INFORMATION MODELING OF CONCRETE: CURRENT STATUS AND DEVELOPMENT PROSPECT S

Main Article Content

Aleksey Makeev

Abstract

The publication relates to the problems of digitalization of building materials science. The relevance of developing a digital model of concrete for solving optimization problems of design and synthesis of its structure, clarifying methods for calculating building structures, and improving the technology of their production is shown. The evolution of information modeling of concrete is analyzed in the context of the stages of development of system-building materials science and technology.


A review of the main modern methods of computer modeling of concrete structure in domestic and foreign scientific research is provided. It is noted that these methods do not take into account the complexity of the structure of concrete. In the article, concrete is presented as a conglomerate composite with a hierarchically organized structure with dimensions from 10-10 to 10-1 m. It has a minimum of 5-6 scale levels and three types of substructure design. Substructures differ in their scale, genesis and mechanics of manifestation of properties. The first type of substructure is characteristic of the macro-, meso- and micro-scale levels. It is accepted in the form of a two-component “construction” of a spatially continuous matrix and discrete inclusions deterministically and stochastically distributed in it. The second type refers to the submicro-, ultra-micro- and nanoscale levels. It is believed to be in the form of a “microscale spatial structure” of new formations of a cementing substance from consolidated individual crystalline differences. The third type corresponds to the atomic-molecular structure of new formations of the cementing substance.


The characteristics of each type of substructure are given according to: the scale of the components; features of formation; mechanics of properties manifestation; design criteria; means of synthesis. An assumption is made about the specificity of modeling each of the three types of concrete substructures and their integration into a single digital model. The task is to develop an information platform for such a model. The platform should include: a theoretical knowledge base; empirical data base; database of analytical, numerical and statistical models; algorithms for designing and synthesizing structures; optimization criteria and boundary conditions; terms of reference for computer modeling of concrete.

Downloads

Download data is not yet available.

Article Details

How to Cite
Makeev, A. (2023). INFORMATION MODELING OF CONCRETE: CURRENT STATUS AND DEVELOPMENT PROSPECT S. International Journal for Computational Civil and Structural Engineering, 19(4), 95–115. https://doi.org/10.22337/2587-9618-2023-19-4-95-115
Section
Articles

References

Travush V. I. Tsifrovyye tekhnologii v stroitel'stve [Digital technologies in construction] // Academia. Arkhitektura i stroitel'stvo, 2018, Issue 3, pp. 107-117 (in Russian).

Informatika v stroitel'stve (s osnovami matematicheskogo i komp'yuternogo modeli-rovaniya) [Computer science in construction (with the basics of mathematical and computer modeling)] / team of authors; under. ed.P.A. Akimov. Moscow, KNORUS, 2017, 420 pages (in Russian).

Makeyev A.I. Metodologicheskiye osnovaniya teorii konstruirovaniya i sinteza optimal'nykh struktur konglomeratnykh stroitel'nykh kompozitov [Methodological foundations of the theory of design and synthesis of optimal structures of conglomerate building composites] // Nauchnyy vestnik VGASU. Seriya: Fiziko-khimicheskiye problemy i vysokiye tekhnologii stroitel'nogo materialovedeniya, 2015, Issue 1, pp. 29-37 (in Russian).

Karpenko N.I. Obshchiye modeli mekhaniki betona [General models of concrete mechanics]. Moscow, Stroyizdat, 1996, 416 pages (in Russian).

Kondrashchenko V.I. Nekotoryye aspekty komp'yuternogo materialovedeniya [Some aspects of computer materials science] // Modelirovaniye i optimizatsiya kompozitov : Mat. k mezhdunar. seminaru, posvyashch. 80-letiyu V.A. Voznesenskogo. Odessa, Astroprint, 2014, pp. 64-68 (in Russian).

Chernyshov Ye.M., Makeyev A.I. K modelirovaniyu napryazhennogo sostoyaniya strukturno-neodnorodnykh konglomeratnykh kompozitov v stroitel'nykh konstruktsiyakh [Towards modeling the stress state of structurally inhomogeneous conglomerate composites in building structures] // International Journal of Calculation of Civil and Construction Structures, 2015, Vol. 11, Issue 2, pp. 160-170 (in Russian).

