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Abstract. The phenomenon of self-excitation of thermomechanical vibrations of current-carrying conductors, 
experimentally discovered by academician A.F. Ioffe, is of practical interest as a possible explanation of the 
phenomenon of galloping conductors of overhead power transmission lines (OHL) – low-frequency vibrations 
with frequencies of ~ 1 Hz and with amplitudes of the order of the static conductor sagging. To build the theoret-
ical foundations of this phenomenon, as a special class of self-oscillating systems, it is necessary, first of all, a 
model of conductor vibrations in the OHL span. With regard to the most studied type of conductor vibrations, 
high-frequency aeolian vibration, excited by sign-alternating aerodynamic forces from the Karman vortex street, 
the classical model of a straight string is reasonably applied. However, to study low-frequency vibrations of the 
galloping type, it is necessary to take into account the effect of sagging of the conductor, the associated elastic 
tension and, in some cases, the nonlinear nature of the vibrations. The article presents two models for calculating 
the natural vibrations of sagging conductors (cables) within the framework of the technical theory of flexible 
threads, assuming the constancy of the tension force along the length. The first model describes linear oscilla-
tions of an elastic conductor in the sagging plane. For a system of equations with respect to the displacement 
components given in natural coordinates, an exact solution of the Sturm-Liouville problem with estimates of the 
frequency ranges arising is obtained. The second model describes nonlinear vibrations of an elastic conductor in 
the sagging plane and pendulum vibrations accompanied by an exit from it. The solution of the problem is based 
on the principle of possible displacements using the Ritz method. The structure of the frequency spectrum and 
the natural forms of transverse vibrations are studied. The developed models are intended for further investiga-
tion of thermomechanical vibrations of conductor and flexible cable systems. 
 

Keywords: sagging conductor, cable, flexible elastic thread, frequencies and modes of normal vibrations, 
Ritz method, spectrum structure 
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INTRODUCTION 
 
Works [1-5] are devoted to the construction of a 
theory explaining the self-excitation of thermo-
mechanical self-oscillations of a conductor that 
heats up when included in an electrical circuit. 
In [5], there are indications of the repetition of 
the experiment of A.F. Ioffe. A practical interest 
is the question of whether the self-excitation of 
thermomechanical vibrations is related to the 
phenomenon of the conductor galloping – low-
frequency vibrations with frequencies of ~ 1 Hz 
and with amplitudes of the order of the static 
sagging [6,7]. 
In the cited works, such an assumption was 
made, but it has not yet received reasonable 
confirmation: there is no transfer of the effect, 
modeled theoretically and observed in a labora-
tory model, to the full-scale OHL conductors. 
The purpose of this work is to study the normal 
frequencies and modes of a conductor in the 
OHL span, necessary for the mathematical 
model to determine the conditions for self-
excitation of the galloping of full-scale conduc-
tors, based on the thermo-mechanical model. 
 
 
1. A MODEL OF COUPLED LONGITUDI-
NAL-TRANSVERSE VIBRATIONS OF A 
CONDUCTOR IN THE SAGGING PLANE 
 
The natural oscillations of an OHL conductor in 
the plane of its sagging in a homogeneous field 
of gravity are considered. The conductor is con-
sidered as a flexible elastic heavy thread. The 

coordinate system and the selected natural basis 
are shown in Figure 1. 
 
 
 
 
 
 
 
 
Conductor parameters: l  – the distance between 
the suspension points (span length); m – linear 
mass; B – tensile stiffness; 0T  – static tension; 

0k , f  – the curvature of the static curve and its 
sag. By mp g  denote the vertical linear load, 
where g is the vector of gravity acceleration. 
With small sag ( )f l , which is typical for 
most spans of OHL, tension 0T B  and curva-
ture 2

0 8 /k f l  can be considered constant 
along the length and related by the ratio: 
 

2
0 0/ /8T mg k mgl f . 

