE-
HEpHOTO aHanu3a. MIMeeT CBUAETENBCTBO FOCYAapCTBEHHON peructpaiuu nporpammsl 11t 9BM «AC mopennpoBaHus
CTOXaCTUYECKUX CBOMCTB MarepuasioB» Ne2019667439 ot 24.12.2019.

KuioueBble ciioBa: MeTon KOHEUHBIX 2JIEMEHTOB, TEOPUS HAAEKHOCTH, CITydyaliHbIe YHCIIa,
KOMIIBIOTEPHOE MOJIEJIMPOBaHUE, IPOrPAMMHUPOBAHUE
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INTRODUCTION

Currently, ensuring the mechanical safety of
buildings, structures and their structures is
regulated by regulatory legal acts based on the
semi-probabilistic method of limit states using
reliability coefficients. The calculation methods
laid down in the standards do not allow the
designer to obtain quantitative indicators of the
reliability of the facility being developed. The
available qualitative characteristic of reliability
is subjective, depends significantly on the
qualifications of experts and often leads to
inexpedient economic decisions, including those
based on personal reinsurance of a specialist in
the design process. On the other hand, there are
cases when the reliability of objects of increased
responsibility is lower than objects of the normal
and reduced levels. It should also be noted that at
present, damage and defects in structures are often
the result of design errors. One of the significant
"modern” factors affecting the probability of
error is the lack of time — the generally accepted
principles of finding optimal solutions based on
iterative design and experimental verification are
now becoming less and less relevant.

One of the effective solutions to this problem is the
use of universal software systems for numerical
modeling, which have flexible customization
options: development of new types of material,
finite elements, solver customization, and much
more.

USING THE USER SUBROUTINE UMAT

The finite element method initially developed as
a generalization and systematization of methods
for solving problems in structural mechanics.
Later it found wide application in other fields of
science and technology [6]. It is rather difficult to
create a universal graphical interface that would
satisfy the highly specific requirements of an ever-
growing number of extremely diverse problems
solved using the finite element method. There
are user subroutines for additional customization

\Volume 17, Issue 3, 2021

of the SIMULIA Abaqus software package. The
principle of working with them is that the core of
the software complex calls during the calculation
a set of user-written subroutines that overload the
corresponding functionality in Abaqus.

User subroutines are an extremely powerful tool
that allows you to extend some of the functionality
of the software package for which the usual
interface for inputting initial data imposes too
strict restrictions. Custom subroutines provide
the ability to flexibly define material properties
and behavior, initial and boundary conditions, and
even directly calculate local stiffness matrices for
custom finite element types.

User-defined routines are usually written in
FORTRAN. Subroutines cannot call each other,
but a number of utilities can be called from the
Abaqus programming interface.

In Abaqus, the user can create his own type of
material. A custom UMAT subroutine is used to
set its behavior.

The UMAT subroutine is designed to simulate the
nonlinear behavior of materials. In this article, we
restrict ourselves to generating a model with random,
locally given initial elastic properties. UMAT is
called at each Gaussian integration point of the
finite element when constructing its local stiffness
matrix at each loading step. From the data passed
by the Abaqus kernel to the UMAT subroutine,
we need the stress tensor o = STRESS (NTENS)
and the strain tensor increment Ae = DSTRAN
(NTENS). We must obtain the Jacobi matrix:

i

J:DDS'DDE{;'J']:i—g=E{i=;']=E
£

which in our case is equal to the tensor of the
elastic constants of the material and stress at the
next loading step

O — Oy + EAgk ;
A detailed description and a complete list of
arguments for the UMAT subroutine can be found

in the documentation for the SIMULIA Abaqus
software package.
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BOX-MULLER TRANSFORM

Typically, algorithms for (pseudo) random number
generators on personal computers generate
a sequence of numbers that obeys a uniform
distribution. However, many physical quantities
have a distribution close to normal (and tending to
it, according to the Lyapunov theorem), which is
implemented by various kinds of special sensors
used in cryptography. The question of converting
a uniform distribution into a normal distribution
has been studied in detail for a long time, and the
method of polar coordinates proposed by George
Box, Mervyn Mueller and George Marsaglia in
1958 has become the most widespread [9]. In this
work, we used the following version of the Box-
Muller transformation.

