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Abstract: The deformation problem of elasticity theory with regard to nonlinear deformations is examined. The
expressions of deformations through displacements in the orthogonal curvilinear coordinate system are recorded.
The relations for finite deformations in cylindrical and polar coordinate systems are derived. Physical relations for
finite deformations and corresponding generalized stresses are recorded.
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BECKOHEYHO MAJIbIE H KOHEYHBIE TEQ@OPMALIUH
B TIOJIAPHOU CUCTEME KOOPAUHAT

JL.IO. ®puwimep

HanmonansHslil uccnenoBarensckuii MOCKOBCKHI TOCYapCTBEHHBIN CTPOUTENBbHBIN yHUBEpcHUTeT, I. Mocksa, POCCHUA

AnHoTtanusi: PaccmarpuBaercss aeopMalMoHHAs 33ja4a TEOPHUHM YHPYTOCTH C YYETOM HEJIMHEHHBIX
nedopmannii. 3aMCHIBAIOTCS BEIpayKeHNS eOopMaIiii uepe3 NepeMeIeHnsI B OPTOrOHAIbHON KPUBOJIMHEHHOMN
CHCTEME KOOpAWHAT. BBIBOAATCS COOTHOIIEHHS JAJIsi KOHEYHBIX IehopManuii B MUIMHIPUICCKON M MOJISPHOM
cHUCTEeMax KOOpAMHAT. 3amHChIBAlOTCS (PU3WUYECKHE COOTHOIIEHMS JUId KOHEUYHbIX Jedopmanumii u
COOTBETCTBYIOIINX 000OLICHHBIX HAIPSKESHUI.

KroueBble ci1oBa: Maibie qedopMaliii, KOHSUHbIE AehopMaliiy, HelTMHEHHAs 3a/1a4a MEXaHUKH CILIOIIHON CPeIpl,
KpUBOJIMHEHHAs! OPTOrOHAIbHAs CUCTEMa KOOPAMHAT, IMIIMHAPUYEcKasl cucTeMa KOOpAUHAT,
MOJISIPHASL CHCTEMa KOOPIWHAT, TUTOCKast eopManusi, 0000IICHHBIC HATIPSKCHUS

1. INTRODUCTION

This article examines the deformation problem.
The positions of medium points before and after
deformation are given. The change in the
position of the vector connecting two arbitrary
points of the medium, caused by the deformation
of the medium, is determined. The solution of the
problem does not depend on the assumptions
regarding the properties of the medium and is
solved geometrically, typically in the Cartesian
coordinate system [1-7]. The initial and final
positions of the medium points are defined by
projections on the Cartesian coordinate system
axes.

204

Problems with angular cutouts of the boundary,
with angular lines of the boundary at surface
intersections, with holes in the area for the case
of small deformations are considered in polar,
spherical or cylindrical coordinate systems. The
choice of some curvilinear orthogonal coordinate
system is determined by the formulation of the
problem. At the same time, the curvilinear
coordinate system is chosen so that the body
boundary is defined as a coordinate surface or
line.

The paper [8, 9] examines a surface with an
angular line formed by irregular points. In order
to study the peculiarities of the solution in the
vicinity of the boundary, a curvilinear coordinate
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system (P:9.5) is introduced. The elastic
problem in the vicinity of a point on the angle line
of the boundary of the area is reduced to the
solution of two problems: plane and antiplane
deformation.

Analytical and experimental calculation methods
[10-15] show that the investigation of the
solution of the general elliptic boundary value
problem in the vicinity of irregular boundary
points is reduced to the consideration of
boundary value problems for model regions:
wedge or cone.

In order to solve the elastic problem for regions
with an angular boundary cutout, it is convenient
for wedges and regions with a hole to apply a
particular kind of a curvilinear orthogonal
coordinate system, the polar system [12-15].
The derivation of relations for finite
deformations in the Cartesian coordinate system
is discussed in detail in [1-7], whereas it is not
given for the polar coordinate system.

Purpose of the work: to derive expressions for
finite deformations in cylindrical and polar
coordinate systems.

Objectives of the work: to obtain expressions for
finite deformations through displacements, to
record physical relations for finite deformations
and generalized stresses in the polar coordinate
system.