 
Conductor oscillation equation 
 

( ) + p ( + ) = 0

  
represent in projections onto the associated ba-
sis, using the Frenet formulas for a flat curve 
 

= 0, 
+ = 0.             (1) 

Figure 1. Orientation of the natural basis in 
the coordinate system Oxz
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During vibrations, the conductor has an addi-
tional elongation deformation = + , in-
crements of curvature 0k k w  and tension 

= + . Substituting these values into (1), 
limiting ourselves to a linear approximation and 
excluding time by substitution i tu ue , 

i tw we , we obtain 
 

2
0

2 2
0 0 0

,Bu Bk w m u
T w Bk u Bk w m w

 

0, : 0.x l u w  
 
Here and below, the dashes denote the derivative 
with respect to the arc coordinate s, which, due to 
the flatness of the sag curve, is identified with the 
x coordinate on the horizontal projection. 
Let us pass to dimensionless variables, choosing 
as the scales of length and frequency, respec-
tively l  and 0T m l : 
 

2

2

,

,

u w u

w u w w          (2) 

 
where indicated: 0T B , 0 8k l f l . The 
parameter  represents the deformation of the 
conductor elongation in the state of equilibrium 
and can be considered small. Note that equa-
tions (1) are similar to the equations of vibra-
tions of an elongated cylindrical shell (panel 
with curvature 0k ) with a vanishingly small 
bending stiffness [8]. The parameter  defines 
the connection between the longitudinal and 
transverse displacements of the wire section. At 
small values of this parameter, which are char-
acteristic of a strongly stretched wire, system 
(2) breaks up into two independent equations: 
longitudinal vibrations of the rod and transverse 
vibrations of the string. 
Assuming in (2) ,i x i xu Ue w We , let's 
move on to the system 

2 2

2
2 2

0,

0.

U i W
i U W

       (4) 

 
Let's write an equation for determining wave-
numbers  with respect to 2z : 
 

2 2 4 2 21 0z z .   (5) 
 

At  (conditionally large frequencies) 
the roots 1, 2 0z  and all wavenumbers are real. 

At  (relatively low frequencies) 
1 20,    0z z ; in this case, one pair of wave-

numbers is real, the other is imaginary. The fre-
quency ,cr  that delimits the low- and 
high-frequency regions is further called critical. 
From (4) follow the relationship between the 
displacement components (distribution coeffi-
cients) for each ( 1,...,4)k k : 
 

2 2
k

k k k k
k

iU W W i .          (6) 

 
In the general case, the roots of equation (5) are:  
 

2

1,2

2 2

22

1
2

41 1 .
2 1

z
        (7) 

 
Let's first consider the high-frequency range: 

. Given the strong inequality, we as-
sume that 
 

22 2 2 21 4 / 1 1 2 / . 
 

It follows that 
 

2 2
1z , 2 2

2z  
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and the wavenumbers and distribution coeffi-
cients are equal to: 
 

1,2 1 3,4 2

1,2 1 3,4 2

, ;
, .m

               (8) 

 
Here the notations are used: 
 

2 2 2 2
1 2

1 1 2 2

, ,
, .

. 

 
The general solution of system (2), taking into 
account correlation (6), has the form: 
 

         
4 4

1 1
,k ki x i x

k k k
k k

w A e u A ie         (9) 

 
or in trigonometric form: 
 

1 1 2 1

3 2 4 2

1 1 1 2 1 1

3 2 2 4 2 2

cos sin
cos sin ,

sin cos
sin cos .

w B x B x
B x B x

u B x B x
B x B x

 

 
Subjecting the obtained solution to boundary 
conditions, we come to a homogeneous system 
of equations with respect to: kB : 
 

       

1 3

1 1 2 1

3 2 4 2

2 1 4 2

1 1 1 2 1 1

3 2 2 4 2 2

0,
cos sin

cos sin 0,
0,

sin cos
sin cos 0.

B B
B B

B B
B B

B B
B B

    (10) 

 
The condition for the existence of a nontrivial 
solution gives the frequency equation –  
 

    1 1 2 1 2

2 2
1 2 1 2

2 1 cos cos
sin sin 0.

