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INTRODUCTION 
 
For massive monolithic structures, which 
include foundation slabs, the problem of early 
cracking at the construction stage is relevant. 
This problem primarily arises because of 
uneven heating of structures, which in turn is 
due to the internal heat release of concrete 
during hardening and heat exchange with the 
environment [1-4]. 
Predicting the risk of early cracking is possible 
using computer simulation methods.  
When modeling rectangular in plane massive 
foundation slabs, as a rule, a quarter of the 
structure is considered together with the soil 
massif [5] (Fig. 1).  
 

 
Figure 1. Calculation scheme of the foundation 

 
The temperature field is determined from the 
solution of the differential equation of heat 
conduction [6]: 
 

2 2 2

2 2 2 ,T T T TQ c
x y z t

 (1) 

 
where  is the coefficient of thermal 
conductivity, T is the temperature, Q is the 
density of internal heat sources (W/m3),  is the 
material density, c is the specific heat, t is the 
time. 
In the presence of convective heat exchange 
with the environment (on the upper and side 
surfaces of the foundation, the upper surface of 
the soil), the boundary conditions are written as: 

0,T h T T
n

 (2) 

 
where n is the surface normal, h is the heat 
transfer coefficient, T  is the ambient 
temperature. 
On the side surfaces of the soil mass at a 
sufficient distance from the foundation, the 
temperature can be considered given: 
 

.gT t f t  (3) 
 
The thermal conductivity coefficient and the 
specific heat capacity of concrete in equation (1) 
are generally functions of time. However, this 
factor cannot be taken into account in existing 
software systems (ANSYS, Abaqus, etc.) 
According to [7], the thermal conductivity 
coefficient  is the function of the hydration 
degree : 
 

1.33 0.33 .  (4) 
 
The hydration degree is determined from the 
differential equation [8]: 
 

exp ,aEf
t RT

 (5) 

 
where Ea is the activation energy, R is the 
universal gas constant. 
For the function f( ), the empirical formula can 
be used [8]: 
 

 
0

exp ,m A nf
n m

  (6) 

 
Here A0, m, n0 and n  are the material constants 
depending on the type of cement. 
When modeling the stress-strain state, it is 
necessary to take into account the dependence 
of the strength and deformation characteristics 
of concrete on time. One of the few authors that 
take this factor into account is T.C. Nguyen [9-
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11]. For the elastic modulus, an explicit 
dependence on time is taken in the form 
 

0( ) (1 ).atE t E e  (7) 
 
Formula (6) is not the only option for describing 
the dependence of the elastic modulus on time. 
Some other formulas can be found, for example, 
in [12, 13]. 
However, this approach is rather simplified, 
since the physical and mechanical 
characteristics of concrete at each point depend 
not only on the hardening time, but also on the 
history of temperature changes over time. More 
perfect is the concept of expressing the physical 
and mechanical characteristics of concrete 
through the degree of its maturity DM [14], 
determined by the integral: 
 

 
0

.
t

DM t T d  (8) 

 
The ultimate compressive strength of concrete 
at time t can be determined by the empirical 
formula [15]: 
 

0.55

28
15800 122.5exp(0.35 1 )b

TR R
Tt

 (9), 

 
where 28R  is the strength of concrete at the age 
of 28 days (MPa), /T DM t , t is the age of 
concrete in hours.  
The elastic modulus of concrete E (MPa) at time 
t can be represented as a function of the 
compressive strength Rb at time t [16]: 
 

0.04 571000 .291
3.8 0.8

b

b

RE

R

 
(10) 

 
Accounting for the degree of maturity of 
concrete by standard means of the existing finite 
element software is also very difficult. In 
addition, since the temperature is different at 

each point of the structure, the modulus of 
elasticity becomes a function not only of time, 
but also of coordinates. Thus, the problem of the 
mechanics of an inhomogeneous body takes 
place. 
In addition to taking into account the 
dependence of material characteristics on time, 
the determination of the stress-strain state of 
massive monolithic structures in the process of 
erection requires taking into account creep 
deformations and contraction shrinkage. 
The purpose of this work is to develop a 
methodology for calculating the stress-strain 
state of massive monolithic foundation slabs in 
the process of construction, taking into account 
the above factors. A simplified technique is 
proposed, which, based on the characteristic 
features of the stress-strain state, makes it 
possible to reduce a three-dimensional problem 
to a one-dimensional one. 
 