Bazhenov Yu.M., Gar'kina I.A., Danilov A.M., Korolev Ye.V. Sistemnyy analiz v stroitel'nom materialovedenii [System analysis in construction materials science]. Moscow, MGSU, 2012, 432 pages (in Russian).

Budylina Ye.A., Gar'kina I. A., Danilov A. M. Obshchaya skhema identifikatsii i sinteza stroitel'nykh materialov [General scheme for identification and synthesis of building materials] // Regional'naya arkhitektura i stroitel'stvo, 2022, Issue 4, pp. 26-30 (in Russian). DOI: https://doi.org/10.54734/20722958_2022_4_26

Chernyshov Ye.M. Materialovedeniye i tekh-nologiya stroitel'nykh kompozitov kak sis-tema nauchnogo znaniya i predmet razvitiya issledovaniy. Chast' 2. Razvitiye i evolyutsiya nauchnogo znaniya o konglomeratnykh stroi-tel'nykh kompozitakh kak strukturirovannykh sistemakh [Materials science and technology of building composites as a system of scientific knowledge and a subject for the development of research. Part 2. Development and evolution of scientific knowledge about conglomerate building composites as structured systems] // Izvestiya vysshikh uchebnykh zavedeniy. Stroitel'stvo, 2020, Issue 1, pp. 57-77 (in Russian).

Chernyshov Ye.M., Makeyev A.I. O probleme razvitiya, evolyutsii «tsifrovogo podkhoda» v materialovedenii i tekhnologii stroitel'nykh kompozitov [On the problem of development, evolution of the “digital approach” in materials science and technology of building composites] // Sovremennaya nauka: teoriya, metodologiya, praktika: Mat-ly III vserossiyskoy (natsional'noy) nauchno-prakticheskoy konferentsii. Tambov, Izd-vo IP Chesnokova A.V., 2021, pp. 9-21 (in Russian).

Denisov F.A. Prostrannoye rukovodstvo k obshchey tekhnologii ili k poznaniyu vsekh rabot, sredstv, orudiy i mashin, upotreb-lyayemykh v raznykh khimicheskikh iskusstvakh [A lengthy guide to general technology or to the knowledge of all works, means, tools and machines used in various chemical arts]. Moscow, 1828, 548 pages (in Russian).

Mendeleyev D.I. Osnovy fabrichno-zavodskoy promyshlennosti [Fundamentals of the factory industry]. St. Petersburg, Type. V. Demakova, 1897, 201 pages (in Russian).

Tishchenko I. A. Osnovnyye protsessy i ap-paraty khimicheskoy tekhnologii. Vyp. I : Obshcheye vvedeniye. Izmel'cheniye i izmel'chayushchiye apparaty [Basic processes and devices of chemical technology. Vol. I: General introduction. Grinding and grinding apparatus]. Moscow, Tipo-Lit. I. Kh. Kavykina, 1913, 161 pages (in Russian).

Walker W. H., Lewis W. K., McAdams W. H. Principles of chemical engineering. London, McGraw-Hill Publising Co., ltd, 1923. 631 pages.

Badger V., McCab V. Osnovnyye protsessy i apparaty khimicheskikh proizvodstv [Basic processes and apparatus of chemical production]. Moscow, Leningrad, Goskhimtekhizdat, 1933, 476 pages (in Russian).

Kasatkin A.G. Osnovnyye protsessy i apparaty khimicheskoy tekhnologii. [Basic processes and apparatuses of chemical technology]. Moscow, Khimiya, 1973. 752 pages (in Russian).

Malyuga I.G. Sostav i sposob prigotovleniya tsementnogo rastvora (betona) dlya polucheniya naibol'shey kreposti [Composition and method of preparing cement mortar (concrete) to obtain the greatest strength]. St. Petersburg, type. or T. V.A. Tikhanova, 1895, 201 pages (in Russian).

Zhitkevich N.A. Beton i betonnyye raboty [Concrete and concrete work]. St. Petersburg, 1912, 524 pages (in Russian).

