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Abstract: In this paper, the problem of numerical dynamic calculation of a beam made of composite material 
with a developed internal structure is considered.  The elastic properties are assumed to be nonlocal in time. A 
short review of the existing methods for mathematical modeling of the dynamic behavior of elements with a 
developed internal structure was carried out. A non-local in time model of dynamic deformation of a bending 
beam is constructed. Since the finite element analysis (FEA) is the most demanded numerical method for 
mechanical systems analysis, a non-local dynamic deformation model is integrated into the algorithm of this 
method. The equilibrium equation of the structure in motion is solved by an explicit scheme. The damping 
matrix is obtained from the condition of stationarity of the total deformation energy of a moving mechanical 
system. A one-dimensional non-local in time model was implemented in the MATLAB software package.  
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INTRODUCTION 
 
The development of construction technologies 
and the gradual implementation of new 
composite and nano-materials with 

"controllable" physical characteristics in 
construction require the creation of appropriate 
mathematical models that allow to reliably 
describe the behavior of such materials, in 
particular under the dynamic load. 
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Generally, in order to obtain sufficient accuracy of 
the numerical calculation, three-dimensional finite 
element models are used to take into account the 
orthotropic properties of the material. However, 
these models are resource-intensive and difficult 
to form and analyze. For instance, as a result of 
computation, only the fields of the stress-strain 
state in elements and their nodes can be obtained 
as a result of 3D finite element modelling, which 
is not always sufficient for engineering analysis of 
the calculation results. As an alternative to 3D 
modeling the one dimensional elements can be 
used, constructed using reasonable mathematical 
hypotheses that allow to describe the characteristic 
properties of the material. The special hypotheses 
turn out to be necessary, since the frequently used 
classical viscoelastic models proposed in the 
works of W. Kelvin [1], J. Maxwell [2], J. 
Rayleigh [3], Voigt [4] no longer allow accurately 
model the behavior of materials with a complex 
internal structure. 
To simulate the dynamic behavior of structural 
elements made of composite materials, models 
based on the principles of non-local mechanics 
are applicable. Such models may include the 
models proposed in the works of A. Eringen and 
D. Edelen [5], D. Russell [6], Banks and Inman. 
[7], Lei [8] and V. D. Potapov [9]. 
 
 
NON-LOCAL DAMPING MODELS 
 
A wide class of non-local models applicable to 
describe the dynamic behavior of composite 
materials are non-local damping models. 
In the article [8] Y. Lei proposed a non-local 
damping model that takes into account the effects 
of time and spatial hysteresis. This model is used 
for dynamic analysis of structures consisting of 
Euler–Bernoulli beams and Kirchhoff plates. 
Unlike classic local damping models, the damping 
force in the non-local model is defined as a 
weighted average of the velocity field in the 
spatial domain determined by a kernel function 
based on distance measures. Also, the resulting 
equation of motion for beam or plate structures is 
a partial integro-differential equation, in contrast 

to the partial differential equation for the local 
damping model. Approximate solutions for 
complex eigenvalues and modes with nonlocal 
damping are obtained using the Galerkin method. 
Numerical examples demonstrate the 
effectiveness of the proposed method for beam 
and plate structures with simple boundary 
conditions, for non-local and inviscid damping 
models and various core functions. 
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The equation of motion in this case is expressed 
as the following integro-differential equation in 
partial derivatives 
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Another solution of the problem of non-local 
damping was proposed in the article by          
Banks H.T., Inman D.J. [7], where various 
damping mechanisms are considered for a quasi-
isotropic pultruded composite beam. The 
approach used here is physical. The partial 
differential equation describes the transverse 
vibrations of a beam with a mass at the free end. 
All damping mechanisms considered in the article 
have an explicit physical basis, in contrast to the 
usual modal model. Four possible damping 
mechanisms are considered: one external and 
three internal. These include: viscous damping (air 
damping); internal damping depending on strain 
rates; spatial hysteresis; and time hysteresis. In 
addition, various combinations of these 
mechanisms are considered. 
These physical damping models are incorporated 
into the Euler-Bernoulli beam equation, with 
boundary conditions carefully formulated to be 
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compatible with different damping models. The 
resulting partial differential equation (in case of 
decaying time hysteresis) is approximated using 
cubic splines. Time histories of the measured 
experimental responses are then used to estimate 
the parameters of the models corresponding to the 
data using the method of least squares. The 
resulting least squares evaluations of various 
damping parameters are then used in a partial 
(integro-partial) differential equation for numerical 
simulation of the system response. This 
numerically generated time response of the system 
being evaluated is then compared with the actual 
data obtained experimentally. These comparisons 
allow several conclusions to be drawn regarding 
the physical damping mechanisms present in a 
composite beam. In particular, it is shown that the 
spatial hysteresis model in combination with the 
external damping model leads to the best fit to the 
experimental data. The article also notes that the 
proposed damping models cannot be successfully 
built using standard damping coefficients in 
fractions of the critical, since the traditional 
approach to modal analysis completely masks the 
physics of damping mechanisms. 
The solution for the non-local in space model of 
damping was made in the article [10]. It is shown 
that calibrated nonlocal model applied to one-
dimensional beam adequately approximate the 
results of the 3D numerical simulation. An 
alternative model with damping non-local in time 
was shown in the article [11]. In comparison to the 
model from [10] the nonlocal in time model is 
integrated into the FEA algorithm. 
 
