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FORMATION OF COMPUTATIONAL SCHEMES  
OF ADDITIONAL TARGETED CONSTRAINTS THAT 

REGULATE THE FREQUENCY SPECTRUM OF NATURAL 
OSCILLATIONS OF ELASTIC SYSTEMS WITH A FINITE 

NUMBER OF DEGREES OF MASS FREEDOM, THE 
DIRECTIONS OF MOVEMENT OF WHICH ARE PARALLEL, 

BUT DO NOT LIE IN THE SAME PLANE 
PART 2: THE FIRST SAMPLE OF ANALYSIS 
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Abstract: For some elastic systems with a finite number of degrees of freedom of masses, in which the direc-
tions of mass movement are parallel and lie in the same plane (for example, rods), special methods have been 
developed for creating additional constraints, the introduction of each of which purposefully increases the value 
of only one natural frequency and does not change any from the natural modes. The method of forming a matrix 
of additional stiffness coefficients that characterize such targeted constraint in this problem can also be applied 
when solving a similar problem for elastic systems with a finite number of degrees of mass freedom, in which 
the directions of mass movement are parallel, but do not lie in the same plane (for example, plates). At the same 
time, for such systems, only the requirements for the design schemes of additional targeted constraints are for-
mulated, and not the methods for their creation. The distinctive paper is devoted to solution of corresponding 
sample of plate analysis with the use of approach that allows researcher to create computational schemes for ad-
ditional targeted constraints for such systems. 
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THE FIRST SAMPLE 
 
Let us consider a hinged rectangular plate [4, 
10-14, 19, 20] 6 m by 6 m in size, carrying con-
centrated masses (Fig. 1a [4]) 
 

,1000]1[ kgm  ,1100]2[ kgm  
,1150]3[ kgm  kgm 1200]4[ . 

 
The thickness of the plate is 0.12 m. The modu-
lus of elasticity of the plate material 
 

PamNE  1024/ 1024 929 . 
 
Poisson's ratio 2.00 . 
We choose the main system of the displacement 
method (Fig. 1b) [17], form the corresponding 
system of equations (1) from the paper [4] (ma-
trices ],[ kirA , ][imM ). From equation 
(2) given in [4], we determine the eigenfrequen-
cies and eigenmodes of the plate vibrations. The 
values of the eigenfrequencies of the plate and 
the coordinates of the eigenmodes correspond-
ing to them are given in Table 1 (columns are 
the eigenfrequencies and coordinates of the 
eigenmodes). 
Assume that it is required to increase the value 
of the first frequency of natural oscillations up 
to 100 s-1 (or up to 100 Hz, respectively). To do 
this, in accordance with formulas (7), (8), (9) 
given in [4], we form a matrix of additional 
stiffness coefficients (4) (see [4]). All the data 
necessary to use dependencies (7), (8), (9) from 
[4] are given in Table 1. After forming the ma-
trix of additional stiffness factors, taking into 
account their influence, we determine from 
equation (10) given in [4], the modified spec-

trum eigenfrequencies and their corresponding 
vibration modes [1-6, 13]. The modified spec-
trum of natural frequencies and their corre-
sponding forms are shown in Table 2. 
It can be seen from the table that taking into ac-
count the additional stiffness factors did not 
change any of the modes of natural oscillations 
of the plate, but only increased the value of one 
of the frequencies from 61.6965 s-1 to the speci-
fied value of 100 s-1. 
The generalized targeted constraint must corre-
spond to the matrix of additional stiffness coef-
ficients. 
One of the variants of the computational scheme 
of the targeted constraint is shown in Figure 1a 
and Figure 1b. The accepted version is once 
statically indeterminate and does not contain 
additional racks. Thus, its geometry is deter-
mined only by the lengths of the main vertical 
members, that is, by the values ][ilst . 
As noted above, now the problem is reduced to 
finding in the computation scheme of targeted 
constraint the lengths of the main vertical mem-
bers )4,..,2,1(][ iilst  from the conditions for 
the occurrence of forces 4 .., ,1   ],[ iiNst  in 
them, the ratios between which will be propor-
tional to the ratios between the forces 

4 .., ,1   ],1,[][][0 iivimiR . The values ][im  
are shown in the initial data of the distinctive 
sample, and the values ]1,[iv  are given in the 
first column of Table 1 and Table 2. The forces 
are shown in Table 3. 
In order to use the algorithm for the formation 
of the computational scheme of targeted con-
straint, researcher must firstly select the base 
vertical member and set its length. For the base 
we will take the vertical member of the first 
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4 .., ,1   ],1,[][][0 iivimiR . The values ][im  
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sample, and the values ]1,[iv  are given in the 
first column of Table 1 and Table 2. The forces 
are shown in Table 3. 
In order to use the algorithm for the formation 
of the computational scheme of targeted con-
straint, researcher must firstly select the base 
vertical member and set its length. For the base 
we will take the vertical member of the first 

node and set mlst 45.2]1[ . We will take the 
initial values of other variable lengths 

mlst 30.2]2[ , mlst 00.2]3[ , mlst 6.2]4[ .  