Let and be independent random variables
uniformly distributed on the interval [-1; 1]. We
calculated s = x> + y2. If s> 1 or S = 0, then the
values x and y should be regenerated again. If the
condition 0<s<1 is satisfied, then further by the
formulas it is necessary to calculate:

—2lns
Ip=X ,
5
—2lns
=1 ;
5
a |
g.'(l
E,
A-d,)E, |
.F.‘I.'
a)

Here z, and z, are independent quantities that
satisfy the standard normal distribution.

The method considered above allows one
to obtain a pair of independent normally
distributed random variables with mathematical
expectation 0 and variance 1. In order to
obtain a distribution with other characteristics,
it is sufficient to multiply the result of the
function by the standard deviation and add the
mathematical expectation.

Young's modulus for an isotropic material with
normally distributed properties is calculated by
the formula:

E:M[E]+0'[E]'Z,

where M[E] is expected value and o[ E] is standard
deviation of the Young's modulus of the material.

MODELING MATERIALWITH
ACCUMULATED DAMAGE

As an example, the first approximation of
modeling reinforced concrete structures with
variable values of the modulus of elasticity of
concrete is considered. The value of the modulus
of elasticity in building structures is an important
indicator both in determining the strength and
deformation characteristics of load-bearing

b)

Figure 1. Diagrams of concrete deformation described by the CDP model: a) in tension; b) in
compression
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structures, and is directly related to meeting the
requirements for the first and second groups of
limiting states. For example, Abaqus implements
a model of fracture of brittle materials CDP [3,
4] (Concrete Damage Plasticity), in which the
decrease in the elastic modulus is expressed
through the scalar value of material damage d
and the initial Young's modulus £

E=(1-dE;

A formulation close to this implementation is
also regulated by the Chinese standards GB
50010-2010 (applicable for concretes of the
C20-C80 class with a density of 2200-2400 kg
/ m®), for example, when determining tensile
stresses:

c=(-d)Eg;

Integrally, Young's modulus is also related to
the dynamic characteristics of the object, which
allows, on the basis of a comparison of the
experimentally obtained natural frequencies of
the structure and those obtained in the process of
virtual tests, to speak about their residual resource
after a long time of operation or after a seismic
effect of high intensity, where there are residual
damage to structures [10].

alt)=w,—a-(th(bt—c)+1)

N |

MODELING OF REINFORCED
CONCRETE STRUCTURESWITHA
RANDOM DISTRIBUTION OF YOUNG'S
MODULUS OF HEAVY CONCRETE IN
VOLUME

Based on the current regulatory legal acts, in
particular GOST 28570-2019 for testing concrete
samples taken from structures, the values of concrete
compressive strength tend to the normal distribution
law and are described by such indicators as standard
deviation, coefficient of variation and mathematical
expectation. It should be noted that for concretes
with low strength indices, the application of the
normal distribution law may be incorrect (for
example, for aerated concrete, where there may
be negative strength in a significant distribution
range, which contradicts physical principles). The
example presented below is a demonstrator of the
previously described methods and is a prerequisite
for the development of practical, verified methods
for modeling such a class of problems.