 
MODELS OF ELASTIC MATERIAL 
PROPERTIES NON-LOCAL IN SPACE 
 
Historically, one of the first models of an elastic 
medium that cannot be described within the 
framework of the classical theory of elasticity is 
the Cosserat continuum (1909). However, for a 
long time the work of F. Cosserat remained 
unnoticed, and only starting from about 1958-60 
rr. generalized models of the Cosserat continuum 
began to be intensively developed. the theory of 

oriented media, asymmetric, moment, multipolar, 
micromorphic, etc. theories of elasticity have 
arisen. The equations of motion for the Cosserat 
model coincide with the equations of motion for a 
diatomic chain, and, therefore, in the (x, t)-
representation they have the form 
 

+ =  
(4) 

+ =  
 
here u is the transverse displacement, n is the 
microrotation,  is the density of the 
corresponding micromoments, l is the density of 
the moments of inertia of the particles. The 
remaining quantities have the same meaning as 
in the case of a diatomic chain 
Early ideas of non-local elasticity go back to the 
pioneering work of Kroner [12], Kunin [13], 
Krumhansl [14]. Improved formulations were 
then presented in Edelen and Laws [15] and 
Eringen [16, 17, 18]. Eringen model of a 
nonlocal elasticity is constructed by integration 
of an integral member to the Hook`s law: 
 

( , ) = (| `|) ( `) `, (5) 

 
The stress field at a point x in an elastic continuum 
not only depends on the strain field at the point but 
also on strains at all other points of the body. 
The Eringen model of non-local elastic material 
was further developed in works of A.A. Pisano 
[19]. The article solved the problem of stretching 
of a bar of finite length, to both ends of which 
longitudinal forces are applied. This integral-type 
relation contains a non-local damping function 
designed to capture the process of diffusion of 
non-local effects. This article is devoted to finding 
an exact solution to a simple mechanical problem. 
The solution of this problem is obtained through 
the transformation of the second kind Fredholm 
integral equation, which determines the problem, 
into two second kind Volterra integral equations. 
As a result, an exact solution in terms of strains 
for a non-local elastic rod is obtained. 
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The article [9] of V.D. Potapov is devoted to the 
study of the stability of an infinitely long rod lying 
on an elastic foundation and under the action of a 
constant or periodically changing longitudinal 
force. The rod material used in the calculations is 
characterized by non-local viscoelastic properties. 
The influence of the parameters characterizing the 
nonlocality of the viscoelastic properties of the 
material, as well as the parameters of the load on 
the buckling and stability of the rod, is analysed. 
The article assumes that the relationship between 

form: 
 

 ( , ) = (| `|)(1 R) ( , `) `, (6) 

 
where (| `|) is the kernel of non-local 
viscosity along the coordinate, E is the modulus 
of elasticity, R is the integral viscoelasticity 
operator:  
 

R ( , `) = ( ) ( , `)  (7) 

 
( , )  – – time, x, x` 

– coordinates measured along the rod axis. 
It is obvious that, in addition to nonlocality in 
space, the material considered in the article has the 
property of memory, since the kernel ( , ) 
makes it possible to take into account the deformed 
states of the system over the entire loading history. 
 
