APPLICATION OF THE STEEL-RUBBER VIBRATION ISOLA-TORS WITH PERFORATION FOR VIBRATION ISOLATION OF BUILDINGS
Main Article Content
Abstract
The article presents the derivation of a formula taking into account the coefficient of convexity under load, which takes into account the bulging of rubber along the edges of a steel-rubber vibration isolator. The article also provides a comparison for a vibration isolator with a hole and a vibration isolator without holes. It also presents a formula that allows taking into account the ambient temperature when calculating vibration isolators. Graphs of the dependence of the elastic modulus on temperature for a rubber-metal isolator with a hole are given.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Dashevskij M.A., Mondrus V.L., Moto-rin V.V. (2018) Koncepciya vibrozashchity zdanij i sooruzhenij v pole stroitel'nyh normativov [The concept of vibration pro-tection of buildings and structures in the field of building regulations] / / Academia. Arhitektura i stroitel'stvo. [Academia. Ar-chitecture and construction.]. №4. 109–115. (in Russian)
Simbirkin V.N., Panasenko YU.V., Kur-navin V.V. (2023) Sravnitel'nyj analiz pri-meneniya razlichnyh modelej dempfiro-vaniya pri raschete sejsmicheskoj reakcii sooruzhenij v PK STARK ES. [Analysis of Various Damping Models in The Simulation of the Seismic Response of Structures in the STARK ES Software] //ZHelezobetonnye konstrukcii. [Reinforced concrete structures] 2(2):58-64. https://doi.org/10.22227/2949-1622.2023.2.58-64 (in Russian)
D. J. Thompson and C. J. C. Jones (2000) A review of the modelling of wheel/rail noise generation / / Journal of Sound and Vibra-tion,vol. 231, no. 3. https://doi.org/10.1006/jsvi.1999.2542
J. Yao, R. Zhao, N. Zhang, and D. Yang (2019) Vibration isolation effect study of in-filled trench barriers to train-induced envi-ronmental vibrations / / Soil Dynamics and Earthquake Engineering, vol. 125 https://doi.org/10.1016/j.soildyn.2019.105741
Simbirkin V.N., Panasenko YU.V. (2019) Uchet ukazanij SP 14.13330.2018 pri realizacii rascheta sooruzhenij na sejsmicheskie vozdejstviya v programmnom komplekse STARK ES. [Implementation of seismic structural analysis in Stark ES soft-ware according to the building code SP 14.13330.2018] // Vestnik NIC «Stroitel'stvo» [Bulletin of Science and Re-search Center of Construction.]; 21(2):103-113. (in Russian)
Mondrus V.L., Sizov D.K., Kvasnikov T.M.(2023) Raschet rezinometallicheskih vibroizolyatorov s otverstiyami v sisteme vibrozashchity zdanij s pomoshch'yu programmnogo kompleksa, realizuyushchego metod konechnyh elementov [Finite Element Modelling of Rubber-Metal Vibration Isolators with Holes for the Vibration Protection System of Buildings]// ZHelezobetonnye konstrukcii. [Reinforced concrete structures]; 4(4):43-51. (In Russian) https://doi.org/10.22227/2949-1622.2023.4.43-51
Sizov D.K. (2024) Variacionno-raznostnyj metod rascheta sloistyh rezinometallicheskih vibroizolyatorov, primenyaemyh dlya zashchity zhelezobetonnyh zdanij ot tekhnogennoj vibracii. [Variation-Difference Method of Calculation of Layered Rubber-Metal Vibration Isolators Used for Protec-tion of Reinforced Concrete Buildings from Anthropogenic Vibration] // ZHelezobetonnye konstrukcii. [Reinforced concrete structures]. 5(1):68-78. (In Russian) https://doi.org/10.22227/2949-1622.2024.1.68-78
Dashevskij M.A., Mondrus V.L., Moto-rin V.V. (2017) Effektivnaya vibrozashchita verhnego stroeniya puti metropolitena [Ef-fective vibration protection of the super-structure of the subway track]/ / Academia. Arhitektura i stroitel'stvo. [Academia. Ar-chitecture and construction.]. №4.
C. Qingqing, G. Keqin. (2010) Technical and economic analysis of seismic isolation structure // Building structure, 2010.
S. Jiang, S. Yaoand D. Liu (2021) Economic performance analysis of seismic isolation, energy dissipation, and traditional seismic structures // E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202124801032
L. Chen, G.-T. Yang, and Z.-Z. Huang (2011) Constitutive equations of incom-pressible nonlinear super-elastic material. Transaction of Beijing Institute of Technol-ogy, vol. 31, no. 1, pp. 30–34.