 
DERIVATION OF THE RESOLVING 
EQUATIONS  
 
Finite element modeling of the temperature field 
in a three-dimensional formulation shows that 
for massive foundation slabs, with the exception 
of the edges, the temperature distribution is one-
dimensional, i.e. the temperature does not 
depend on the x, y coordinates, and is a function 
of the z coordinate only. (Fig. 2) 
 

 
Figure 2. Temperature distribution in the 

foundation slab due to internal heat release of 
concrete during construction 

 
Simulation of the stress-strain state in a three-
dimensional setting shows that, with the 
exception of the edges, the stresses z , xz , xy  
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Simulation of the stress-strain state in a three-
dimensional setting shows that, with the 
exception of the edges, the stresses z , xz , xy  

and yz  are close to zero, and the stresses x  
and y  are approximately equal to each other, 
even if the sides of the foundation are not equal 
to each other (Fig. 3-7).  
 

 
Figure 3. Stress z  distribution 

 

 
Figure 4. Stress xy  distribution 

 

 
Figure 5. Stress yz  distribution 

 

 
Figure 6. Stress xz distribution 

 
Figure 7. Stress distribution for x (top) and y  

(bottom) 
 
Total deformations x  and y , with the 
exception of the edges, are almost constant 
throughout the thickness of the slab, equal to 
each other and do not depend on the coordinates 
x and y (Fig. 8) 
 

 
Figure 8. Total strain distribution for x (top) 

and y (bottom) 
 
Based on these features, we propose the 
simplified method for calculating the stress-
strain state.  
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In a biaxial stress state, the relationship between 
stresses and strains can be represented as: 
 

1 ( ) ;

1 ( ) ,

x x y f

y y x f

E

E

 (11) 

 
Here, the modulus of elasticity is taken as a 
function of coordinates, f  are the forced 
deformations, representing the sum of 
temperature deformations, contraction shrinkage 
deformations and creep strains: 
 

.f sh crT  (12) 
 
At x y  and x y , expressing 
stresses from (11) in terms of strains, we obtain: 
 

( ).
1 f

E  (13) 

 
We assume that the soil under foundation slab 
does not prevent the free expansion of the 
foundation in the directions x and y. The value 
can be found from the condition that the axial 
forces 0 :x yN N N   
 

0

0,
h

N dz  (14) 

 
where h  is the foundation slab thickness. 
Substituting (13) into (14), we get: 
 

 
0 0

1 ( ( ) ( ) ( ) ) 0,
1

h h

fE z dz E z z dz  (15) 

 
From (15) it is possible to find : 
 

0

0

( ) ( )
.

( )

h

f

h

E z z dz

E z dz
 (16) 

The proposed approach also makes it possible to 
take into account the reinforcement of the 
structure in the case when the coefficients of 
reinforcement along the x and y axes are the 
same.  
The deformation of the i-th reinforcement layer 
can be written as: 
 

,
, , ,s i

s i s s i
s

T
E

 (17) 

 
where s  is the coefficient of linear thermal 
expansion of steel, sE  is the modulus of 
elasticity of steel. 
We express from (17) the stress in the 
reinforcement and take into account that the 
reinforcement    and   concrete    work   together  
( ,s i ): 
 

, ,( ).s i s s s iE T  (18) 
 
The axial force represents the sum of the forces 
perceived by the reinforcement and concrete: 
 

, ,
0

0,
h

s i s iN dz A  (19) 

 
where ,s iA  is the cross-sectional area of the 
reinforcement of the i-th layer per 1 meter of the 
length of the slab. 
Substituting (13) and (18) into (19), we obtain 
the following formula for : 
 

, ,
0

,
0

( ) ( ) (1 )
.

