RECIPROCITY LAWS FOR OSCILLATIONS OF DISSIPATIVE SYSTEMS
Main Article Content
Abstract
) is presented. The method is based on the use of the algebraic theorem of P.L. Pasternak and on the new properties of the Duhamel integral, which are obtained for a dissipative system with internal friction of the material, which is taken into account on the basis of the non-proportional damping model. For displacements, velocities and accelerations, the dynamic reaction equations are written in the form of systems of linear equations and their symmetrical structure is shown. The functional dependence of the force parameters of the calculation model and the corresponding kinematic parameters of the reaction is determined by an arbitrary scalar function of time. An extended interpretation of the reciprocity theorems is given and sufficient conditions for their fulfillment are formulated, which consist in the requirement that the matrix differential operator of the equation of motion be symmetrical. New laws of reciprocity in dissipative systems are formulated and proved. The reciprocity of the product between the velocities / accelerations of masses and nodal forces is established. In contrast to the well-known theorem on the reciprocity of possible work, these laws are theorems on the 1st / 2nd derivative of possible work with respect to time and therefore go beyond the Betti principle. For particular cases of these theorems, the reciprocity of velocities and reciprocity of accelerations is shown. Expressions of general and particular theorems have a fairly simple mathematical form that does not require recourse to integral transformations, and are presented in an analytical form.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Strutt J. W. (Lord Rayleigh) Sound Theory [Teoriya zvuka] // translation from English. 3rd edition P.N. Uspensky, S.A. Kamenetsky under total. ed. CM. Rytova, K.F. Teodorchik. M.; L.: Gostekhizdat, 1940. T. 1. 500 p.
Pasternak P.L. Berechnung vielfach statisch unbestimmter biegefester Stab- und Flächentragwerke. I. Teil / Dreigliedrige Systeme: Grundlagen und Anwendungen. Zürich: Leemann, 1927. 43 p.
Giannakopoulos A.E., Amanatidou E., Aravas N. A reciprocity theorem in linear gradient elasticity and the corresponding Saint-Venant principle // International Journal of Solids and Structures. 2006. Vol. 43(13). P. 3875-3894. doi.org/10.1016/j.ijsolstr.2005.05.048 DOI: https://doi.org/10.1016/j.ijsolstr.2005.05.048
Scattering of in-plane elastic waves at metamaterial interfaces / A.A. Mokhtari, Yan Lu, Q. Zhou, A.V. Amirkhizi, A. Srivastava // International Journal of Engineering Sci-ence. Vol. 150. 2020. 103278. doi.org/10.1016/j.ijengsci.2020.103278 DOI: https://doi.org/10.1016/j.ijengsci.2020.103278
Lombaert G., Degrande G. Experimental validation of a numerical prediction model for free field traffic induced vibrations by in situ experiments // Soil Dynamics and Earth-quake Engineering, 2001, Vol. 21(6). P. 485-497. doi.org/10.1016/S0267-7261(01)00017-3 DOI: https://doi.org/10.1016/S0267-7261(01)00017-3
Some theoretical and numerical observations on scattering of Rayleigh waves in media containing shallow rectangular cavities / Hua-You Chai, Kok-Kwang Phoon, Siang-Huat Goh, Chang-Fu Wei // Journal of Applied Geophysics. 2012, Vol. 83. P. 107-119. doi.org/10.1016/j.jappgeo.2012.05.005 DOI: https://doi.org/10.1016/j.jappgeo.2012.05.005
Kurbatsky E.N. Using the reciprocity theorem to estimate the levels of vibrations of the sur-face of an elastic half-space from a point source located inside the half-space [Ispol'zovaniye teoremy vzaimnosti dlya otsenki urovney vibratsiy poverkh-nosti uprugogo poluprostranstva ot] // Bulletin of the Moscow Institute of Engineers. 2005. Is-sue. 13. C. 32-37.
Elgaev V.S. Ensuring the safety of buildings during high-speed tunneling using the shield [Obespecheniye bezopasnosti zdaniy pri skorostnoy prokhodke tonneley shchitovym sposobom] // method: Ph.D. dis. … cand. tech. Sciences. M., 2013.
Nguyen Chong Tam. Application of the reciprocity theorem for assessing oscillations created by moving loads [Prilozheniye teoremy vzaimnosti dlya otsenki kolebaniy, sozdavayemykh po-dvizhnymi nagruzkami ] // Theory and Practice of Calculation of Buildings, Structures and Structural Ele-ments. Analytical and numerical methods: Sat. report Int. scientific-practical. conf., dedicated 80th anniversary of the d.r. prof. D.N. Sobolev. Moscow, 16 Dec. 2014. M.: MGSU, 2014. S. 240-248.