 
Table 1. Values of eigenfrequencies (natural vibration frequencies) of the plate  

and coordinates of their corresponding eigenmodes (natural modes) (the first example). 
 61.6965 141.4295 146.2905 205.4514 

1 0.4908 0.0001 0.7080 -0.5893 
2 0.4965 -0.7093 0.0895 0.5154 
3 0.5058 -0.0676 -0.7003 -0.4432 
4 0.5068 0.7016 0.0181 0.4367 

 
Table 2. Modified frequency spectrum of natural vibrations of the plate  

and coordinates, corresponding to them natural forms (the first example). 
 100.00 141.4295 146.2905 250.00 

1 0.4908 0.0001 0.7080 -0.5893 
2 0.4965 -0.7093 0.0895 0.5154 
3 0.5058 -0.0676 -0.7003 -0.4432 
4 0.5068 0.7016 0.0181 0.4367 

 

a)  b)  
Figure 1. The first sample: variant of the computational targeted constraint: 

a) three-dimensional visualization; b) top view. 
 

Table 3. To the analysis of the targeted constraint in the computational scheme (the first example). 
i  1 2 3 4 

][im  1000 1100 1150 1200 
]1,[iv  0.4908 0.4965 0.5058 0.5068 
][0 iR  490.7597 546.1499 581.6800 608.1056 

 
It is also necessary to set the force in one of the 
vertical members. Let's accept 
 

kgRN st 7597.490]1[]1[ 0 . 
 

To find the minimum of the objective function 
(12), described in [4], the method of steepest 
descent in the space of varying lengths of verti-
cal members 4 ,3 ,2   ],[ iilst  was used. The 
formation of the computational scheme of the 
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targeted constraint according to the above men-
tioned algorithm was carried out without re-
strictions on the length of the vertical members. 

Equilibrium equations were constructed for 
nodes located at the tops of the vertical mem-
bers.  

 
Table 4. The lengths of vertical members of targeted constraint and corresponding forces in them  

(the first sample). 
4500.2]1[0stl  7597.490]1[stN  7680.3]4 ,8[pl  1761.747]4 ,8[pN  
3855.2]2[stl  1499.546]2[stN  7948.2]3 ,9[pl  1850.554]3 ,9[pN  
9521.1]3[stl  6800.581]3[stN  0010.2]2 ,1[pl  7919.396]2 ,1[pN  
4896.2]4[stl  1056.608]4[stN  0464.2]3 ,2[pl  7875.405]3 ,2[pN  
7420.3]1 ,5[pl  0097.742]1 ,5[pN  0710.2]4 ,3[pl  6569.410]4 ,3[pN  
7001.3]2 ,6[pl  6948.733]2 ,6[pN  0004.2]4 ,1[pl  6633.396]4 ,1[pN  
7948.2]3 ,7[pl  1850.554]3 ,7[pN    

 

 
Figure 2. The first sample: parameters of targeted constraint. 

 
The found lengths of the vertical members of 
targeted constraint and the forces in them are 
shown in Table 4. 
From Table 4 it can be seen that the forces in 
the vertical member by absolute values coincide 
with the forces ][0 iR . This circumstance con-
firms the minimum of the objective function 
(12) [7-9, 15, 16, 18, 21-23] from [4] and the 
fulfillment of the requirement that the ratios be-
tween the forces ][iNst  are proportional to the 
ratios between the values ][0 iR . 

The cross-sectional areas of the vertical mem-
bers of targeted constraint can be found from 
the condition that its stiffness coincides with the 
stiffness determined by the matrix of additional 
coefficients (4) from [4]. These conditions are 
realized by dependencies (9), (14), (15) from 
[4]. Since there are no additional vertical mem-
bers in the computational scheme of the targeted 
constraint, then in (14) from [4] only the values  
 

][][ iFiFst ,   ][][ jFjFP  
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][][ iFiFst ,   ][][ jFjFP  
 

remain, and in the brackets of expression (15) 
from [4] we have only the first two terms. 
When minimizing the volume of the material of 
the targeted constraint from [4], researcher nor-
mally consider the case when, according to the 
design conditions 
 

2][i ,   1][i . 
 