2. MODELING METHODS

2.1. Curvilinear orthogonal coordinate system
We consider the curvilinear orthogonal

aQ 052,

coordinate system !, % with the origin

point O, in which the unit vectors ki, ko, ks , lines

a, = const

b

tangent to coordinate lines

a, = const, a, = const

, are directed toward

a,o,,

increasing parameters 3. The directions

of vectors K1s k2, ks change when passing from

a,0,,a

one point to another. The 3 parameters
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are related to the Cartesian coordinates **>% of
an arbitrary point by the relations:
X = ji(apazaaz,)a y = f‘z(al’aZ’a3)’
z= 1[3((11’0‘2’0‘3)

(1)

The relations (1) are equivalent to the definition

of the vector R=R(a, 2, 2,) (fig. 1)

MO dR

o R+dR

Figure 1. Displacements of points M and N to
points M* and N* during deformation

The Lame parameters are described in the
following form:

loR| [(axY (o) (o)
i = + +

|8al.| o, oa, oa,
i=123

The position of the arbitrary point M before
deformation is determined by the radius vector

jé :ﬁ(alsazaas)

. (@

, where % — the orthogonal

curvilinear coordinates of the vector R . After the
deformation, the point M transitions to the point

M (fig. 1), which is defined by the radius
vector;

*

R :R+ﬁ:§+u1E+u2k—2+ull€

1,2,3

Uu.,i=

where are the projections of the

displacement vector Y on the axes of the local
trihedron plotted at point M.
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The pOlnt N(al + dal’ az + daz, a3 + d0£3)

to the deformation is defined by the vector

prior

§+ﬁ:§+zg—Rdai:§+ZHigdai
i 0Q, i

1

Following the deformation, the

N(a,+da,,a,+da,, o, +da,

point
) transitions to

the point NV ' (fig. 1), which is defined by the
radius vector in the following form:

R+dR'=R+u+dR+u)=

=E+Zt+zg—Rdai +Zaa—uda,.,
T 0, T 00

i

where % =tk +uyky +u ks

Given the differentiation of unit vectors i , We
obtain

dR* = [(1+ e )Hda, + (%e12 —w)H,do, + (%eu + a)z)Hldaz:|;l+
1 1 —
+ (Ee]2 +w,)H do, +(1+ey)H,da, + (Ee23 -w)Hda, K, +

+[(% e, —w,)Hda, + (% e+ o) H,do, +(1+ ezz)dea3:|;3

The expressions for G- i have the following
form:

1 Ou, 1 O0OH, 1 OH,
e,=— + u, + U,
H 0o, HH,Oa, HH, oa, ’
1 Ou, 1 OH, 1 0H,
e, =— + u, + u,
H, 0a, H,H, 0a, H,H, 0¢, ’
1 Ou, 1 0H, 1 OH,
ey =—" +

u, + U,
HH, 0a, H.H, 0a,
o o M 0 (u )\ H 0 [u
v H éa\ H,) H,oda, H,

o —o =t 0 [ | H 0 [u
BN H da\ Hy ) H, 8a,\ H,

2)

- H, Oa,
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H, 0 (u, | H; 0 [ u
6232632:?6_ — |\t |5 I
; O\ H,y H, 0a,\ H,

1 [ o 0
20, = ~ (Hu)-——(H
a)l [_12]{3 _aaz ( 3”3) aa3 ( 2u2):|
1 [ o 0
20, = —~ (Hu)———(H
=, _6a3( i) 6051( 3”3)}
1 [ o 0
20, = = (Hu)-—(H
s HH, _aal( 212 aaz( ‘”‘)}

We consider the relative elongation at the point
M as:

o _ds'—ds _|[MN|-|mN]
Wds T |MN]|

Given the designations of the elongation Eyw

VN —|1W|2

2

the difference ‘
as:

will be recorded

1
E,,(1+ EEMN)dsz =g Hlda' +e,H,da; +

+ve,Hida; + e, HH,doyda, +
+eH Hdada, +¢,,H,Hda,da,

& . .
where ¥ are the deformation components in the

curvilinear coordinate system !> 72° 73:

1 1 1
=€y +E|:6121 + (5612 + w3)2 +(5613 _w2)2j|

3

1 1
=€ +eu(§e12 _w3)+622(5612 + )+

1 1
+ (5@13 — (02)(5623 + C()l),...

