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BULK THEORY ELASTICITY FINITE ELEMENT BASED ON
PIECEWISE CONSTANT APPROXIMATIONS OF STRESSES

Yury Y. Tyukalov
Vyatka State University, Kirov, RUSSIA

Abstract. The solution of the volume theory elasticity problem was obtained on the basis of the additional
energy functional and the possible displacements principle. On the basis of the possible displacements’ principle,
equilibrium equations for grid nodes are compiled, which are added to the additional energy functional using
Lagrange multipliers. Linear functions are taken as possible displacements. The volumetric finite element based
on piecewise constant approximations of stresses is presented. The stress fields are continuous along finite
element boundaries and discontinuous inside ones. The calculation results of a cantilever beam and a bending
plate are presented. The obtained solutions are compared with the solutions by the finite element method in
displacements. The proposed finite element makes it possible to obtain more accurate stress values.

Keywords: finite element method, piecewise-constant stress approximation, bulk theory elasticity

KOHEYHBIA JIEMEHT JJ151 OFbEMHOHM TEOPUU
YIPYTOCTHU HA OCHOBE KYCOYHO NOCTOSIHHBIX
ANIITPOKCUMAIINA HANTIPSI)KEHUA.

10.A. Tokanoe

Bstckuit rocynapcTBeHHBIN yHUBEpCHUTET, I'. Kupos, POCCHU A

AnHotanusi. [lpencraBieH OOBCMHBI KOHEYHBIM 3JICMEHT, OCHOBAHHBI Ha KYCOYHO-IIOCTOSIHHBIX
ANMPOKCUMALIMAX HAMpsDKCHUH. PelieHne CTpouTcsi Ha OCHOBE (DYHKIMOHAJA JOTIOJHUTCIBLHON SHEPruM W
MPUHIMIIA BO3MOXKHBIX MepeMenieHnii. Ha ocHOBe mnpuHIMIA BO3MOKHBIX IE€PEMEUICHUN COCTaBJICHBI
YpaBHCHUS PaBHOBECHUS Y3JIOB CETKH, KOTOpPBIC JOOABISIFOTCA K (DYHKIIMOHATY JOMOJHUTEIBHON SHEPTHU IMPH
nmoMoInu MHouteneit Jlarpamka. B kauecTBe BO3MOXKHBIX MEPEMEIICHUI MPUHUMAKOTCS JIMHCHHBIC (DYHKITHH.
ITons HanpshkeHU HeNpepbIBHBI BAOJb TPAaHUI] KOHEYHBIX JJIEMEHTOB W DPAa3pbIBHBI BHYTPHU DJIEMEHTOB.
[IpuBeneHpl pe3ynpTaThl pacdyeTa KOHCOJMBHON Oalku W W3rnbaeMoil IUTacTHHBEL. [lodydeHHBIE peIIeHUs
CPaBHUBAIOTCSl C PEIICHUSMHU METOJOM KOHEYHBIX 3JIEMEHTOB B nNepeMeleHusX. [IpensokeHHblii KOHeUHbIN
JJIEMEHT MTO3BOJISICT MOMYYHUTh O0JIee TOYHBIC 3HAUCHUS HATIPSDKCHHH.

KaioueBble c10Ba: METO/1 KOHEUHBIX AJIEMEHTOB, IPUOIMKEHUE KyCOUHO-TTOCTOSTHHBIX HANPSHKEHHH,
o0beMHast TeOpusl yIIPyrocTu

INTRODUCTION

A large number of papers are devoted to the
development of the finite element method in
displacements. They present the variational
principles of finite element method and solution
algorithms [1]. Also, other numerical methods
are being developed. In particular, the method
of boundary elements [2] and collocation
method [3]. The finite element method in
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displacements has been widely used to calculate
structures for various purposes due to its
versatility. This method is well researched in
terms of convergence and accuracy of solutions.
An alternative approach based on stress
approximations is much less explored [4-5]. The
papers [6-16] propose finite elements based on
the approximation of stresses for solving
problems of the plane elasticity theory, plates
bending and rod systems. Currently, volumetric
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finite elements are increasingly used to calculate
such structures as slabs, shells and composite
structures [17-19], [20-22]. The development of
new volumetric finite elements is still relevant.
The purpose of this work is to develop a
volumetric finite element based on stress
approximation. Obtaining another approximate
solution, which alternative to the existing
approximate solutions, will allow one to obtain
a two-sided estimate of the exact solution.