Evald V.V. Stroitel'nyye materialy. Ikh prigotovleniye, svoystva i ispytaniya [Construction Materials. Their preparation, properties and tests]. Moscow, Gos. nauch-tekhn. izd-vo, 1931, 510 pages (in Russian).

Znachko-Yavorsky I.L. Ocherki istorii vyazhushchikh veshchestv ot drevneyshikh vremen do serediny XIX veka [Essays on the history of binders from ancient times to the mid-19th century]. Leningrad, Izd-vo AN SSSR, 1963, 496 510 pages (in Russian).

Bogdanov A.A. Vseobshchaya organizatsion-naya nauka (tektologiya) [General organizational science (tectology)] / 3-ye izd. Ch. 1–3, Moscow, Leningrad, 1929, 220 pages (in Russian).

Bertalanffy L. Obshchaya teoriya sistem - obzor problem i rezul'tatov [General theory of systems - a review of problems and results] // Sistemnyye issledovaniya. Yezhegodnik. Moscow, «Nauka», 1969, pp. 34-35 (in Russian).

Issledovaniya po obshchey teorii sistem [Research on general systems theory] // Sb. perevodov pod red. V. N. Sadovskogo i E. G. Yudina. Moscow, Progress, 1969, 519 pages (in Russian).

Karman T., Bio M. Matematicheskiye meto-dy v inzhenernom dele [Mathematical methods in engineering] / Per s angl., 2-ye izd. Moscow, Leningrad, Gos. izd-vo tekhniko-teoretich. lit-ry, 1948, 424 pages (in Russian).

Skramtaev B.G. Teoriya prochnosti betona. Novyye vidy betonov [Theory of concrete strength. New types of concrete] / Doklady, prochitannyye na Vseukr. konferentsii po betonu i zhelezobetonu 17-19 iyunya 1933 g. Kharkov, Gos.-nauch. tekhn. izd-vo Ukrainy, 1933, 55 pages (in Russian).

Jung V.N. Vvedeniye v tekhnologiyu tsementa [Introduction to cement technology]. Moscow, Leningrad, Gosstroyizdat, 1938, 404 pages (in Russian).

Mikhailov V.V. Elementy teorii struktury betonov [Elements of the theory of concrete structure]. Moscow, Leningrad, Gosstroyizdat, 1941, 227 pages (in Russian).

Sheykin A.E. Teoriya uprugosti, prochnosti, plastichnosti betona [Theory of elasticity, strength, plasticity of concrete]. Moscow, NIIZhB, 1944, 250 pages (in Russian).

Wiener N. Kibernetika, ili Upravleniye i svyaz' v zhivotnom i mashine [Cybernetics, or Control and Communication in Animals and Machines]. Moscow, Nauka, 1983, 344 pages (in Russian).

Optner S.L. Sistemnyy analiz dlya resheniya delovykh i promyshlennykh problem [System analysis for solving business and industrial problems]. Moscow, Sovetskoye radio, 1968, 216 pages (in Russian).

Kafarov V.V. Metody kibernetiki v khimii i khimicheskoy tekhnologii [Methods of cybernetics in chemistry and chemical technology]. Moscow, Khimiya, 1968, 379 pages (in Russian).

Fisher R. Statisticheskiye metody dlya issledovateley [Statistical methods for researchers]. Moscow, Gosstatizdat, 1958, 267 pages (in Russian).

Adler Yu.P., Markova E.V., Granovsky Yu.V. Planirovaniye eksperimenta pri poiske optimal'nykh usloviy [Planning an experiment when searching for optimal conditions]. Moscow, Nauka, 1976, 280 pages (in Russian).

Akhnazarova S.L., Kafarov V.V. Metody optimizatsii eksperimenta v khimicheskoy tekhnologii. [Methods for optimizing experiments in chemical technology]. Moscow, Vyssh. shk., 1985, 327 pages (in Russian).

Voznesensky V. A., Vyrovoy V. N., Kersh V. Ya. et al. Sovremennyye metody optimizatsii kompozitsionnykh materialov [Modern methods of optimization of composite materials] / Ed. V. A. Voznesensky. Kyiv: Budivelnik, 1983, 144 pages (in Russian).

