THE CONCEPT OF REPRESENTATION OF GEOMETRIC SOLIDS IN BUILDING INFORMATION MODELING

Main Article Content

Evgeniy Konopatskiy
Maxim Bezsolnov

Abstract

The problem of using the boundary model of geometric solids representation in BIM is formulated. A new concept of solid geometric modeling is presented, which allows to define geometric solids as a selected part of space, according to which geometric solids are represented by an organized set of points by analogy with other geometric objects. The mathematical apparatus “Point Calculus” is used for analytical description of geometric solids. Examples of modeling geometric solids in point calculus are given. The advantages of this approach are the possibility of representation of geometric information in BIM in compact vector form and realization of parallel calculations at the level of mathematical apparatus. The prospect of further research is the use of the proposed concept for the representation of various elements of building structures with the subsequent optimization of the representation of geometric objects in the IFC format. This will significantly reduce the volume required for the transfer of geometric information between the systems of information modeling and computer-aided design, increase their performance and radically solve the problem of interoperability of existing BIM software packages. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Konopatskiy, E., & Bezsolnov, M. (2025). THE CONCEPT OF REPRESENTATION OF GEOMETRIC SOLIDS IN BUILDING INFORMATION MODELING. International Journal for Computational Civil and Structural Engineering, 21(1), 28-38. https://doi.org/10.22337/2587-9618-2025-21-1-28-38
Section
Articles

References

Kulakova I.V., Borzenko A.E. Granichnoe predstavlenie modelej (metod B-REP v paketah SAPR) [Boundary representation of models (B-REP method in CAD packages)] // Informacionnye tekhnologii v konstruirovanii ES: Mezhvuzovskij sbornik nauchnyh trudov. Ryazan': IP Konyahin A.V. (Book Jet), 2023. pp. 139-143. (In Russian).

Hu Z., Zhang J., Zhang X. Construction collision detection for site entities based on 4-D space-time model // Qinghua Daxue Xuebao (Ziran Kexue Ban). 2010. Vol. 50, No. 6. pp. 820-825.

Zou Q., Feng H.Yu. A robust direct modeling method for quadric B-rep models based on geometry–topology inconsistency tracking // Engineering with Computers. 2022. Vol. 38, No. 4. pp. 3815-3830. DOI: 10.1007/s00366-021-01416-5.

Teschemacher T., Bauer A. M., Oberbichler T., Breitenberger M., Rossi R., Wüchner R., Bletzinger K.U. Realization of CAD-integrated shell simulation based on isogeometric B-Rep analysis // Advanced Modeling and Simulation in Engineering Sciences. 2018. Vol. 5, No. 1. pp. 1-54. DOI: 10.1186/s40323-018-0109-4.

Luo Yu.T., Du H., Yan Yi.M. MeshCNN-based BREP to CSG conversion algorithm for 3D CAD models and its application // Nuclear Science and Techniques. 2022. Vol. 33, No. 6. pp. 74. DOI: 10.1007/s41365-022-01063-5.

Rossignac Ja. {IBNC}: Integrated Boundary and Natural {CSG} for Polyhedra (Review, Simplifications, and Integration of Prior Art) // Computer-Aided Design. 2022. Vol. 150. pp. 103296. DOI: 10.1016/j.cad.2022.103296.

Friedrich M., Illium S., Linnhoff-Popien C., Fayolle P.A. CSG Tree Extraction from 3D Point Clouds and Meshes Using a Hybrid Approach // Communications in Computer and Information Science. 2022. Vol. 1474. pp. 53-79. DOI: 10.1007/978-3-030-94893-1_3.

IfcGeometricConstraintResource. URL: https://standards.buildingsmart.org/IFC/RELEASE/IFC4_3/HTML/ifcgeometricconstraintresource/content.html (date access: 18.07.2024).

National standard 10.0.02-2019/ISO 16739-1:2018 «System of standards for information modeling of buildings and structures». URL: https://docs.cntd.ru/document/1200164870 (date access: 03.03.2024). (In Russian).

Fedorova N., Medyankin M., Moskovtseva V., Eniutina M., Quoc P.D. Methodology for Modeling the Survivability of Multi-story Building Frames with Complex Stress Reinforced Concrete Elements // International Scientific Siberian Transport Forum TransSiberia-2021. Vol. 2, Novosibirsk, May 11-14, 2021. – Novosibirsk: Springer Nature, 2022. pp. 1257-1266. DOI: 10.1007/978-3-030-96383-5_140.

Klochkov Y.V., Vakhnina O.V., Sobolevskaya T.A., Nikolaev A.P., Fomin S.D., Klochkov M.Y. A finite elemental algorithm for calculating the arbitrarily loaded shell using three-dimensional finite elements // ARPN Journal of Engineering and Applied Sciences. 2020. Vol. 15, No. 13. pp. 1472-1481.

