LONGITUDINAL DEFORMATIONS OF SHORTENING OF STEEL-REINFORCED CONCRETE STRUCTURES UNDER COMPRESSION FROM SHORT-TERM LOADS
Main Article Content
Abstract
Determination and investigation of longitudinal deformations of shortening of steel-reinforced concrete structures is an important step in the calculation of complex spatial schemes of buildings. Ignoring these deformations can make it difficult to operate the facility and, in some cases, lead to the failure of adjacent structures. The study of longitudinal deformations of shortening of steel-reinforced concrete structures has not been given due attention before.
The longitudinal deformations of shortening for steel-reinforced concrete compressed elements using a large range of heavy concretes (from B25 to B80) and percentages of reinforcement (from 0 to 22%) are estimated. The deformations were calculated. The analysis of experimental data obtained during testing of conditionally centrally compressed models of columns of steel-reinforced concrete structures is presented. It is shown that the existing diagrams of concrete work do not accurately describe the work of a composite steel-reinforced concrete structure, it is its shortening and reduced rigidity. When the structure is compressed, concrete loses its destruction at earlier stages of loading than it would be for concrete or reinforced concrete. This fact is caused by the stress-strain state of the concrete section separated by steel elements, as well as the effects of early detachment and slippage along the «steel-concrete» contact surface. It is necessary to use a system of additional coefficients to eliminate the established discrepancy in determining the magnitude of longitudinal deformation (shortening) under the action of short-term loads and experimentally obtained data. These coefficients should increase the theoretical value of the expected relative deformations and consider the features of the work of conventional and high-strength concrete as part of compressible steel-reinforced concrete structures. When determining the stiffness values for steel-reinforced concrete structures under the action of short-term loads and bringing the calculated longitudinal stiffness to a value close to experimental data, it is proposed to introduce an additional coefficient. This coefficient further reduces the longitudinal rigidity of the structure depending on the stress level in concrete and steel.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
ANSI/AISC 360-16 An American National Standard. Specification for Structural Steel Buldings. (2016) Chicago: American Institute of Steel Construction. 676 p.
Griffis, L.G. (1993) Serviceability Limit States Under Wind Load. Engineering Journal. Ameri-can Institute of Steel Construction. Q1. pp. 1-16.
Travush V.I., Konin D.V., Rozhkova L.S., Krylov A.S., Kaprielov S.S., Chilin I.A., Fimkin A.I (2016) Eksperimental'nye issledovaniya stalezhelezobetonnyh konstrukcij, rabotayushchih na vnecentrennoe szhatie [Ex-perimental studies of steel-reinforced concrete structures operating on off-center compression]. Academia. Architecture and construction, no 3, pp. 127-135.
Travush V.I., Kaprielov S.S., Konin D.V., Krylov A.S., Kashevarova G.G., Chilin I.A (2016) Opredelenie nesushchej sposobnosti na sdvig kontaktnoj poverhnosti «stal'-beton» v stalezhelezobetonnyh konstrukciyah dlya betonov razlichnoj prochnosti na szhatie i fibrobetona [Determination of the bearing ca-pacity for shear of the contact surface "steel-concrete" in steel-reinforced concrete structures for concretes of various compressive strength and fiber concrete]. Construction and recon-struction, no 4 (66), pp. 45-55.
Desyatkin M.A., Konin D.V., Martirosyan A.S., Travush V.I (2015) Raschet stalezhelezobetonnoj kolonny vysotnogo doma na kosoe vnecentrennoe szhatie [Calculation of a steel-reinforced column of a high-rise building for oblique off-center compression] Housing construction, no 5, pp. 92-95.
Travush V.I., Rozhkova L.S., Krylov A.S. (2016) Otechestvennyj i zarubezhnyj opyt issledovanij raboty stalezhelezobetonnyh konstrukcij na vnecentrennoe szhatie [Domestic and foreign experience in researching the opera-tion of steel-reinforced concrete structures for non-central compression] Construction and re-construction, no 5, pp. 31-44.
Mukhamediev T.A., Starchikova O.I. (2016) Raschet prochnosti stalezhelezobetonnyh kolonn s ispol'zovaniem deformacionnoj modeli [Calculation of the strength of steel-reinforced concrete columns using a deformation model] Concrete and reinforced concrete, no 4, pp. 18-21.