Lyashenko T.V. Optimizatsiya napolniteley poliefirnykh svyazuyushchikh na osnove modeley novogo klassa [Optimization of polyester binder fillers based on new class models]: dis.... cand. tech. Sci. Odessa, 1984, 236 pages (in Russian).

Shinkevich E.S. [Optimization of the structure of cellular silicate concrete according to a set of quality criteria based on isoparametric analysis]: dis. ...cand. tech. Sci. Kraskovo, 1985, 249 pages (in Russian).

Bazhenov Yu.M. [Concrete under dynamic loading]. Moscow, Stroyizdat, 1970, 272 pages (in Russian).

Ratinov V.B., Rosenberg T.I. Dobavki v beton [Additives to concrete]. Moscow, Stroyizdat, 1973, 207 pages (in Russian).

Melnichenko P.A. Strukturno-statisticheskiy podkhod k resheniyu zadachi upravlyayemogo strukturoobrazovaniya kompo-zitov [Structural-statistical approach to solving the problem of controlled structure formation of composites] // Snizheniye materialoyemkosti i povysheniye dolgovechnosti stroitel'nykh izdeliy. Kyiv, Budivelnik, 1974, pp. 66-76 (in Russian).

Rebinder P.A. Poverkhnostnyye yavleniya v dispersnykh sistemakh. Fiziko-khimicheskaya mekhanika. Izbrannyye trudy [Surface phenomena in disperse systems. Physico-chemical mechanics. Selected works]. Moscow, Nauka, 1979, 384 pages (in Russian).

Akhverdov I.N. Osnovy fiziki betona [Fundamentals of concrete physics]. Moscow, Stroyizdat, 1981, 464 pages (in Russian).

Podvalny A.M. Opredeleniye velichiny sobstvennykh deformatsiy v betonnom konglomerate na razlichnykh strukturnykh urovnyakh [Determination of the magnitude of intrinsic deformations in concrete conglomerate at various structural levels] // Zavodskaya laboratoriya, 1973, Issue10, pp. 1204 – 1206 (in Russian).

Sheikin A.E., Chekhovsky Yu.V., Brusser M.I. Struktura i svoystva tsementnykh betonov [Structure and properties of cement concrete]. Moscow, Stroyizdat, 1979, 344 pages (in Russian).

Rybyev I.A., Nekhoroshev A.V. Iskhodnyye metodicheskiye pozitsii pri issledovanii iskusstvennykh stroitel'nykh konglomeratov [Initial methodological positions in the study of artificial building conglomerates] // Stroitel'nyye materialy, 1980, Issue 2, pp. 24 – 26 (in Russian).

Solomatov V.I. Elementy obshchey teorii kompozitsionnykh stroitel'nykh materialov [Elements of the general theory of composite building materials] // Izvestiye vuzov. Stroitel'stvo i arkhitektura, 1980, Issue 8, pp. 61 – 70 (in Russian).

Chernyshov E.M. Upravleniye protsessami strukturoobrazovaniya i kachestvom silikat-nykh avtoklavnykh materialov (voprosy me-todologii, strukturnoye materialovedeniye, inzhenerno-tekhnologicheskiye zadachi) [Control of structure formation processes and quality of silicate autoclave materials (issues of methodology, structural materials science, engineering and technological problems)]: dis. ... Dr. Tech. Sci. Voronezh, 1988, 600 pages (in Russian).

Bolotin V.V., Goldenblat I.I., Smirnov A.F. Stroitel'naya mekhanika. Sovremennoye sostoyaniye i perspektivy razvitiya [Structural mechanics. Current state and development prospects]. Moscow, Stroyizdat, 1972, 191 pages (in Russian).

Budeshtsky R.I. Elementy teorii prochnosti zernistykh kompozitsionnykh materialov [Elements of the theory of strength of granular composite materials]. Tbilisi, Metsniereba, 1972, 82 pages (in Russian).