 (11) 

Assuming 2 1B  and defining the remaining 
integration constants from the first three equa-
tions of system (10), we represent the eigen-
functions (normal modes) in the form: 
 

1 1 1
2

1 1 1 1

1 ,

   .

w x x

u x x
       (12) 

 
It is indicated here: 
 

1 2 1 1 2

1 1 2

1 1 2

1 2 1 1 1

sin sin ,
 cos cos ,

sin sin ,
,  (1) (1).

x x x

x x x

x x x
 

 
Consider the low-frequency range, when 

/ . In this case, the wavenumbers and 
distribution coefficients are equal to 
 

1,2 1 3,4 3

1,2 1 3,4 2

,   ;
,  .

i
im

 

 
where now: 2 2

2 , 2 2 / . 
The general solution (9) takes the form: 
 

1 1 2 1

3 2 4 2

1 1 1 2 1 1

3 2 2 4 2 2

cos sin
ch sh ,

sin cos
sh ch .

w B x B x
B x B x

u B x B x
B x B x

 

 
Frequency equation is 
 

 2 1 2 1 2

2 2
1 2 1 2

2 1 cos ch
sin sh 0.

   (13) 

 
Note that the boundary frequency /b  
simultaneously satisfies both frequency equa-
tions (11)  (13) and, therefore, is a natural fre-
quency. Native functions: 
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Figure 2. Natural frequency spectra for various 

and 310  
 

 
 

Figure 3. Characteristic forms of transverse vi-
brations of the lower (n=0, 1) and upper (n=3, 

5) harmonics; here 0.35 , 310 ,  
 critical frequency 11.07cr  

 
It is indicated here:  
 

2 2 1 1 2

2 2 1

2 2 1

1 1 1

sin sh ,
 ch cos ,    

sh sin ;
    = 1 / 1 .

x x x

x x x

x x x
 

 
Note that for small sag 0 , the high-
frequency equation (11) transforms into 

1 2sin sin 0  and the spectrum splits into 

groups of quasi-transverse (string) and quasi-
longitudinal frequencies: n n  and 

/n n . 
The low-frequency equation (13) takes the form 

1 2sin sh 0  and defines only transverse fre-
quencies. For high harmonics, string asymptotic 
is manifested for all, not necessarily small val-
ues . The spectrum features are characterized 
by Figure 2, which shows the frequencies of the 
modes corresponding to the harmonics with a 
number n calculated for different  and 

310 . 
The structure of the spectrum, which is quite 
complex in the low-frequency region, becomes 
regular with the growth of the harmonic number. 
The forms of vibrations in the low-frequency re-
gion differ significantly from the forms of trans-
verse vibrations of a string and a beam: the differ-
ence is that the amplitudes of adjacent half-waves 
(of different signs) vary greatly in amplitude, 
which is not typical for a string. This difference 
decreases with the growth of the harmonic num-
ber, as follows from the graphs in Figure 3, and 
for high harmonics, the shapes do not differ from 
the shapes of the string. 
 
 
2. MODEL OF SPATIAL VIBRATIONS 
 
Let's introduce the coordinate system Oxyz , di-
recting the axis Ox  through the conductor fix-
ing points, as shown in Figure 2. 
 

 
Figure 4. Parameters of static (0) and dynamic 
(1) states: a) displacements and components of 
the external load (a); lengths of the initial and 

current states (b) 

n

n
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Let ( , )u x t , ( , )v x t , ( , )w x t  be the displacements 
of the points of the conductor axial line along 
the axes Ox , Oy , and Oz  respectively. As be-
fore, the conductor is considered as a weighty 
elastic thread, fixed at the ends in a stretched 
state. Denote by yp  the given lateral linear load 
in the plane Oxy , by zp mg  the linear load of 
gravity forces in the plane Oxz . 
The positive directions of the entered values are 
shown in the Figure 4 a). Figure 4 (b) shows: l  
– span length; 0l  – the conductor length in the 
span without elastic deformation at normal tem-
perature; 1l  – the length of the stretched conduc-
tor; initial elongation –  
 

0 (1 )l T l ,               (15) 

 
where T is the increment of temperature relative 
to its normal value,  is the coefficient of line-
ar thermal expansion. 
Neglecting the longitudinal inertial forces, we 
assume that the tensile force T and tensile stiff-
ness B are constant along the conductor length. 
It follows that the deformation of the conductor 
is also constant along the length, i.e. 