Karpenko N.I. (1996) Obshchie modeli mekhaniki zhelezobetona [General models of reinforced concrete mechanics] Moscow: Stroyizdat, 416 p. (In Russian)
Murashkin G.V., Murashkin V.G. (1997) Modelirovanie diagrammy deformirovaniya betona i skhemy napryazhenno-deformirovannogo sostoyaniya [Modeling of the deformation diagram of concrete and the scheme of the stress-strain state] Izvestiya vysshih uchebnyh zavedenij. Stroitel'stvo, no 10, pp. 4-6.
Mordovsky S.S., Murashkin V.G. (2012) Napryazhyonnoe sostoyanie eksperimental'nyh obrazcov pri vnecentrennom nagruzhenii [The stressed state of experimental samples under extreme loading]. Sovremennye problemy nauki i obrazovaniya, no 4. Available at: http://science-education.ru/ru/article/view?id=6794 (accessed 03 January 2018).
Karpenko N.I., Sokolov B.S., Radaykin O.V. (2013) K raschyotu prochnosti, zhyostkosti i treshchinostojkosti vnecentrenno szhatyh zhelezobetonnyh elementov s primeneniem nelinejnoj deformacionnoj modeli [On the cal-culation of strength, stiffness and crack re-sistance of non-centrally compressed reinforced concrete elements using a nonlinear deformation model]. Izvestiya Kazanskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta, no 4(26), pp. 113-120.
Karpenko N.I., Karpenko S.N. (2012) O diagrammnoj metodike rascheta deformacij sterzhnevyh elementov i ee chastnyh sluchayah [On the diagrammatic methodology for calculat-ing deformations of rod elements and its special cases] Concrete and iron-concrete, no 6, pp. 20-27.
Arleninov P.D. (2016) Deformation and stability of compressed and non-centrally compressed core reinforced concrete elements, taking into account creep and cracking (PhD thesis), Mos-cow, JSC "SIC "Construction" (NIIZHB named after A.A. Gvozdev). – 143 p. (In Russian)
Krylov S.B. (2012) Kriticheskaya sila dlya zhelezobetonnyh sterzhnevyh elementov [Criti-cal force for reinforced concrete core elements] Academia. Architecture and Construction, no 2, pp. 136-138.
Arleninov P.D. (2015) Analiz razlichnyh metodik sozdaniya raschetnyh skhem pri komp'yuternom modelirovanii nesushchih konstrukcij [Analysis of various methods for creating computational schemes for computer modeling of load-bearing structures] BST: Byulleten' stroitel'noj tekhniki, no 5(969), pp.58-59.
Karpenko N.I., Sokolov B.S., Radaykin O.V. (2013) Analiz i sovershenstvovanie krivolinejnyh diagramm deformirovaniya betona dlya rascheta zhelezobetonnyh konstrukcij po deformacionnoj modeli [Analysis and improvement of curvilinear diagrams of concrete deformation for the calculation of reinforced concrete structures according to the deformation model] Industrial and civil construction, no.1, pp.28-30.
Bezgodov, I., Kaprielov, S., & Sheynfeld, A. (2022) Relationship between strength and de-formation characteristics of high-strength self-compacting concrete. International Journal for Computational Civil and Structural Engineering, no 18(2), pp. 175–183.
Kaprielov, S., Sheinfeld, A., Selyutin, N. (2022) Control of heavy concrete characteristics affect-ing structural stiffness. International Journal for Computational Civil and Structural Engineering, no18(1), pp. 24–39.
Chiorino M.A., Carreira J. (2012) Factors Af-fecting Creep and Shrinkage of Hardened Con-crete and Guide for Modelling. The Indian Con-crete Journal, no 12(86), pp.11-24.
Guilin Zhang, Pang Chen, Xiaoyu Si, Jingde Wang, Yang Han (2022) Research on Shrinkage and Shrinkage Models of Reinforced Concrete Specimens. The Open Civil Engineering Journal, no 16(1), pp. 1-10.
Darko Nakov (2024) Early-age thermal and shrinkage cracking in reinforced concrete struc-tures. Proceedings of the Contemporary Civil Engineering Practice 2024, June 2024, Ruma, Serbia, рр. 40-51.
СПИСОК ЛИТЕРАТУРЫ
ANSI/AISC 360-16 An American National Standard. Specification for Structural Steel Buldings. – Chicago: American Institute of Steel Construction. 2016. 676 p.
Griffis, L.G. Serviceability Limit States Under Wind Load // Engineering Journal. American Institute Of Steel Construction, 1993, Q1. pp. 1-16.
Травуш В.И., Конин Д.В., Рожкова Л.С., Крылов А.С., Каприелов С.С., Чилин И.А., Фимкин А.И. Экспериментальные исследо-вания сталежелезобетонных конструкций, работающих на внецентренное сжатие // Academia. Архитектура и строительство. 2016, № 3, С. 127-135.