Zaitsev Yu.V. Uchet makro- i mikrostruktury materiala i yego fizicheskoy nelineynosti v zadachakh o razvitii treshchin v betone [Taking into account the macro- and microstructure of the material and its physical nonlinearity in problems of the development of cracks in concrete] // Izvestiye vuzov. Stroitel'stvo i arkhitektura, 1975, Issue10 11, pp.15 – 20 (in Russian).

Komokhov P.G. Fiziko-mekhanicheskiye aspekty razrusheniya betona i printsipy snizheniya yego treshchinoobrazovaniya [Physico-mechanical aspects of concrete destruction and principles of reducing its cracking] // Sovershenstvovaniye tekhnologii stroitel'nogo proizvodstva: Mezhvuz. tematich. sb. Tomsk, 1981, pp. 145 – 151 (in Russian).

Voznesensky V.A., Krovyakov S.A., Lyashenko T.V. Elementy komp'yuternogo materialovedeniya pri issledovanii betonov [Elements of computer materials science in the study of concrete] // Budivelni konstruktsii: Mizhvidomchiy naukovo-tekhnichniy zb., vip. 50. Kyiv, NDIBK, 1999, pp. 310 – 318 (in Russian).

Askadsky A.A., Kondrashenko V.I. Komp'yuternoye materialovedeniye polimerov. Tom 1. Atomno-molekulyarnyy uroven'. [Computer materials science of polymers. Volume 1. Atomic-molecular level]. Moscow, Nauchnyy mir, 1999, 544 pages (in Russian).

Bazhenov Yu.M., Vorobyov V.A., Ilyukhin A.V. Osnovnyye podkhody k komp'yuternomu materialovedeniyu stroitel'nykh kompozitnykh materialov [Basic approaches to computer materials science of building composite materials] // Stroitel'nyye materialy, 2006, Issue 3,. P. 71 (in Russian).

Chernyshov E.M., Dyachenko E.I., Dyachenko D.E. O neyrosetevom modelirovanii v zadachakh sistemno-strukturnogo stroitel'nogo materialovedeniya [On neural network modeling in problems of system-structural construction materials science] // Sovremennyye problemy stroitel'nogo materialovedeniya. Ivanovo, 2000, pp. 175-181 (in Russian).

Danilov A.M., Korolev E.V., Smirnov V.A., Proshin A.P. Neyrosetevyye metody issledovaniya v stroitel'nom materialovedenii [Neural network research methods in construction materials science] // Izvestiya vysshikh uchebnykh zavedeniy. Stroitel'stvo, 2003, Issue 10, pp. 28-34 (in Russian).

Gusev B.V., Korolev E.V., Grishina A.N. Modeli polidispersnykh sistem: kriterii otsenki i analiz pokazateley effektivnosti [Models of polydisperse systems: evaluation criteria and analysis of performance indicators] // Promyshlennoye i grazhdanskoye stroitel'stvo, 2018, Issue 8, pp. 31-39 (in Russian).

Smirnov V.A., Korolev E.V. Iyerarkhicheskoye modelirovaniye stroitel'nykh materialov kak dispersnykh sistem: spetsializirovannaya programmnaya realizatsiya [Hierarchical modeling of building materials as dispersed systems: specialized software implementation] // Stroi-tel'nyye materialy, 2019, Issue 1-2, pp. 43-53 (in Russian). DOI: https://doi.org/10.31659/0585-430X-2019-767-1-2-43-53

Vyrovoy V.N., Dorofeev V.S., Sukhanov V.G. Kompozitsionnyye stroitel'nyye materialy i konstruktsii: struktura, samoorga-nizatsiya, svoystva [Composite building materials and structures: structure, self-organization, properties]. Odessa, State. Academy of Construction and Architecture, 2010, 169 pages (in Russian).

Kaprielov S.S., Sheinfeld A.V.,. Kardumyan G.S., Chilin I.A. O podbore sostavov vysokokachestvennykh betonov s organomineral'nymi modifikatorami [On the selection of compositions of high-quality concrete with organomineral modifiers] // Stroitel'nyye materialy, 2017, Issue 12, pp. 58-63 (in Russian). DOI: https://doi.org/10.17673/Vestnik.2017.01.10

Selyaev V.P., Selyaev P.V. Fiziko- khimicheskiye osnovy mekhaniki razrusheniya tsementnykh kompozitov [Physicochemical foundations of fracture mechanics of cement composites]. Saransk, Mordov Publishing House. University, 2018, 220 pages (in Russian).