&)

(cyclic permutation)
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2.2. Cylindrical coordinate system
We consider the cylindrical coordinate system:

X=rcosQ, y=rsm@, Z=Z = The curvilinear

coordinates are rewritten as:

H=ELGB=0 =2 The Lame parameters are:
H=1LH,=r,H,=1

. . eji, W .
Given the expressions Y’ ' in the form (2), we
obtain expressions for deformations in the
cylindrical coordinate system:

Ou, aul ou, ’ Ou, ’
g, = + N e
or or or or

& =l% ﬂ l[(1%+ﬂ)2+
o op r 2 rop r
10u, u,, ,10u,,
SO e 2%y
r a V) (]/ ) ]
au} 6”1 al/lz : au3 2
&y = + +| —=2| +| =
0z 0z Oz Oz
& _on & l%+a”1 l%_”—ZH
o r rdp or rép r
6u2 (1 6u2 1 )+ 1 6u3 6u3
6r ragp r1 rar 6(0 )
o O O | O Buy | Ou, Buy By Bu
or 0z Or 0z Or 0z Or 0z
823 =r%+l%+(l%_u_z) aul
aZ v a¢ 7 aQ) 7 aZ
L Lou, u 6u2 1 0u, du,
r op &z rdp oz

In the case of small deformations, the relations
(4) are recorded in the following form:

ou 16u u P
gllz_l 822 —2 4L 833 =&
or , rop r ’ oz
ou, u, 10u
oyl o 10U au o,
or r rop or oz
(5)
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2.3. Polar coordinate system

We consider the polar orthogonal coordinate
0{1=r’ a2=g0’ % =Z  The Lame
=,H,=r,H,=1

system:

parameters are: H,
A plane deformation state is assumed, and the
body points are displaced in planes perpendicular
to the OZ axis:

ul =ul(a15a2,0)’ u2 :uz(alaazao),

”3(051,05%0):0’ (6)

then, for % in the form (2), the following holds:

ey =¢,=0,e;=e;,=0,¢e; :0’ €33 :O,
The deformations and generalized stresses take

the following form:

533=0’ 513=831=O, £y =6,=0

% * * *
o,=0y,=0, 0,=0; =0.

(7)

In the polar coordinate system, the deformations
through displacements are recorded as:

Ou, 6141 ou, ’
&, = + +| =2
or or or

10u, u,
£, =——2+-"1+
rodp r
JUfrow, ) (low_w)
2(\r dp r rop r) |
(8)
_Ouy, _wy, 10w Ouflow u |,
P or r rop or\rép r
L Ou 10U, w )
or\rop r
The resulting deformations (8) contain

expressions for the case of small deformations:
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o= 10w u

oar % rop r
=%_u_z+l% |
o r rop

2.4. Relations between nonlinear strains and
generalized stresses

We assume, according to [1, 2], the same form of
recording the dependences between invariants of
tensors and deviators of strains and stresses in
geometrically linear media and the form of
recording the dependences for invariants of
tensors and deviators of nonlinear strains and
generalized stresses in nonlinear media. The
overall form of the nonlinear strain tensor:

S € &
T, =&, &, &y

&

&1 € &y

; €))

where %/ are nonlinear strains in the curvilinear
orthogonal coordinate system in the form (3) or
nonlinear strains in the cylindrical (4) or polar (8)
coordinate systems. The generalized stress tensor

corresponding to the tensor T is recorded as

follows:
* * *
0, O, Oy
* * *
TG* =0y Opn Oy
* * *
O3 O3 O

(10)

We assume [7, 4, 16] the measure of deviation of
isotropic material from the similarity principle
for stress and strain deviators (deviator similarity

phase) equal to zero: =0

For a geometrically linear continuous medium,
the relations for the stress and strain invariants
are recorded as follows:

o =3K(&,)-¢, T=3G(e,T)-T
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For a geometrically nonlinear continuous
medium, the relations for the stress and strain
invariants are recorded as follows:

o =3K (&,T) e, T =3G (&,)-T"

where € is the first invariant of the nonlinear

strain tensor (9), @ is the first invariant of the

T. .
generalized stress tensor ¢ (10), 7 is the
intensity of  generalized shear stresses
proportional to the second invariant of the

generalized stress deviator, /' " is the intensity of
nonlinear shear strains proportional to the second
invariant of the strain deviator. The error in
applying the similarity of the forms for recording
the relations between stresses and strains
depends on the adopted continuum model, the
type of the stress-strain state, and the level of
deformation development in the continuum.

Invariants K.G,o characterize  the
mechanical properties of the isotropic material.

The value K is referred to as the generalized
volume expansion modulus; it characterizes the
measure of resistance of the isotropic material to

*

volume changes. G s the generalized shear
modulus.