Buzalo N., Gontarenko I., Chernykhovskiy B., Alekseeva A. Numerical Simulation of Steel Columns of Industrial Buildings with Local Mechanical Damage During Explotation // Lecture Notes in Civil Engineering. 2022. Vol. 182. pp. 349-356. DOI: 10.1007/978-3-030-85236-8_32.

Tolok A.V., Tolok N.B. Constructing the functional voxel model for terrain on the basis of bilinear interpolation of triangulated network // Advances in Intelligent Systems and Computing. 2020. Vol. 1226. pp. 340-347. DOI: 10.1007/978-3-030-51974-2_33.

Cai H., Chen Y., Xu L., Zhang C., Elbaz K. Intelligent building system for 3D construction of complex brick models // IEEE Access. 2020. Vol. 8. pp. 182506-182516. DOI: 10.1109/ACCESS.2020.3027807.

Ridzuan N., Ujang U., Azri S., Mohamad Yusoff I., Choon T.L. Voxelization techniques: data segmentation and data modelling for 3D building models // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2022. Vol. XLVIII-4/W3-2022. pp. 149-155. DOI: 10.5194/isprs-archives-xlviii-4-w3-2022-149-2022.

Konopatskiy E.V., Bezditnyi A.A., Lagunova M.V., Naidysh A.V. Principles of solid modelling in point calculus // Journal of Physics: Conference Series: 5, Omsk, 16–17 марта 2021 года. Omsk, 2021. pp. 012063. DOI: 10.1088/1742-6596/1901/1/012063.

Konopatskiy E.V., Bezditnyi A.A. Solid modeling of geometric objects in point calculus. Proceedings of the 31st International Conference on Computer Graphics and Vision (GraphiCon 2021). Nizhny Novgorod, Russia, September 27-30, 2021. Vol. 3027. pp. 666-672. DOI: 10.20948/graphicon-2021-3027-666-672.

Konopatskiy E.V., Bezditnyi A.A. The Problem of Visualizing Solid Models as a Three-Parameter Point Set // Scientific Visualization, 2022. Vol. 14. No. 2. pp. 49-61. DOI: 10.26583/sv.14.2.05.

Golovanov N.N. Geometricheskoe modelirovanie [Geometric modeling] // Moskva: KURS: INFRA-M, 2019. 400 p. (In Russian).

Ausheev T.V., Bulychev R.N. Modelirovanie parametricheskih racional'nyh tel s ispol'zovaniem obobshchennoj interpolyacii Bez'e [Modeling of parametric rational bodies using generalized bezier interpolation] // Vestnik Buryatskogo gosudarstvennogo universiteta. Matematika, informatika. 2018. № 1. С. 83-94. DOI: 10.18101/2304-5728-2018-1-83-94. (In Russian).

Ayusheev T.V., Bulychev R.N., Rakshaeva O.D. Postroenie trekhparametricheskih tel s vyrozhdennymi granichnymi poverhnostyami [Construction of three-parameter bodies with degenerate boundary surfaces] // Prikladnaya matematika i fundamental'naya informatika. 2019. Vol. 6, No. 4. pp. 4-17. DOI: 10.25206/2311-4908-2019-6-4-4-17. (In Russian).

Ayusheev T.V., Damdinova T.Ts., Balzhinimaeva S.M. Modelirovanie tel s ellipsoidnymi porami v vektorno-parametricheskom predstavlenii [Modeling of solids with ellipsoidal pores in vector-parametric representation] // Dinamika sistem, mekhanizmov i mashin. 2023. Vol. 11, No. 2. pp. 2-7. DOI: 10.25206/2310-9793-2023-11-2-2-7. (In Russian).

Konopatskiy E.V., Bezditnyi A.A. Geometric modeling of multifactor processes and phenomena by the multidimensional parabolic interpolation method // Journal of Physics: Conference Series: XIII International Scientific and Technical Conference "Applied Mechanics and Systems Dynamics", Omsk, 05–07 November 2019. Vol. 1441. Omsk: Institute of Physics Publishing, 2020. pp. 012063. DOI: 10.1088/1742-6596/1441/1/012063.

Shchurova E.I. Voxel and Finite Element Modeling of Twist Drill // Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019). Sochi, Russia, 25-29 March 2019. Springer International Publishing, Switzerland AG, 2020. pp. 181-190. DOI: 10.1007/978-3-030-22063-1_20.

Benergy P., Butterfield R. Metody granichnyh elementov v prikladnyh naukah [Boundary element methods in applied sciences]. Per. A.F. Zazovskogo i dr. // Moskva: Mir, 1984. 494 p. (In Russian).

Similar Articles

You may also start an advanced similarity search for this article.