Belov V.V., Obraztsov I.V., Smirnov M.A. Proyektirovaniye zernovykh sostavov mineral'nykh vyazhushchikh sistem [Design of grain compositions of mineral binder systems] // Vestnik Tverskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Stroitel'stvo. Elektrotekhnika i khimicheskiye tekhnologii, 2020, Issue 2, pp. 7-15 (in Russian).

Artamonova O.V., Chernyshov E.M. Nanomodifitsirovannyye struktury neorganicheskikh sistem tverdeniya stroitel'nykh kompozitov. [Nanomodified structures of inorganic hardening systems for building composites]. Voronezh, Nauchnaya kniga, 2022, 248 pages (in Russian).

Korotkikh D.N. Treshchinostoykost' sovremennykh tsementnykh betonov (problemy materialovedeniya i tekhnologii) [Crack resistance of modern cement concrete (problems of materials science and technology)]. Voronezh, Voronezhskiy GASU, 2014, 141 pages (in Russian).

Maksimova I.N., Makridin N.I., Erofeev V.T., Skachkov Yu.P. Struktura i prochnost' konstruktsionnykh tsementnykh kompozitov [Structure and strength of structural cement composites]. Saransk, 2015, 360 pages (in Russian).

Chernyshov E.M., Makeev A.I., Korotkikh D.N. Bazovyye polozheniya mekhaniki proyavleniya konstruktsionnykh svoystv konglomeratnykh stroitel'nykh kompozitov. Chast' 1. Obzor rezul'tatov teoreticheskikh issledovaniy problemy konstruirovaniya i sinteza struktur sovremennykh vysokotekhnologichnykh betonov [Basic principles of the mechanics of manifestation of the structural properties of conglomerate building composites. Part 1. Review of the results of theoretical studies of the problem of design and synthesis of structures of modern high-tech concrete] // Izvestiya vuzov. Stroitel'stvo, 2020, Issue 8, pp. 43-51 (in Russian).

Slavcheva G.S., Chernyshov E.M. Algoritm konstruirovaniya struktury tsementnykh penobetonov po kompleksu zadavayemykh svoystv [Algorithm for designing the structure of cement foam concrete based on a set of specified properties] // Stroitel'nyye materialy, 2016, Issue 9, pp. 58-64 (in Russian).

Chernyshov E.M., Makeev A.I. K razvitiyu teorii konstruirovaniya i sinteza struktur konglomeratnykh stroitel'nykh kompozitov [Towards the development of the theory of design and synthesis of structures of conglomerate building composites] // Fundamental'nyye, poiskovyye i prikladnyye issledovaniya Rossiyskoy akademii arkhitektury i stroitel'nykh nauk po nauchnomu obespecheniyu razvitiya arkhitektury, gradostroitel'stva i stroitel'noy otrasli Rossiyskoy Federatsii v 2019 godu : Sb. nauch. tr. RAASN, Vol. 2, Moscow, Izdatel'stvo ASV, 2020, pp. 482 - 502 (in Russian).

Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T. Artificial neural network methods for the solution of second order boundary value problems // Computers, Materials & Continua, 2019, Vol. 59(1), pp. 345-359. DOI: https://doi.org/10.32604/cmc.2019.06641

Wittmann F.H., Martinola G. Optimisation of concrete properties by neural networks // Concrete 2000 - economic and durable construction through exellence: Proc. Int. Conf., London, E & FN Spon, 1993, pp. 1889-1898.

Shishcgaran A, Varaee H, Rabczuk T, Shishcgaran G. High correlated variables creator machine: Prediction of the compressive strength of concrete // Computers & Structures, 2021, Vol. 247, p. 106479. DOI: https://doi.org/10.1016/j.compstruc.2021.106479

Asteris P G, Ashrafian A, Rezaic-Balf M. Prediction of the compressive strength of self-compacting concrete using surrogate models // Computers and Concrete, 2019, Vol. 24, pp. 137-150.