( ) (1 )

h

f s s s i s i

h

s s i

E z z dz E T A

E z dz E A
 (20) 

 
 
CALCULATION ALGORITHM 
 
The first step in calculating the stress-strain state 
of foundation slabs is to determine the 
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CALCULATION ALGORITHM 
 
The first step in calculating the stress-strain state 
of foundation slabs is to determine the 

temperature field. As mentioned earlier, with the 
exception of the edges of the foundation slab, the 
temperature distribution is one-dimensional, and 
to determine the function ( , )T z t , instead of 
equation (1), one can use the equation: 
 

2

2( , ) .T Tz t Q c
z t

 (17) 

 
To solve equation (17), a grid in z and t is 
introduced. When solving this equation by the 
finite element method, the problem is reduced to 
a system of differential equations 
 

T
0,  C K T F

t  
(18) 

 
where [ ]C  is the damping matrix, [ ]K  is the 
thermal conductivity matrix, { }F  is the load vector.  
The integration of system (18) is carried out 
together with the solution of differential 
equation (5) using the Euler method or other 
difference schemes. 
Further, at each time step, the stress-strain state 
is calculated. 
Contraction shrinkage sh  is determined by the 
empirical formula [17]: 
 

50.2 2 1) 00(sh B alnt t b ,   (17) 
 
where B is the concrete class (MPa), a and b  
are the empirical coefficients 
For quick hardening concrete 0.31a  and 

0.4b , for slow hardening concrete  0.41a  
and 0.85b . 
To determine creep strains, a viscoelastic model 
of hereditary aging of concrete is used [13]. In 
the case of a biaxial stress state, the creep law is 
written as: 
 

0

1 ( ( ) ( ))
( )

( , )( ( ) ( )) .

x x y

t

x y

t t
E t

d
 (19) 

The measure of creep was used in the form: 
 

( )( )( , ) (1 ),
( )

t

E t
 

0.785
18000( )  , 0.05 .

( )
d ys

E
a  

(20) 

 
From (18), the creep deformation, taking into 
account the equality of stresses x  and y  can 
be written as: 
 

0

( , )(1 ) ( ) .
t

cr d  (21) 

 
The stress calculation is carried out step by 
step. The creep strains in the next step are 
determined from the strains and stresses in the 
previous step. If the forced deformation f  in 
each node is known at the current step, one 
can find the value  using formula (20). And 
then the stress in each node can be calculated 
using formula (11). 
 
 
RESULTS AND DISCUSSION 
 
To test the developed technique, a test problem 
was solved for a foundation slab with 
dimensions a = 8 m, b = 10 m, Hf  = 2 m. The 
initial temperature of the concrete mix, the 
ambient temperature, and the initial temperature 
of the soil were assumed to be the same and 
equal to 10.5 0C for simplicity. B25 class 
concrete was assumed with thermophysical 
properties:  = 2.67 W/(m·0C),  = 2500 
kg/m3, c = 1000 J/(kg·0C). Thermal properties 
of the soil were:  = 1.5 W/(m·0C),  = 1600 
kg/m3, c = 1875 J/(kg·0C). Heat transfer 
coefficients on the upper surface of the soil and  
on the top of the foundation were 25 W/(m2·0C) 
and 4.5 W/(m2·0C) respectively. The time 
interval from 0 to 72 hours was considered. 
Thermal expansion coefficient of concrete was 

 = 10-5 1/0C. 
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We have used for concrete the time dependence 
of the density of internal sources which is 
shown in Fig. 9. 
 

