COMPUTER MODELING THE STRESS STATE OF OPERATING TANKS USING GEOMETRIC INTERPOLATORS

Main Article Content

Evgeniy Konopatskiy
https://orcid.org/0000-0003-4798-7458
Oksana Shevchuk
Andrey Bezditnyi

Abstract

On the example of modeling the stress state of cylindrical tanks for the storage of petroleum products with geometrical imperfections, a method for the numerical study of thin-walled shells of engineering structures is implemented. It includes the compilation and numerical solution of differential equations array, followed by interpolation of the results and determination of the displacements extreme values (or stresses) that occur in the reservoir from the action of a hydrostatic load, taking into account geometric and structural non-linearity. To implement the proposed method, the geometric theory of multidimensional interpolation and approximation is used, including a new way of processing the initial conditions of the differential equation. It consists in the parallel transfer of the numerical solution to the desired point, the coordinates of which correspond to the initial conditions. As a result, it was possible to achieve a significant increase in the speed of the numerical solution while maintaining an accuracy sufficient for engineering calculations.

Downloads

Download data is not yet available.

Article Details

How to Cite
Konopatskiy, E., Shevchuk, O., & Bezditnyi, A. (2023). COMPUTER MODELING THE STRESS STATE OF OPERATING TANKS USING GEOMETRIC INTERPOLATORS. International Journal for Computational Civil and Structural Engineering, 19(4), 69-82. https://doi.org/10.22337/2587-9618-2023-19-4-69-82
Section
Articles

References

Aleshina O.O., Ivanov V.N., Cajamarca-Zuniga D. Stress state analysis of an equal slope shell under uniformly distributed tangential load by different methods // Structural Mechanics of Engineering Constructions and Buildings. 2021. Vol. 17. No. 1. pp. 51-62. DOI: 10.22363/1815-5235-2021-17-1-51-62. DOI: https://doi.org/10.22363/1815-5235-2021-17-1-51-62

Maraveas C., Balokas G.A., Tsavdaridis K.D. Numerical evaluation on shell buckling of empty thin-walled steel tanks under wind load according to current american and european design codes // Thin-Walled Structures. 2015. Vol. 95. pp.152-160. DOI: 10.1016/j.tws.2015.07.007. DOI: https://doi.org/10.1016/j.tws.2015.07.007

Behaviour of vertical cylindrical tank with local wall imperfections / A. Šapalas, G. Šaučiuvėnas, K. Rasiulis [et al.] // Journal of Civil Engineering and Management. 2019. 25(3). pp. 287-296. DOI: 10.3846/jcem.2019.9629. DOI: https://doi.org/10.3846/jcem.2019.9629

Gorban N.N., Vasiliev G.G., Salnikov A.P. Accounting actual geometric shape of the tank shell when evaluating its fatigue life // Oil Industry. 2018. No. 8. pp. 75-79. DOI: 10.24887/0028-2448-2018-8-75-79. DOI: https://doi.org/10.24887/0028-2448-2018-8-75-79

Krysko A.A. Geometricheskoe i komp'yuternoe modelirovanie ekspluatiruemyh konstrukcij tonkostennyh obolochek inzhenernyh sooruzhenij s uchyotom nesovershenstv geometricheskoj formy [Geometric and computer modeling of operating structures of thin-walled shells of engineering structures with regard to geometric form imperfections] // Makeyevka: DONNACEA, 2016. 191 p. (In Russian).

Krysko A.A. Analiz napryazhenno-deformirovannogo sostoyaniya stenki rezervuara s geometricheskimi nesovershenstvami pri dejstvii gidrostaticheskoj nagruzki [Calculation of the intense deformed state of tank’swall under the action of the hydrostatic load in anonlinear setting with geometric imperfections] // Metallicheskie konstrukcii. 2017. Vol. 23. No. 3. pp. 97-106. (In Russian).

Krysko A.A. Chislennye issledovaniya mestnyh nesovershenstv geometricheskoj formy vertikal'nogo cilindricheskogo [Numerical studies of local defects in the geometric shape of a vertical cylindrical tank] // Stroitel' Donbassa. 2020. No. 1(10). pp. 13-17. (In Russian).

Lessig E.N., Lileev A.F., Sokolov A.G. Listovye metallicheskie konstrukcii [Sheet metal structures] // Moscow: Strojizdat, 1970. 488 p. (In Russian).

Timoshenko S.P., Vojnovskij-Kriger S. Plastinki i obolochki [Plates and shells] // Moscow: Nauka, 1966. 636 p. (In Russian).