Nguyen T., Pham Duy H., Pham Thanh T., Vu H. Compressive strength evaluation of fiber-reinforced high-strength selfcompacting concrete with artificial intelligence // Advances in Civil Engineering, 2020, e30l2139. DOI: https://doi.org/10.1155/2020/3012139

Saha P, Prasad M L V, Kuraar P.R. Predicting strength of SCC using artificial neural network and multivariable regression analysis // Computers and Concrete, 2017, Vol 20(I), pp. 31-38.

Mashhadban H, Kutanaei S., Sayarincjad M. Prediction and modeling of mechanical properties in fiber reinforced selfcompacting concrete using particle swarm optimization algorithm and artificial neural network // Construction & Building Materials, 2016, Vol. 119, pp. 277-287. DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.034

Mai H.-V.T., Nguyen M.H., Trinh S.H., Ly H.-B. Optimization of machine learning models for predicting the compressive strength of fiber-reinforced self-compacting concrete // Frontiers of Structural and Civil Engineering, 2023, doi.org/10.1007/s11709-022-0901-6 DOI: https://doi.org/10.1007/s11709-022-0901-6

Balykov A.S., Kaledina E.A., Volodin S.V. Prognozirovaniye prochnosti pri szhatii i proyektirovaniye sostavov konstruktsionnykh legkikh betonov s primeneniyem metodov mashinnogo obucheniya [Prediction of compressive strength and design of compositions of structural lightweight concrete using machine learning methods] // Nanotekhnologii v stroitel'stve, 2023, Vol. 15, Issue 2, pp. 171–186 (in Russian). DOI: https://doi.org/10.15828/2075-8545-2023-15-2-171-186

Naser M.Z. Digital twin for next gen concretes: On-demand tuning of vulnerable mixtures through Explainable and Anomalous Machine Learning // Cement and Concrete Composites, 2022, Vol. 132, art. no. 104640. DOI: https://doi.org/10.1016/j.cemconcomp.2022.104640

Lyashenko T.V. O neyronnykh setyakh i eksperimental'no-statisticheskom modelirovanii [About neural networks and experimental-statistical modeling] // Modeling and Optimization of Building Composites. - Odessa, 2016. - pp. 86-90 (in Russian).

Eliaš J., Vorechovsky´ M., Skocek J., Bazant Z.P. Stochastic discrete meso-scale simulations of concrete fracture: Comparison to experimental data // Engineering Fracture Mechanics, 2015, Vol. 135, pp. 1–16. DOI: https://doi.org/10.1016/j.engfracmech.2015.01.004

Xiong Q.A., Wang X., Jivkov A.P. 3D multi-phase meso-scale model for modelling coupling of damage and transport properties in concrete // Cement and Concrete Composites, 2020, Vol. 109, P. 103545. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103545

Contrafatto L., Cuomo M., Gazzo S. A concrete homogenisation technique at meso-scale level accounting for damaging behaviour of cement paste and aggregates // Computers & Structures, 2016, Vol. 173, pp. 1-18. DOI: https://doi.org/10.1016/j.compstruc.2016.05.009

Shams M.Z. Multi-Scale Modeling of Particle Reinforced Concrete Through Finite Element Analysis: Theses and Dissertations, 2016, Paper 1202, https://dc.uwm.edu/etd/1202

Stroeven P., Stroeven M. Dynamic Computer Simulation of Concrete on different Levels of the Microstructure – Part 1 // Image Analysis and Stereology, 2003, Issue 22, pp. 91-95. DOI: https://doi.org/10.5566/ias.v22.p1-10

Homel M.A., Iyer J., Herbold E.B., Semnani S.J. Mesoscale model and X-ray computed micro-tomographic imaging of damage progression in ultra-high-performance concrete // Cement and Concrete Research, 2022, Vol. 157, P. 106799. DOI: https://doi.org/10.1016/j.cemconres.2022.106799