Tyapin A.G. Application of the reciprocity theorem in the frequency range to determine the seismic load on a rigid foundation in dif-ficult soil conditions [Primeneniye teoremy vzaimnosti v chastotnom diapazone dlya opredeleniya sey-smicheskoy nagruzki na zhestkiy] / Part II: limit transitions and nu-merical implementation. Stroitelnaya mekhanika i raschet sooruzheniy. 2015. N 1. S. 46-52.
Zylev V.B. Reciprocity theorems in structural dynamics [Teoremy vzaimnosti v dinamike konstruktsiy] // Stroitel'naya mekhanika i raschet sooruzheniy. 2006. N 5. S. 10-15.
Zylev V.B. Reciprocity theorems for the dynamics of systems with damping [Teoremy vzaimnosti dlya dinamiki sistem s dempfirovaniyem] / Bulletin of the depart-ment of building sciences. Moscow-Orel-Kursk: RAASN, 2011. N 15. S. 86-92.
Ainola L.Ya. The reciprocity theorem for dynamic problems of the theory of elasticity [Teorema vzaimnosti dlya dinamicheskikh zadach teorii uprugosti] // Applied Mathe-matics and Mechanics. 1967. T. 31, Issue. 1. S. 176-177. DOI: https://doi.org/10.1016/0021-8928(67)90085-8
Kuznetsov E.N. Reciprocity relations for differential operators of the theory of elastici-ty [Sootnosheniya vzaimnosti dlya differentsial'nykh operatorov teorii upru-gosti] // Applied Mathematics and Mechan-ics. 1967. T. 31, Issue. 3. S. 500-502. DOI: https://doi.org/10.1016/0021-8928(67)90036-6
Rabinovich I.M. Reciprocity relations for non-linear elastic systems arising from the condition of conservatism [Sootnosheniya vzaimnosti dlya nelineyno-uprugikh sistem, vytekayushchiye iz usloviya konservativnosti] // Studies in the theory of structures. M.: Stroyiz-dat, 1974. Issue. 20. S. 3-11.
Methodology for nonlinear quantification of a flexible beam with a local, strong nonline-arity / C.A. Herrera, D.M. McFarland, L.A. Bergman, A.F. Vakakis // Journal of Sound and Vibration, 2017, Vol. 388. P. 298-314. doi.org/10.1016/j.jsv.2016.10.037 DOI: https://doi.org/10.1016/j.jsv.2016.10.037
Transient response of a gyro-elastic struc-tured medium: Unidirectional waveforms and cloaking / M. Garaua, M.J. Nieves, G. Carta, M. Brun // International Journal of Engineer-ing Science, 2019, Vol. 143. P. 115-141. www.elsevier.com/locate/ijengsci DOI: https://doi.org/10.1016/j.ijengsci.2019.05.007
Rayleigh waves in micro-structured elastic systems: Non-reciprocity and energy sym-metry breaking / M.J. Nieves, G. Carta, V. Pagneux, M. Brun // International Journal of Engineering Science, 2020, Vol. 156. 103365. doi.org/10.1016/j.ijengsci.2020.103365 DOI: https://doi.org/10.1016/j.ijengsci.2020.103365
Zhao Y., Zhou X., Huang G. Non-reciprocal Rayleigh waves in elastic gyroscopic medium // Journal of the Mechanics and Physics of Solids. 2020. Vol. 143. 104065. doi.org/10.1016/j.jmps.2020.104065 DOI: https://doi.org/10.1016/j.jmps.2020.104065
Blanchard A., Sapsis Th. P., Vakakis A.F. Non-reciprocity in nonlinear elastodynamics // Journal of Sound and Vibration. 2018. Vol. 412. P. 326-335. doi.org/10.1016/j.jsv.2017.09.039 DOI: https://doi.org/10.1016/j.jsv.2017.09.039
Potapov A.N., Reciprocity relations in dissi-pative systems [Sootnosheniya vzaimnosti v dissipativnykh sistemakh] // A.N. Potapov. – Izvestiya vuzov. Construction. Novosibirsk, 2001. № 11(515). С. 22-28.
Potapov A.N., Ufimtsev E.M. Reciprocal Relations in Oscillations of Dissipative Sys-tems // Procedia Engineering. 2015. Vol. 117. P. 296-303. DOI: https://doi.org/10.1016/j.proeng.2015.08.164
Potapov A.N. Dynamic analysis of discrete dissipative systems under nonstationary in-fluences [Dinamicheskij analiz diskretnyh dissipativnyh sistem pri nestacionarnyh vozdejstviyah] / A.N. Potapov. – Chelya-binsk: SUSU Publ., 2003. 167 p.