METHODS

The solution to the bulk theory elasticity
problem will be built based on the additional
energy functional:

1
E(aj +ol +af)

(1)
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E is the material elastic modulus; v 1s Poisson's
ratio, G=2(1+u)/E . We write the functional

(1) in matrix form:
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(2)

To discrete the volume, we use the rectangular
parallelepiped finite elements. Let’s denote the
vector nodal unknown stresses vector as
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Vector of finite element unknown stresses is

4
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To simplify the notation, let’s introduce unit
step functions and diagonal matrices

h.
]‘3 b 2 V '
h (x,0.2) = (x,y,z) €V, CH - "
0, (x,y,2)2V,

)

Then the approximation matrix of stresses in the
finite element volume will have the simple form
(fig. 1b):

Z,=[H, H, L H], 6=Zgo,,. (6

Using (4-6), we express the finite element
additional energy in the following form:

Ihe = ka Teri (Zi Ex*Zi) OeredV.  (7)

The pliability matrix of the finite element is

Dy = ka ZYEZ1Zy av. (8)

The matrix has a simple block-diagonal form
[24]. From local matrices of finite elements are
formed global matrix D of whole system. The
functional (1) of whole system:

1
HzgchGV'

)

6, is global vector of the system unknown

stresses.
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Figure 1. a) global and local coordinate systems; b) division of a finite element
into volumes with constant stresses

Based on the possible displacements’ principle,
we can compose the necessary equilibrium
equations of the grid nodes. Each node of finite
elements grid has three possible displacements
along the OX, OY, OZ axes of the global
coordinate system (Fig. 1). Approximations of
the possible displacements over the finite
element volume are the linear basis functions.

ou, =%(1+§éi)(1+nni)(l+wwi),

5vi:%(1+§§i)(1+;7;7i)(1+w/i), (10)

Sw, :é(1+féi)(l+f7ﬂ,»)(1+wwi)-

In (10), the local dimensionless node i
coordinates of the finite element, taking the
values -1 or 1. Dimensionless coordinates are
related to local coordinates x, y, z by known
expressions:

2x 2 2z
é":—)n:—y,v/:—.
a b c

(11)
Expressions  (10) correspond to  unit
displacement of node i and zero displacements
of other nodes of finite elements adjacent to
the considered node. For each of these finite
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elements, the considered node will have
different index values i in the range from 1 to
8. The index value corresponds to the ordinal
node number in the description of the finite
element (Fig. 1). The node i possible
displacement along the X axis causes the
following deformations in the finite elements
adjacent to the node:

Se :8(6ui):é‘,»(1+;7;7i)(1+w%)
' ox 4a ’
%:6(5%)Zni(lJréé")(l*'t”Wf), (12)
y 4b
s _0(9u;) _w, (1+&5)(1+mm,)
yxz 82 4c .

Other strains &,=¢, =y, =0. The possible

strain energy of finite element £ is the integral
over its volume.

SU;, = I” (0,06, + 0,0¢, +0.0¢, +0.06.
Ve (13)
+ rxyéyxy + ryzéyyz +7_0y_ )dxdyd:z.

Taking into account expressions (8) and (12),
(13) we obtain

International Journal for Computational Civil and Structural Engineering



Bulk Theory Elasticity Finite Element Based on Piecewise Constant Approximations of Stresses

1< nn. Yy,
Ufk =— be| 1+—L || 1+—-2L .
e e e

J

<€) iy
L . 14
+77ac[1+ 5 J[lJr 2 jTXN (14)

nn, ¢,
+t//ab[l+ 5 j( 5 erz.j}'

Expression (14) can be represented in vector
form

5Uil,(x = Cll'{,xcel,k' (15)

Similar expressions can be written for possible
displacements of nodes along the axes Y and Z:
_ Ck

iy elk’

éU 6Uil,(z = Ctl'{,zcel,k' (16)

C;,, Ci of all finite
elements the "equilibrium" matrix C for all
system is formed. The matrix C rows number is
equal number of system nodes possible
displacements, and the columns number is equal
the total number of nodal unknown
displacements. The matrix has a band structure
of non-zero elements.

The work of concentrated external forces and
volume-distributed loads directed along the X

axis with a possible displacement oOu, is

From vectors C*

i,x?2

determined by the following expression:

oV,.,=F.0 ]ijj‘qf?uidxdydz. (17)
000

For the case of a uniformly distributed load

o, =P+ T dlabe=F, (9

k

Similarly, let's get
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‘ " (19)

The global load vector P is formed from P_,

i,x

P, P..

i,y?o i,z*

Let's the algebraic equations system

for the equilibrium of nodes in matrix form:

Co, +P =0. (20)

Using the Lagrange multipliers method, we add
the equilibrium equations to the functional (9):

21)

1 .
H=EG§D6V +w'(Co, +P) - min.

wis the nodes displacements vector. Equating
to zero the functional derivatives with respect to

6, and w we obtain the system of equations:

Do, +w' C=0
Gy W =5 (22)
Co, +P=0.