Zhang J., Zhang M., Dong B., Ma H. Quantitative evaluation of steel corrosion induced deterioration in rubber concrete by integrating ultrasonic testing, machine learning and mesoscale simulation // Cement and Concrete Composites, 2022, Vol. 128, P. 104426. DOI: https://doi.org/10.1016/j.cemconcomp.2022.104426

Imran Waris M., Ahmad A., Plevris V. [et al.] An alternative approach for measuring the mechanical properties of hybrid concrete through image processing and machine learning // Construction and Building Materials, 2022, Vol. 328, P. 126899. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126899

Li K., Shui Z. H., Dai W. Molecular dynamic simulation of structural and mechanical properties of cement hydrates: from natural minerals to amorphous phases // Materials Research Innovations, 2012, Vol. 16, Issue 5, pp. 338-344. DOI: https://doi.org/10.1179/1433075X11Y.0000000060

Kulik D. A., Miron G. D., Lothenbach B. A structurally-consistent CASH+ sublattice solid solution model for fully hydrated C-S-H phases: Thermodynamic basis, methods, and Ca-Si-H2O core sub-model // Cement and Concrete Research, 2022, Vol. 151, P. 106585. DOI: https://doi.org/10.1016/j.cemconres.2021.106585

Valavi M., Casar Z., Bowen P. [et al.] Molecular dynamic simulations of cementitious systems using a newly developed force field suite ERICA FF // Cement and Concrete Research, 2022, Vol. 154, P. 106712. DOI: https://doi.org/10.1016/j.cemconres.2022.106712

Bazhenov Yu.M., Vorobyov V.A., Ilyukhin A.V. [et al.] Komp'yuternoye materialovede-niye stroitel'nykh kompozitnykh materialov. [Computer materials science of building composite materials]. Moscow, Izd-vo Rossiyskoy inzhenernoy akademii, 2006, 256 pages (In Russia).

Magdeev U.Kh., Morozov V.I., Pukharenko Yu.V. K matematicheskoy postanovke zadachi ob opredelenii osesimmetrichnykh deformatsiy konstruktsiy iz neodnorodno ortotropnykh materialov [Towards a mathematical formulation of the problem of determining axisymmetric deformations of structures made of inhomogeneous orthotropic materials] // Fundamental, search and applied research of the RAASN on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2016: Collection of scientific papers of the RAASN. Moscow, ASV Publishing House, 2017. pp. 227-230 (in Russian).

Selyaev V.P., Selyaev P.V., Lazarev A.L. [et al.] Fraktal'naya kvantovo-mekhanicheskaya model' deformirovaniya i razrusheniya betona [Fractal quantum mechanical model of deformation and destruction of concrete] // Regional'naya arkhitektura i stroitel'stvo, 2022, Issue 4, pp. 31-40 (in Russian). DOI: https://doi.org/10.54734/20722958_2022_4_31

Chernyshov E.M. Makeev A.I. Materialovedeniye i tekhnologiya stroitel'nykh kompozitov kak sistema nauchnogo znaniya i predmet razvitiya issledovaniy. Chast' 3. Sistemnaya identifikatsiya "konstruktsii struktury" konglomeratnykh stroitel'nykh kompozitov (v kachestvennoy postanovke problemy) [Materials science and technology of building composites as a system of scientific knowledge and a subject of research development. Part 3. System identification of the “structure design” of conglomerate building composites (in a qualitative formulation of the problem)] // Izvestiya vysshikh uchebnykh zavedeniy. Stroitel'stvo, 2021, Issue 3, pp. 5-26 (in Russian).

Chernyshov E.M., Makeev A.I. Universalii stroitel'nykh kompozitov kak strukturirovannykh tverdykh tel [Universals of building composites as structured solids] // Izvestiya vuzov. Stroitel'stvo, 2021, Issue 11, pp. 37-54 (in Russian).

Current problems of numerical modeling of buildings, structures and complexes. Vol. 2. To the 25th anniversary of the StaDiO Research Center / Under the general direction. ed. A.M. Belostotsky and P.A. Akimova. Moscow, Publishing house ASV, 2016, 596 pages (in Russian).

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.