The physical relations for the plane deformation
state of the body [12] are recorded in the
following form:

* * 1 *
0,=2G y,+-0 0,
y y 3 ], (11)

~ 1
Vi =Ty~ 3%%

b

E=& Y&, +E=8,+E,, -
where 1“2 e 1“2 43 the first

invariant of the nonlinear strain tensor in the
form (9).
Let us record the expressions for the components

) . i i=12
of the strain tensor deviator Vippts J =4 3 :
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~ 1 -~ 1
Vi = 6 _5‘9: V2 :‘922_55’

~ 1 1
Vi3 =835 E= _5(511 +&5),

3
~ ~ 1
Yu=Vn=7&3=7¢&,=0
2 2 , (12)
~ ~ 1 1
7’23=732:E‘923:5‘932:O,
~ ~ 1 1
V12 =7/12:5€12 :5521

The expressions for the generalized stresses
given (12) are recorded as follows:

* * 1 1 *
o, =2G (&,1)(g, —§€)+§U

* * 1 1 *
0, =2G (&,1)(&,, —55) +§G

b

. i 1 I .
0, =2G (&,D)[-=(g,+&y)+—-0O

3 3 (13)
0., =2G 7., =0, 0,=2Gy, = 0,

* *

O, =0, = 2G*7~/12 = G*(g,r)glz ,

* * * *
o =0,,4+0,,+0 . . . .
where 1 2 33 is the first invariant
of generalized stresses.

Given the generalized modulus in the form:

" lo

K'(e,N)==-2
3¢

2

the physical relations for the generalized stresses
in a geometrically nonlinear continuum are
recorded as

o, =2G (&,1)(g, —%€)+K*(8,F) &

2

0, =2G (&,1)(e,, - %a) +K'(g,N) e

b

Oy = [K*(g,r)—gG*(g,r)] £ 14
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* * *
0,=0,=0C (591—1)512.

* * * *
o =0,4+0.,,+0 ., : . .
1 2 33 is the first invariant

E=&,1T&y,

Here,

of generalized stresses tensor (10),
is the first invariant of the nonlinear strain tensor
(9), the generalized mechanical properties

K (&,1),G (6.1)  that depend on the first
invariant of the nonlinear strain tensor € and the
nonlinear shear strain intensity:

2 2
I'= \/;\/(‘911 _522)2 +5121 +8222 +§5122

The expressions for finite deformations (8) and
generalized stresses (14) in the case of the plane
deformation state of a nonlinear continuum were
obtained for the formulation of the boundary
value problem for continuum mechanics in
consideration of geometric and physical
nonlinearity.

RESULTS

The expressions for finite deformations (4) in the
cylindrical coordinate system are obtained, the
expressions for finite deformations (8) for the
case of plane deformation in the polar coordinate
system are obtained, and the relations between
finite deformations and generalized stresses (14)
in the polar coordinate system are recorded.

DISCUSSION

The deformation expressions (5) for small
deformations in the polar coordinate system are
obtained by examining the displacements of the

minor area element ” ¥ 99 The application of
the classical approach for obtaining expressions
of finite deformations is complicated by taking
into account the rotation of the element,
including the radial displacements of points M

209



and N prior to deformation to points M and N
post-deformation.

The known relations for finite deformations in
Cartesian coordinate system are also difficult to
translate into the polar coordinate system. When
considering the displacement field, the
displacement vector is projected to the axes of
the local trihedron plotted at the point M of
application of the displacement vector

u=uk +uk, +uk, k . )
1P BT W are the coordinate axis

orthodes. The direction of vectors ki changes
when passing from point to point, so the
projections on these axes change. The derivatives
Oki

oa, form a vector field. The differentiation rule
valid for the Cartesian coordinate system is
violated: the projection of the vector derivative

on the coordinate % is equal to the derivative of
its projection on this coordinate. Therefore, the
orthogonal curvilinear coordinate system is used
to derive expressions of finite deformations.
The generalized stresses differ from the real ones
by accounting for the change in the areas of the
faces of the oblique parallelepiped during the
deformation.

CONCLUSIONS

The expressions for nonlinear deformations (8)
and generalized stresses (14) in the case of the
plane deformation state of a nonlinear continuum
were obtained for the formulation of the
boundary value problem for continuum
mechanics in consideration of geometric and
physical nonlinearity.
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