Below is the procedure for user actions when
using stochastic values of material parameters
by the example of modeling an elementary
structure — a pylon or a section of a wall.
Omitting the classic, basic stages of developing
a finite element model, the user specifies
the required values in the parameters of the
custom material, as well as the path to the

——————————

Figure 2. Derived function described in [10] and graphs of changes in the values of natural
vibration frequency depending on Young's modulus for a reinforced concrete monolithic frame
obtained in the process of virtual tests and calculated analytically without them

\Volume 17, Issue 3, 2021

185



Alexander I. Khvostov, Sergei I. Zhukov, Sergey N. Tropkin, Andrey Y. Chauskin

Depvar

User Material

Material Behaviors

a)

General Mechanical Thermal Electrical/Magnetic  Other

elerment deletion:

User Material

User material type: | Mechanical E|

[] Use unsymmetric material stiffness matrix

Data

General Mechanical Thermal Electrical/Magnetic  Other |
Depvar

Number of solution-dependent 3le]

state variables: =

Variable number centrelling o=

b)

| Preprocessor Printout

[] Print an echo of the input data
[ Print contact constraint data
[ print medel definition data

[] Print history data

Scratch directory: ﬁ

Mechanical
Constants

ADDOOOOD000

3 3200000000

¢

User subroutine file: ﬁ

|D:\umatfst‘for |

Results Format

® 0DB O 5IM O Both

d)

Figure 3. a) Finite element mesh of the test model, elements C3D8 - 8-node hexagonal FE of a
continuous medium with a linear shape function; b) Setting the number of variables in the graphical
interface; c) Description of variable values; d) Description of the path to the subroutine

custom subroutine in the menu for starting the
calculation task in Abaqus. The mathematical
expectation and standard deviation of Young's
modulus are taken as variables M[FE]and o[E],
as well as Poisson's ratio .

Figure 4. Mosaic of Young's modulus
distribution for the test model, Pa
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Based on the verification tests performed, the
values of Young's modulus for the FE model
were obtained, without taking into account the
correlation of values in space, which in reality
may be a random spread of poor quality of the
material obtained during the production of work.
Further, virtual tests were performed for two cases:
1. For the above-described elementary structure of
atype of wall or pylon section, with the calculation
of the calculated values of vertical stresses for
concrete of class B40;

2. For a reinforced column (concrete class B25,
steel A400), with a random value obtained for the
entire volume of Young's modulus and subsequent
analytical analysis of reliability over the entire
height.
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5, Max, Principal (Abs)
-1.593e+07
-1l.624e+07
-1.656e+07
-1.680e+07
-1.720e+07
-1.751e+07
-1.783e+07
-1.815e+07
-1.847e+07
-1.878e+07
-1.910e+07
-1.942e+07
-1.974e+07
-2.005e+07
-2.037e+07
-2.06%e+07
-2.101e+07
-2.132e+07
-z.164e+07
-2.196e+07
-2.228e+07
-2.259e+07
-2.291e+07
-2.323e+07
-2.355e+07

a)

S, Max, Principal (abs)
-1.431e4+07
-1.4680e4+07
-1.490e+07
-1.519e+07
-1.549e+07
-1.578e+07
-1.608e+07
-1.637e+07
-1.667e+07
-1.696e+07
-1.725e+07
-1.755e+07
-1.784e+07
-1.814e+07
-1.843e+07
-1.873e+07
-1.902e+07
-1.932e+07
-1.961e+07
-1.990e+07
-2.020e4+07
-2.049e4+07
-2.079e4+07
-2.108e+07
-2.138e+07

b)

Figure 5. Random design realizations of the mosaic of the distribution of the main stresses in
concrete of class B40 of the wall model: a) Failure case (maximum compressive stress 23.55 MPa);
b) Case to failure (maximum compressive stresses 21.38 MPa). Total failures for 500 virtual tests -

2. Reliability value 99.96% (f = 3,35).
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Figure 6. Control solution based on parametric optimization in a nonlinear formulation
using volumetric finite elements (elements of the C3D8R and B3 IR types) (maximum stress in
reinforcement 341 MPa, compressive stresses in concrete 18.5 MPa). Reliability diagram along the
column height calculated for a bar analogue.