 
Figure 9. Dependence of the density of internal 

heat sources of concrete on time 
 
The comparison was carried out with the 
solution in the ANSYS software package in a 
three-dimensional formulation. When 
calculating in ANSYS, the modulus of elasticity 
of concrete was assumed to be constant in time 
and equal to 2.45×104 MPa, which 
corresponded to the average value of the 
modulus of elasticity over the thickness of the 
slab at the age of 72 hours. 
Figure 10 shows the change in time of the 
maximum temperature in the foundation and 
the temperature on the upper surface, obtained 
from the solution of a one-dimensional 
problem, taking into account the dependence 
of the thermal conductivity coefficient on the 
degree of hydration. The dashed lines 
correspond to the solution in the ANSYS 
software package in a three-dimensional 
setting at a constant thermal conductivity 
coefficient. From the graphs presented, it can 
be seen that, firstly, the conditions on the side 
surfaces of the foundation do not affect the 
temperature distribution in the center, and, 
secondly, the change in the thermal 
conductivity coefficient over time can be 
neglected. 

 
Figure 10. Time change of temperatures in the 

foundation 
 

Fig. 11 and 12 show the change in time of stresses 
x  in the center of the foundation at the upper and 

lower surfaces respectively (at points with the 
highest tensile stresses). Curve 1 corresponds to the 
solution according to the author's method at a 
constant modulus of elasticity without taking into 
account creep and contraction shrinkage. Curve 2 
corresponds to the solution taking into account the 
dependence of the elasticity modulus on the degree 
of concrete maturity, but without taking into 
account creep and contraction shrinkage. Curve 3 
takes into account the dependence of the elastic 
modulus on time, creep, and contraction shrinkage. 
Curve 4 was plotted taking into account the factors 
listed above and a reinforcement factor of 2%. The 
dashed line shows the solution in the ANSYS 
software package. 
 

 
Figure 11. Change in stresses x at the upper 

surface of the foundation 
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Figure 11. Change in stresses x at the upper 

surface of the foundation 

 
Figure 12. Stress x change at the bottom 

surface of the foundation 
 
Figures 11-12 show the following: 
1. The results obtained with E = const 
according to the author's method and in the 
ANSYS software package differ slightly. 
2. Neglecting the dependence of the elasticity 
modulus of concrete on the degree of its 
maturity leads to an overestimation of stresses 
in concrete. 
3. Neglect of the concrete creep also leads to 
overestimation of stresses. 
4. When reinforcement is taken into account, 
the stresses in concrete at the stage of 
construction are higher, which, firstly, can be 
explained by the presence of a small difference 
between the coefficients of linear thermal 
expansion of steel and concrete ( s  = 1.15·10-5 
and b  = 1·10-5), and secondly by the 
contraction shrinkage of concrete. 
5. With the accepted initial data, the tensile 
stresses in concrete during the curing process 
can reach almost 3 MPa. Similar results were 
obtained earlier in the works [14,18]. 
Obviously, concretes of mass classes (B25-B35) 
are not able to withstand such stresses, 
especially at the stage of structure formation, 
and measures are needed to reduce the risk of 
early cracking. Such measures include the 
regulation of the kinetics of heat release of 
concrete [19, 20] and the parameters of heat 

transfer on surfaces [21], the installation of 
cooling systems [22], etc. 
 
 
CONCLUSIONS 
 
A simplified, but at the same time effective 
method for determining the stress-strain state of 
massive monolithic foundation slabs during the 
construction process was proposed. 
It was shown that the problem of calculating 
thermal stresses in massive monolithic 
foundation slabs can be reduced to a one-
dimensional one without compromising the 
accuracy of the results. 
The developed technique was tested by 
comparison with the results of calculations in 
the ANSYS software package in a three-
dimensional formulation. The discrepancy 
between the results is insignificant. 
The proposed method makes it possible to take 
into account the dependence of the modulus of 
elasticity of concrete on the degree of its 
maturity, creep, contraction shrinkage, and 
reinforcement coefficient. 
It has been established that neglect of creep and 
changes in the modulus of elasticity of concrete 
over time leads to overestimated stress values. 
The contraction shrinkage of concrete and the 
difference in the coefficients of linear thermal 
expansion of concrete and reinforcement lead to 
the fact that with an increase in the coefficient 
of reinforcement, the stresses in concrete at the 
stage of construction increase. 
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