All vertical members are solid round rods. The 
modulus of elasticity of the material of the ver-
tical members in equal to PaE 111006.2 . 
Then, using (13), (14), (15) and (16) from [4], 
we obtain 
 

200057357.0][ miFst ,   mDst 0.027024 , 
200028678.0][ miFp , mDp 0.0191088 , 

3012467.0 mVSV , 
 
where stD  and pD  are respectively, the diame-
ters of the rods of the vertical members and 
belts of targeted constraint. 
As noted above, when the length of the base 
vertical member changes, the ratios between the 
lengths of the base vertical members do not 
change, that is, the values 1  and 2  (see [4]) 
remain constant. Therefore, when changing the 
length of the base vertical member, the greatest 
length remains at the vertical member of the 
fourth node, and the smallest at the vertical 
member of the third node. Thus, when minimiz-
ing the function SVV  (see [4]), the values  

 
9841.0]4[/]1[1 stst ll ; 
551.1]3[/]1[2 stst ll , 

 
computed with the use of data from Table 4 do 
not change. Figure 2 shows the dependences of 
the lengths ]3[stl  and ]4[stl  on the change in the 
length of the base vertical member ]1[0stl . 
On Figure 2 also shows in the direction of the y-
axis the restrictions  
 

4,3,2,1,5.1][3 imilm st  

on the expression (17) from [4], and in the di-
rection of the abscissa shows the range of per-
missible values of variable length ]1[0stl  accord-
ing to the expression (18) from [4]. 
The targeted constraint was formed at an arbi-
trarily chosen value of the length of the base 
vertical member lst 45.2]1[ . By varying the 
length of the base vertical member ]1[0stl , the 
researcher can use the one-dimensional search 
method to achieve the minimization of material 
consumption when creating targeted constraint. 
In this case, the values of variable length should 
be chosen in the range of admissible values 
(17), (18) from [4]. Table 5 lists seven options 
for choosing the length of the base vertical 
member. For each option, the values of the 
lengths of the remaining racks and the amount 
of sighting material are given SVV . 
Let's consider three options for forming re-
strictions on the lengths of the vertical members 
and, accordingly, the area of admissible values 
of the length of the base vertical member ]1[0stl . 
variable while minimizing the amount of sight-
ing material: 
 
1) 4 ,3 ,2 ,1   ,5.1][3 imilst  (17) from [1];  

lm st 8826.1]1[9523.2 0  (18) from [1]; 
2) ilm st 5.1][1848.2  (17) from [1]; 

lm st 8826.1]1[15.2 0  (18) from [1]; 
3) milm st 1.2][3  (17) from [1];  

mlm st 6356.2]1[ 2.9523 0  (18) from [1]. 
 
In all variants, cases were considered when, ac-
cording to the design conditions, we have 
 

2][i ,  1][i . 
 
On Figure 3 shows a graph of the change in the 
volume of material of targeted constraint de-
pending on the length of the base vertical mem-
ber ]1[0stl . Figure 3 also shows the ranges of 
acceptable values of the variable value of the 
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three above options. In each area, the minimum 
volume values SVV  are marked. 
The results of minimizing the volume for the 
first version of the restrictions are shown in the 
fourth row of Table 5. Here, the minimum value 

30.01247 mVSV  for mlst 45.2]1[0  is within 

the range of acceptable values ]1[0stl , that is, the 
global extremum is found. The areas and diame-
ters of the sections of the vertical members of 
targeted constraint are equal to 
 

 
 

Table 4. The parameters of targeted constraint (the first sample). 
No. ]1[0stl  ]2[stl  ]3[stl  ]4[stl  SVV  
1 1 0.9737 0.7968 1.0162 0.02495 
2 1.5 1.4606 1.1952 1.5242 0.01567 
3 2.15 2.0934 1.7131 2.1848 0.01268 
4 2.45 2.3855 1.9521 2.4896 0.01247 
5 2.6356 2.5662 2.1000 2.6782 0.01254 
6 3.0 2.9211 2.3904 3.0485 0.01300 
7 3.25 3.1645 2.5896 3.3025 0.01351 

 

 
Figure 5. The graph of the change in the volume of material of the targeted constraint  

depending on the length of the base vertical member. 
 

20.0005734 mFst , mDst 0.0270 , 
20.0002868 mFp , mDp 0.0191 . 

 

The results of the second variant are presented 
in the third row of Table 5. The minimum value 

301268.0 mVSV  is on the border of the range 
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20.0005734 mFst , mDst 0.0270 , 
20.0002868 mFp , mDp 0.0191 . 

 

The results of the second variant are presented 
in the third row of Table 5. The minimum value 

301268.0 mVSV  is on the border of the range 

of acceptable values ]1[0stl , that is, the boundary 
optimum is found at mlst 15.2]1[0 . The areas 
and diameters of the sections of the vertical 
members of targeted constraints are equal to  
 

20.0006295 mFst , mDst 0.02381 , 
20.0003148 mFp , mDp 0.02002 . 

 
The results of the third variant are presented in 
the fifth row of Table 5. The minimum value 

301254.0 mVSV  is on the border of the range 
of acceptable values ]1[0stl , that is, the boundary 
optimum is found at mlst 635.2]1[0 . The areas 
and diameters of the sections of the vertical 
members of targeted constraints are equal to  
 

20.0005513mFst , mDst 0.02649 , 
20.0002756 mFp , mDp 0.01873 . 

 
The results obtained were checked (verified) 
with the use of “LIRA-SAPR” software pack-
age. The eigenfrequencies and coordinates of 
the vibration modes of the plate with impact 
coupling, obtained using LIRA-SAPR [8], coin-
cided with the data in Table 2. 
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