We express the vector g, from the first matrix
equation and put it into the second one. Then we
get

o, = —CTDtw,
K =-CTD1c, (24)
Kw = P.

K is the whole system stiffness matrix. That
matrix also has a band structure of non-zero
elements. The matrix D has a block-diagonal
structure and is inversed analytically. When
calculating the product C'D™'C, the band
structure of non-zero elements of the matrix C
is taken into account. Solving the equations
system, we determine the nodal displacements,
and then calculate the nodal stresses (24). Thus,
the stress fields are continuous along element
boundaries and discontinuous inside ones. On
the contrary, when using the finite element
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method based on the  displacement
approximations, the stress fields are continuous
inside the finite elements and discontinuous
along their boundaries.

RESULTS AND DISCUSSIONS

To assess the accuracy of the proposed finite
elements in stresses, the calculations of the
cantilever beam and the hinged plate were
performed (Fig. 2). The beam length is 6m, the
section height and width are 1m. The plate length
and width are 2m. Plate thickness is 0.1m. The
material elasticity modulus is 1000000kN/m>.
Poisson's ratio is 0.25. The beam was calculated

Yury Y. Tyukalov

for unit force, which applied as uniformly
distributed tangential stress to its end. The plate
was designed for a uniformly distributed load of
10kN/m?*. Due to the symmetry of the plate, its
quarter was calculated under the appropriate
boundary conditions. For comparison, the beam
and plate were also calculated by the classical
finite element method based on displacement
approximations. The calculation results for

various finite element meshes are shown in Tables
1 and 2.

For the beam, Table 1 shows the free end
displacements and the stresses of the outermost
fiber in the pinch. For the plate, Table 2 shows
the center displacements and the stresses in the
outermost fiber in the center.

a)

b)

Figure 2. a) pinched beam; b) bending hinged plate

Table 1. Bending hinged plate

FEM grid FEM in displacements FEM in stresses
number of number of
Stress, Stress,
elements by elements by length W, mm N/m? W, mm N/m?
thickness (width)
2 4 2.18 148.9 9.15 830.3
2 10 6.39 447.5 9.29 934.8
4 15 7.18 751.6 8.42 1023.6
6 15 7.20 837.6 8.20 1044.9
Analytical decision in series 7.48 1062 7.48 1062
Table 2. Pinched beam
FEM grid FEM in displacements FEM in stresses
number of number of Stress
elements by elements by | w, mm Stress, kN/m?> W, mm N /m2’
length high (width)
5 2 0.539 10.25 1.287 39.20
10 4 0.756 22.30 0.978 35.92
15 6 0.819 27.29 0.921 36.80
20 8 0.843 2991 0.902 36.51
Analytical decision 0.864 36 0.864 36
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Figure 3. Bending hinged plate. The red line is the solution of FEM in displacements, the
blue line is the solution of FEM in stresses, the green line is the exact solution
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Figure 4. Pinched beam. The red line is the solution of FEM in
displacements, the blue line is the solution of FEM in stresses, the green
line is the exact solution

The calculations results show that the proposed
finite element, based on the stresses
approximation, makes it possible to obtain, in
comparison with the traditional finite element,
more accurate stress values. In addition, the
displacements obtained by the proposed
method, when refining the finite elements mesh,
tend to exact values from above. Quite often,
the maximum stresses occur at the subject area
boundary, so the proposed method is preferable
in this case, since it allows us to calculate the
stresses directly at the points of boundary. The
above structural calculations confirm this. It is
known that when the finite elements mesh is

Volume 19, Issue 1, 2023

refined, the stresses in elements tend to constant
values. The using the piecewise constant
approximations of stresses makes it possible to
ensure this condition directly.

CONCLUSION

The volumetric finite element based on
piecewise constant approximations of stresses is
presented. The stress fields are continuous along
finite element boundaries and discontinuous
inside ones. The solution of the volume theory
elasticity problem was obtained on the basis of
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the additional energy functional and the possible
displacements principle. The proposed finite

element makes

it possible to obtain, in

comparison with the method of finite elements
in displacements, more accurate stress values.
The displacements obtained by the proposed
method, when refining the finite elements mesh,
tend to exact values from above.
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