In the first case, after 500 virtual tests, local
vertical internal stresses in concrete in 498
cases did not exceed the permissible design
values. In 2 cases, these stresses were exceeded
and can be identified as a local failure (but not
a failure of the structure as a whole). At the
same time, the reliability index B = 3.35, which
is a relatively high indicator of reliability for
load-bearing structures, based, for example, on

Volume 17, Issue 3, 2021

the recommendation data of EN 1990: 2002 +
Al. Eurocode - Basis of structural design (for
objects of normal level of responsibility with an
estimated service life of 50 years is 3.8).

In the second case, for one test, the distribution of
the reliability value along the column height was
obtained, taking into account the arising internal
forces. For this example, using custom output
data, for a bar analogue, a reliability diagram was
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obtained for the entire structural element, which
is a convenient integral indicator for assessing
mechanical safety.

CONCLUSIONS

1. Based on the performed analytical and
numerical studies, using the software module for
generating random values of material parameters
for numerical finite element models, the following
conclusions can be drawn:

2. 1. A software module for generating random
values of material parameters has been developed
and verified, which allows for numerical analysis in
a stochastic formulation both for the construction
industry and for other technical areas, which is
also important in the development of new products
using modern materials that require study and
appropriate certification;

3.2. The practical application of the method in the
universal complex of computer modeling Abaqus
is shown: a series of virtual tests was performed
with the calculation of the reliability value and the
reliability index, a numerical-analytical method
for constructing a reliability diagram was applied,
which allows to evaluate sections of structures
that do not meet the requirements of strength,
stability and rigidity in an integrated manner in a
convenient form.
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REVIEW

on educational and practical tutorial: <kDESIGN OF BASE, FOUNDATIONS AND
UNDERGROUND STRUCTURES», prepared by R.A. Mangushev, A.I. Osokin, V.V.
Konyushkov, I.P. Dyakonov, S.V. Lanko
(Saint Petersburg State University of Architecture and Civil Engineering)

The educational-practical manual, submitted for review, was prepared by the staff of the Department
of Geotechnics of Saint Petersburg State University of Architecture and Civil Engineering. The work
was carried out under the editorship of Corresponding Member. RAACS, Dr. Sciences, Professor R.A.
Mangushev in A5 format and contains 594 pages of text, a bibliography of 61 titles and two appendices.

The tutorial under review was prepared for students of construction universities (bachelors, specialists
and undergraduates), as well as for engineering workers of design and construction organizations. When
writing it, the authors set themselves the task of showing students, university graduates and engineering
and technical workers of design and construction organizations the main stages of calculation, design
of foundations of buildings and underground structures; teach them to make competent decisions in
the design, construction and reconstruction of various objects.

Afeature of the tutorial under review is a wide range of issues under consideration including the range
from the assessment of construction conditions, design of various types of foundations, underground
parts of buildings and structures, to calculations and design of deep-laid foundations, foundations
of high-rise buildings and structures, foundations in conditions of reconstruction and restoration of
buildings. The main part of the issues under consideration is supported by practical examples of design.

There is a comment to tutorial. The tutorial does not cover the issues of monitoring the technical
condition of buildings in the context of their reconstruction.

Evaluating the paper, it should be noted that despite the comment made, a full-fledged educational
and practical tutorial has been prepared for students studying in the specialty 08.05.01 "Construction
of unique buildings and structures”, students studying in the direction "Construction" (bachelor's
programs 08.03.01 and master's programs 08.04.01). The tutorial is also intended for employees of
design and construction organizations in the construction industry. The presented work is written in
workable manner, the main material of the tutorial is well illustrated by drawings, practical examples.
The considered educational and practical tutorial "Design of base, foundations and underground
structures" is recommended to be published in the presented form.

Head of the Department of "Bases and Foundations"

Kuban State Agrarian University, Honored Builder of the Russian Federation, Doctor of Tech.
Sciences, Professor

A.L Polischuk
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