About one method of numeral decision of differential equalizations in partials using geometric interpolants / E.V. Konopatskiy, O.S. Voronova, O.A. Shevchuk, A.A. Bezditnyi // CEUR Workshop Proceedings. 2020. Vol. 2763. pp. 213-219. DOI: 10.30987/conferencearticle_5fce27708eb353.92843700. DOI: https://doi.org/10.30987/conferencearticle_5fce27708eb353.92843700

Konopatskiy E.V., Bezditnyi A.A., Shevchuk O.A. Modeling geometric varieties with given differential characteristics and its application // CEUR Workshop Proceedings. 2020. Vol. 2744. DOI: 10.51130/graphicon-2020-2-4-31. DOI: https://doi.org/10.51130/graphicon-2020-2-4-31

Shamloofard M., Hosseinzadeh A., Movahhedy M.R. Development of a shell superelement for large deformation and free vibration analysis of composite spherical shells // Engineering with Computers. 2021. Vol. 37. No. 4. pp. 3551-3567. DOI: 10.1007/s00366-020-01015-w. DOI: https://doi.org/10.1007/s00366-020-01015-w

Hughes P.J., Kuether R.J. Nonlinear interface reduction for time-domain analysis of Hurty/Craig-Bampton superelements with frictional contact // Journal of Sound and Vibration. 2021. Vol. 507. DOI: 10.1016/j.jsv.2021.116154. DOI: https://doi.org/10.1016/j.jsv.2021.116154

Nielsen M.B., Sahin E. A simple procedure for embedding seismic loads in foundation superelements for combined wind, wave and seismic analysis of offshore wind turbine structures // Paper presented at the COMPDYN Proceedings. 2019. Vol. 3. pp. 4628-4640. DOI: 10.7712/120119.7255.19324. DOI: https://doi.org/10.7712/120119.7255.19324

Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling / N. Nguyen-Thanh, K. Zhou, X. Zhuang [et al.] // Computer Methods in Applied Mechanics and Engineering. 2017. Vol. 316. pp. 1157-1178. DOI: 10.1016/j.cma.2016.12.002. DOI: https://doi.org/10.1016/j.cma.2016.12.002

A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures / N. Vu-Bac, T.X. Duong, T. Lahmer [et al.] // Computer Methods in Applied Mechanics and Engineering. 2018. Vol. 331. pp. 427-455. DOI: 10.1016/j.cma.2017.09.034. DOI: https://doi.org/10.1016/j.cma.2017.09.034

An efficient isogeometric solid-shell formulation for geometrically nonlinear analysis of elastic shells / L. Leonetti, F. Liguori, D. Magisano, G. Garcea // Computer Methods in Applied Mechanics and Engineering. 2018. Vol. 331. pp. 159-183. DOI: 10.1016/j.cma.2017.11.025. DOI: https://doi.org/10.1016/j.cma.2017.11.025

Li W., Nguyen-Thanh N., Zhou K. Geometrically nonlinear analysis of thin-shell structures based on an isogeometric-meshfree coupling approach // Computer Methods in Applied Mechanics and Engineering. 2018. Vol. 336. pp. 111-134. DOI: 10.1016/j.cma.2018.02.018. DOI: https://doi.org/10.1016/j.cma.2018.02.018

Konopatskiy E.V., Bezditnyi A.A. Geometric modeling of multifactor processes and phenomena by the multidimensional parabolic interpolation method // Journal of Physics: Conf. Series 1441 (2020) 012063. DOI: 10.1088/1742-6596/1441/1/012063. DOI: https://doi.org/10.1088/1742-6596/1441/1/012063

Konopatskiy E.V., Bezditnyi A.A. Application of mixed geometric interpolants for modeling the strength characteristics of steel fiber concrete // Journal of Physics: Conf. Series 1546 (2020) 012037. DOI: 10.1088/1742-6596/1546/1/012037. DOI: https://doi.org/10.1088/1742-6596/1546/1/012037

An approach to comparing multidimensional geometric objects / I.V. Seleznev, E.V. Konopatskiy, O.S. Voronova [et al.] // Proc. of the 31st Int. Conf. on Computer Graphics and Vision (GraphiCon 2021), Nizhny Novgorod, September 27-30, 2021. Vol. 3027. pp. 682-688. DOI: 10.20948/graphicon-2021-3027-682-688. DOI: https://doi.org/10.20948/graphicon-2021-3027-682-688

Chepur P.V. Napryazhenno-deformirovannoe sostoyanie rezervuara pri razvitii neravnomernyh osadok ego osnovaniya [Stress-strain state of the tank during the development of non-uniform settlements of its base] // Moscow: RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2015. 181 p. (In Russian).

Konopatskiy E.V., Shevchuk O.A., Krysko A.A. Modeling of the Stress-Strain State of Steel Tank with Geometric Imperfections // Construction of Unique Buildings and Structures. 2022. 100 Article No 10001. DOI: 10.4123/CUBS.100.1. (In Russian). DOI: https://doi.org/10.30987/2658-6436-2022-2-61-71

Similar Articles

You may also start an advanced similarity search for this article.