Травуш В.И., Каприелов С.С., Конин Д.В., Крылов А.С., Кашеварова Г.Г., Чилин И.А. Определение несущей способности на сдвиг контактной поверхности «сталь-бетон» в сталежелезобетонных конструкциях для бе-тонов различной прочности на сжатие и фибробетона // Строительство и реконструк-ция, 2016, №4 (66), С. 45-55.
Десяткин М.А., Конин Д.В., Мартиросян А.С., Травуш В.И. Расчет сталежелезобетон-ной колонны высотного дома на косое вне-центренное сжатие // Жилищное строитель-ство, 2015, № 5, С. 92-95.
Травуш В.И., Рожкова Л.С., Крылов А.С. Отечественный и зарубежный опыт исследо-ваний работы сталежелезобетонных конст-рукций на внецентренное сжатие // Строи-тельство и реконструкция, 2016, №5, С. 31-44.
Мухамедиев Т.А., Старчикова О.И. Расчет прочности сталежелезобетонных колонн с использованием деформационной модели // Бетон и железобетон, 2006, №4, С. 18-21.
Карпенко Н.И. Общие модели механики же-лезобетона. – М.: Стройиздат, 1996. – 416 с.
Мурашкин Г.В., Мурашкин В.Г. Моделиро-вание диаграммы деформирования бетона и схемы напряженно-деформированного со-стояния // Известия высших учебных заведе-ний. Строительство, 1997, №10, С. 4-6.
Мордовский С.С., Мурашкин В.Г. Напря-жённое состояние экспериментальных об-разцов при внецентренном нагружении // Современные проблемы науки и образова-ния, 2012, № 4. URL: http://science-education.ru/ru/article/view?id=6794 (дата об-ращения: 01.03.2018).
Карпенко Н.И., Соколов Б.С., Радайкин О.В. К расчёту прочности, жёсткости и трещино-стойкости внецентренно сжатых железобе-тонных элементов с применением нелиней-ной деформационной модели // Известия Ка-занского государственного архитектурно-строительного университета, 2013, №4(26), С. 113-120.
Карпенко Н.И., Карпенко С.Н. О диаграмм-ной методике расчета деформаций стержне-вых элементов и ее частных случаях // Бетон и железобетон, 2012, №6, С. 20-27.
Арленинов П.Д. Деформирование и устойчивость сжатых и внецентренно сжатых стержневых железобетонных элементов с учетом ползучести и трещинообразования – Кандидатская диссертация, АО «НИЦ «Строительство» (НИИЖБ им. А.А. Гвоздева), 2016, С. 143.
Крылов С.Б. Критическая сила для железо-бетонных стержневых элементов // Academia. Архитектура и строительство, 2012, №2, С. 136-138.
Арленинов П.Д. Анализ различных методик создания расчетных схем при компьютерном моделировании несущих конструкций // БСТ: Бюллетень строительной техники, №5(969), 2015, С.58-59.
Карпенко Н.И., Соколов Б.С., Радайкин О.В. Анализ и совершенствование криволиней-ных диаграмм деформирования бетона для расчета железобетонных конструкций по де-формационной модели // Промышленное и гражданское строительство, 2013, №1, С.28-30.
Bezgodov, I., Kaprielov, S., & Sheynfeld, A. Relationship between strength and deformation characteristics of high-strength self-compacting concrete // International Journal for Computa-tional Civil and Structural Engineering, 2022, №18(2), pp. 175–183.
Kaprielov, S., Sheinfeld, A., Selyutin, N. Con-trol of heavy concrete characteristics affecting structural stiffness // International Journal for Computational Civil and Structural Engineering, 2022, №18(1), pp. 24–39.
Chiorino M.A., Carreira J. Factors Affecting Creep and Shrinkage of Hardened Concrete and Guide for Modelling // The Indian Concrete Journal, 2012, № 12(86), pp. 11-24.
Guilin Zhang, Pang Chen, Xiaoyu Si, Jingde Wang, Yang Han. Research on Shrinkage and Shrinkage Models of Reinforced Concrete Spec-imens // The Open Civil Engineering Journal, 2022, no 16(1), pp. 1-10.
Darko Nakov. Prsline usled rane termičke kontrakcije i skupljanja u armirano-betonskimkonstrukcijama // Proceedings of the Contemporary Civil Engineering Practice 2024, 2024, Ruma, Serbia, рр. 40-51.