( , ) ( )x t t . Using this assumption, we deter-
mine the longitudinal deformation in a quadratic 
approximation. It's obvious that 
 

22 2 2
1

2 2 2 21 .
dl dx du dv dw

u v w dx
. 

 
Here and below, primes denote the derivative 
with respect to x. Neglecting the square of a 
small value du , we have 
 

2 2
1 1 2dl u v w dx; . 

 
Expanding the last expression into a Taylor se-
ries and restricting ourselves to the first two 
terms, we obtain 
 

2 2
1

11
2

dl u v w dx . 

 
Integrating the last expression by x gives 
 

2 2
1 1 0

0

1
2

l

l l u u v w dx . 

 
This makes it possible to determine the defor-
mation of the conductor elongation in the form 
 

1 0 1

0 0 0

2 2

0 00

1 .
2

l

l l l l
l l l

v w dx
l l

          (16) 

 
where  is determined by expression (15) and 
it is taken into account that at the fixing points 

0 1 0u u . 
 
2.1. Nonlinear vibration equations 
We will obtain the conductor vibration equa-
tions based on the principle of possible dis-
placements in generalized coordinates with non-
linear elastic forces [9-11]: 
 

0p inU A A .            (17) 
 

where U  is the variation of the potential ener-
gy of the system; pA , inA  are the variation of 
the work of external and inertial forces. It is as-
sumed that the initial configuration is known 
from the solution of static equilibrium equa-
tions. 
We will search for displacements using the Ritz 
method: 
 

0( , ) ( ) sin ,

( , ) ( )sin .

i i
i

i
j

w i xw x t q q t
l l

v j xv x t r t
l l

  (18) 
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i i
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w i xw x t q q t
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l l

  (18) 

where 0iq  are the generalized coordinates of the 
static (initial) state; iq , ir  are generalized coor-
dinates describing the dynamic process. 
Let us determine the axial deformation by for-
mula (16) in the form: 
 

2
22

0
0

2 2

0

2

.

i i
i

j
j

l i q q
l

j r
l

      (19) 

 
Then the potential energy of longitudinal de-
formation and its variation are respectively 
equal to 
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where the deformation  is determined by the 
nonlinear expression (19). 
We now write down the variations of the work 
of inertial and external forces: 
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The equations of spatial oscillations of the con-
ductor follow from the variational principle of 
possible displacements (17) taking into account 
expressions (20), (21). As a result, we have 
 

+ ( ) ( + ) = 2( + ), 

+ ( ) = 2 ; 
, = 1,2,3, . . ..                  (22) 

 
Let's omit the terms in the first equation, the 
sum of which turns to zero due to static condi-
tions. To do this, we will write the longitudinal 
deformation in the form (19) as the sum of the 
static and dynamic components: 
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Substituting expression (23) into the first equa-
tion of system (22), we obtain nonlinear equa-
tions of spatial vibrations of the wire in the 
form: 
 

+ ( ) ( + ) = 2 , 

+ ( ) = 2 ; 

, = 1,2,3, . . ., 
 
where  is determined by formula (23). Passing 
to the quantities 
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we obtain the final form of the equations in di-
mensionless form: 
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2.2. Solution of the static problem 
In this case, instead of expressions (18), (19) we 
have 
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The equilibrium equation follows from (22): 
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whence it follows that 0 0kq  at 2,4,6, ...k . 
We rewrite the last equation in the form: 
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and substitute in the expression for deformation 
(24). As a result, we get 
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whence it follows that the deformation 0  is de-
termined from the solution of the cubic equation 

3 2
0 0 0b d , where 
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, 

the solution of which is found by the Cardano 
formula. 
As an example, a wire fixed at the ends with the 
characteristics given in Table 1 is considered. 
Table 2 shows the results of calculations for  

1,3,...,9n . 
 
2.3. Natural vibrations 
The linearization of equations (24) leads to a 
system of linear equations 
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    (25)                   

 
where 0 , 0iq  are determined from the solution 

of a static problem; 
2

2
0

0 2d i i
i

l i q q
l

. 