 
THE MODEL OF ELASTIC PROPERTIES 
OF A MATERIAL IS NON-LOCAL IN 
TIME 
 
The article [11] shows that a nonlocal in time 
model of the dissipative properties of the material 
can be relatively easily integrated into the FEA 
algorithm. Therefore, the nonlocal model of the 
elastic properties of the material considered in this 
work was also implemented in relation to the 
FEA. Hence, after the calibration such model can 
be used in solving of applied dynamic problems. 

For the model presented in [9], the lower limit of 
integration over the time domain was taken equal 
to minus infinity. Strictly speaking, this is 
mathematically correct, but physically, any system 
manifests itself for a finite period of time. Yu.N. 
Rabotnov in [20] notes that the beginning of the 
real existence of the system has to be chosen as a 
lower limit. Therefore, in the following equations 
the initial moment of the oscillatory process t=0 
was used as the lower limit of integration. 
 
 
DYNAMIC MODEL OF BENDING BEAM 
DEFORMATION WITH CONSIDERING 
NON-LOCAL IN TIME ELASTIC 
PROPERTIES OF THE MATERIAL 
 
Considering the above a nonlocal in time model 
of the elastic properties of the material can be 
effectively used for modeling of the composite 
elements dynamic behavior. In this paper it is 
assumed that the elastic forces in the structure 
depend not only on the displacement values at 
the current time, but also on the previous time 
history of deformation of the structure. 
Moreover, the greater the time interval between 
two moments of time, the less is the influence 
that one of them has on the other. In the other 
words, the memory is considered to be fading. 
Further calculations were carried out in the 
MATLAB software package. As a numerical 
example a 10-meter beam with fixed ends was 
modeled. The beam material is pultruded 
fiberglass. The Young's modulus of this material 
in the longitudinal direction is equal to 28 GPa. 
The beam cross section is rectangular: 0.3m 
high and 0.2m wide. The coefficient of relative 
damping of the material is assumed to be 0.015. 
The beam is loaded with an instantaneously 
applied and uniformly distributed load. 
In the FEA algorithm, the equilibrium equation 
for a structure deformed in motion is 
represented as [21]: 
 

( ) + ( ) + ( ) = ( ) (8) 
 

Taking into account the elastic properties 
nonlocal in time, this expression takes the form: 
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( ) + ( ) + 

+ ( ) ( ) = ( ) (9) 

Here ( ) is the kernel of the elasticity 
operator used in this work. This function describes 
the decrease in the influence of the past history of 
dynamic deformation of the element on the 
current value of elastic forces in the system. In this 
case, the normalization condition is satisfied: 
 

( ) = 1 (10) 

 
For numerical calculations, the error function 
was used as the memory core, which, subject to 
the normalization condition, takes the form: 
 

( ) =
2

( )  (11) 

 
parameter characterizing the scale of 

nonlocality of elastic forces in time. The small 
parameter conforms to the highly nonlocal 
properties of the material. 
For the numerical solution of the equation of 
dynamic equilibrium, the method of central 
differences was used. When converting equation 
(2) into a computational scheme using the 
method of central differences, the equation of 
motion takes the form: 
 

1
( 2 + ) + 

+
1

2
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where  – is a discrete analogue of the integral 

kernel ( )  
 

=
2
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The computational scheme for the sequential 
step-by-step calculation of  through the 
vectors  and , which are calculated in the 
previous steps, is based on (12)  
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We set in (14): 
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The final scheme for a step-by-step solution in 
time of the discrete equation of motion (9) using 
the accepted model of deformation of a material 
with memory takes the form: 
 

=

. (16) 

 

At the first step, for i = 1, = 0  and = 0 
are taken as initial conditions. 
Further calculations were carried out in the 
MATLAB software package.  
 

 
Figure 1. Deflection history of a beam obtained 

using a model of elastic material properties 
nonlocal in time for different values of  
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As a result of the calculations, graphs of 
functions with different values of 
100, 250 and 500, were obtained. Analyzing 
these graphs, we can say that this parameter 
affects the amplitude of oscillations, but does 

in amplitude. Hence, higher deflection attitude 
corresponds to the higher level of nonlocality. 
 
 
CONCLUSION 
 
The article provides a brief overview of existing 
methods of mathematical modeling of the dynamic 
behavior of elements made of materials with a 
developed internal structure. A non-local model of 
deformation of a bending beam is constructed 
using the finite element method. The method of 
central differences was used for the numerical 

relationship between the scale parameter  and the 
amplitude of vibrations of the bent beam is shown. 
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