Y. Q. Li and X.-L. Gao (2019), Constitutive equations for hyperelastic materials based on the upper triangular decomposition of the deformation gradient, Mathematics and Me-chanics of Solids, vol. 24, no. 6, pp. 1785–1799. doi:10.1177/1081286518806950
Ogden, R., Saccomandi, G. & Sgura, I. (2004) Fitting hyperelastic models to exper-imental data. // Computational Mechanics 34, 484–502. https://doi.org/10.1007/s00466-004-0593-y
Destrade, M., Saccomandi, G., & Sgura, I. (2016). Methodical fitting for mathematical models of rubber-like materials. // Proceed-ings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473.
Cheremisinoff, N.P., & Cheremisinoff, P.N. (1993). Elastomer Technology Handbook (1st ed.). CRC Press. https://doi.org/10.1201/9780138758851
Dickens, John D. (1998) Dynamic character-isation of vibration isolators (PhD Thesis), Sydney: UNSW Canberra. https://doi.org/10.26190/unsworks/18020
Hwang, J.S., & Hsu, T. (2001). A fractional derivative model to include effect of ambi-ent temperature on HDR bearings. Engineer-ing Structures, 23, 484-490. DOI:10.1016/S0141-0296(00)00063-8
Hou J. F., Bai H. B., Li D. W. Test research of damping performance of metal rubber damper at high-low temperature. // Journal of Aeronautical Materials, Vol. 26, Issue 7, 2006, p. 50-55
M. Gajewski, R. Szczerba, and S. Jemioło, (2015) Modelling of elastomeric bearings with application of Yeoh hyperelastic mate-rial model, Procedia Engineering, vol. 111, pp. 220–227. https://doi.org/10.1016/j.proeng.2015.07.080
M. Gajewski (2018) Estimation of the ener-gy dissipation capability for chosen elasto-mers with application of DMA, Polymer Testing, vol. 68, pp. 405–414. https://doi.org/10.1016/j.polymertesting.2018.04.037
D. Cardone and G. Gesualdi (2012) Experi-mental evaluation of the mechanical behav-ior of elastomeric materials for seismic ap-plications at different air temperatures, In-ternational Journal of Mechanical Sciences, vol. 64, no. 1, pp. 127–143, https://doi.org/10.1016/j.ijmecsci.2012.07.008
A. Stevenson (1983), The influence of low-temperature crystallization on the tensile elastic modulus of natural rubber, Journal of Polymer Science: Polymer Physics Edition, vol. 21, no. 4, pp. 553–572, https://doi.org/10.1002/pol.1983.180210406
P. Spanos (2003) Cure system effect on low temperature dynamic shear modulus of natu-ral rubber, Rubber World, vol. 229, no. 2, pp. 22–27, 2003
T. L. Yu, D. Y. Yuan, and X. L. Sun, (2012) The finished product of rubber bearing me-chanical performance analysis in the low temperature, Applied Mechanics and Mate-rials, vol. 178–181, pp. 2254–2259. https://doi.org/10.4028/www.scientific.net/AMM.178-181.2254
L. Kari (2002), The non-linear temperature dependent stiffness of precompressed rubber cylinders, KGK-Kautschuk und Gummi Kunststo2e, vol. 55, no. 3, pp. 76–81.
Zaborov V. I., Klyachko P. N., Rosin G. S. (1976) Zashchita ot shuma i vibracii v chernoj metallurgii [Protection against noise and vibration in ferrous metallurgy], Metallurgiya [Metallurgy] (in Russian)
Xu, Chuanbo, Chi, Mao-Ru, Dai, Liangcheng, Guo, Zhaotuan, (2020) Calcu-lation of Nonlinear Stiffness of Rubber Pad under Different Temperatures and Prepressures, Shock and Vibration, 2020, 8140782, 10 pages, 2020. https://doi.org/10.1155/2020/8140782
D. Cheng, Mechanical Design Manual, Chemical Industry Press, Beijing, China, 2008, Fifth edition. (in Chinese)
Y. Lu, L. Guo, Z. Deng, and Y. Wang (2016) Temperature-dependent tensile be-havior of silicon rubber using automated grid method, Polymeric Materials Science and Engineering, vol. 32, no. 2, pp. 104–108, doi:10.16865/j.cnki.1000-7555.2016.02.019
S.L. Burtscher a, A. Dorfmann. (2004) Compression and shear tests of anisotropic high damping rubber bearings Engineering Structures, Volume 26, Issue 13 https://doi.org/10.1016/j.engstruct.2004.07.014.
T. Sheng, G. Liu, X. Bian, W. Shi, Y. Chen, (2022) Development of a three-directional vibration isolator for buildings subject to metro- and earthquake-induced vibrations / / Engineering Structures, https://doi.org/10.1016/j.engstruct.2021.113576