Equations (25) will be written in matrix form by 
introducing column vectors 
 

1 ... T
nq qq , 1 ... T

mr rr  
 
and a diagonal matrix  with elements 2

ii i . 
For simplicity, we will assume that n m . Then 
instead of equations (25) we have two unrelated 
matrix equations 
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where 
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 – unit matrix. 

The solution of equations (26) is represented as 
 

q = A , r = C ; 

= .                      (27)                   
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Substituting expressions (27) into equations (25) 
leads to two unrelated systems of algebraic 
equations 

( )A = 0, ( )C = 0, (28) 
 
Since the matrix r  is diagonal, the eigenval-
ues of the second equation are the values =

( ) . Then the frequency spectrum of the 
natural vibrations of the conductor in the hori-
zontal direction is a sequence = , 

1,2,...,j n . 
From the condition of non-triviality of the solu-
tion of the first equation of system (28), a fre-
quency equation follows for determining the 
frequency spectrum of natural vibrations in the 
vertical direction: 
 

= 0. 
 

The vibration modes A are determined from the 
solution of the first equation (28) with the nor-
malization condition 1TA A . The vibration 
modes C are trivial as a sequence 1 0...0 , 

0 1...0 , …, 0 0...1 . 
As an example, consider a conductor with char-
acteristics from Table 1 for 5n . The solution 
of the static problem is given in Table 2. The 
calculation results are shown in Table 3.  
The first frequency of horizontal oscillations 
can be estimated using the equation of oscilla-
tions of a physical pendulum 2 2J d dt M , 
where J is the moment of inertia of the sag-
ging conductor about the axis Ox , M is the 
total moment of the gravitational load. 
 

 

 
 

 

Table 1. Conductor parameters 

Tensile stiffness 67.3 10 NB  
Linear mass 0.23kg mm  
Conductor length 0 21 ml  
Span length 20 ml  
Gravity acceleration 29.81 m sg  

Table 2.  Results of solving a static problem 

n 1 3 5 7 9 
D 186.59 10  186.67 10  186.68 10  186.68 10  186.68 10  

0  65.88 10  65.92 10  65.92 10  65.92 10  65.92 10  
01q  0.14236  0.14149  0.14138  0.14135  0.14134  
03q  - 0.00524  0.00523  0.00523  0.00523  
05q  - - 0.00113  0.00113  0.00113  
07q  - - - 0.00041  0.00041  
09q  - - - - 0.00019  
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Using the expansion 
 

0 0( ) sink
k

w x q k x l , 

 
we get 
 

= , = , 
 

where = , ,... , = , ,... . 
 

For the angle of rotation of the pendulum (sag-
ging wire) in the form sinA t  from the 
condition of non-triviality of the solution of the 
equation of vibrations, we obtain a formula for 
calculating the circular frequency of oscillations 

=  or in Hertz  = . 
The calculation for the above example gives the 
value 0.333f , which is completely con-
sistent with the first oscillation frequency in the 
horizontal direction 0.335f . 
 
 
CONCLUSION 
 
When constructing the theory of self-excitation 
of conductor vibrations, classified in operational 
OHL practice as a galloping, it is necessary to 
proceed from the model of a flexible heavy 
thread that performs spatial vibrations. Gallop-
ing modes are observed in the frequency range 
of the order of 1 Hz, which in the typical OHL 

spans correspond to the first 1-3 harmonics [6, 
7]. Model experiments have shown [5] that vi-
brations in the vertical plane, which excite par-
ametric vibrations with exit from the sag plane, 
are essential for such processes. The model of 
self-excitation should be based on the data of 
the modal analysis of the system as its basic 
characteristics. 
The methods developed and described in the 
article for calculating the natural frequencies 
and vibration modes of the OHL conductors re-
flect the features of the conductors that deter-
mine their tendency to self-excitation of vibra-
tions. It is shown that in the frequency domain 
of interest, transverse stretching vibrations and 
pendulum vibrations are essential; longitudinal 
elastic waves do not play a significant role.  
The developed methods of modal analysis of 
conductor vibrations will be used in the con-
struction of a model of self-excitation of vibra-
tions of OHL conductors of both thermome-
chanical and aerodynamic nature. 
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