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SIMPLIFIED MODEL FOR DETERMINING THE STRESS-
STRAIN STATE IN MASSIVE MONOLITHIC FOUNDATION
SLABS DURING CONSTRUCTION

Anton S. Chepurnenko, Grigory V. Nesvetaev, Yuliya I. Koryanova,
Batyr M. Yazyev

Don State Technical University, Rostov-on-Don, RUSSIA

Abstract. The article proposes the simplified method for determining stresses in massive monolithic foundation
slabs arising from the heat release of concrete during the hardening process. The proposed technique makes it
possible to reduce a three-dimensional problem to a one-dimensional one based on the features of the
distribution of stresses and strains in the structures under consideration, identified during finite element modeling
in a three-dimensional setting. The resulting resolving equations take into account the creep and shrinkage of
concrete, the coefficient of reinforcement of the structure. The strength and deformation characteristics of
concrete are assumed as functions of the degree of maturity of the concrete, which in turn is determined by the
time and temperature of curing. Approbation of the developed model is carried out by comparison with the
calculation in a three-dimensional setting in the ANSYS software package. The influence of creep and
contraction shrinkage of concrete, the degree of concrete maturity and the coefficient of reinforcement on the
stress-strain state of structures is investigated.
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YIIPOLIEHHASI MOJIEJIb OINPEJIEJEHUS HANIPSI)KEHHO-
JTE®OPMHUPOBAHHOI'O COCTOSIHUSI B MACCHUBHBIX
MOHOJIMTHBIX ®YHIAMEHTHBIX IIJIMTAX B IPOLIECCE
BO3BEJEHMUS

A.C. Yenypuenxo, I.B. Heceemaes, I0.U. Kopanoea, b.M. H3viee

JIoHCKOM TOCyAapCTBEHHBIN TEXHUYECKUH YHUBepcuTeT, PocToB-Ha-Jlony, POCCUA

AHHoTanusi. B cratbe mpennmaraeTcd ympolleHHAas METOAMKA ONpPEJENICHHs HalpsDKEHUH B MAaCCHUBHBIX
MOHOJIMTHBIX (DPyHIAMEHTHBIX IUTUTAX, BO3HHMKAIOMIMX BCIIEICTBHE TEIUIOBBIACICHNS OETOHAa B Tpolecce
TBepAcHus. llpearaemass MeTOMKa TO3BOJSIET CBECTH TPEXMEPHYIO 337ady K OJHOMEPHOH Ha OCHOBE
0COOCHHOCTEW paclpe/ieNieHns] HalpsDKeHNH U geopMarii B pacCMaTpUBAEMbIX KOHCTPYKIMAX, BBISIBICHHBIX
IpU KOHEYHO-IIEMEHTHOM MOJICTMPOBAHUM B TPEXMEPHOH IOCTAHOBKE. B MOIy4eHHBIX pa3peraroniux
YPaBHCHUSIX YYMTBHIBAETCS TOJI3yuecTh W ycaaka OeroHa, Ko3(QuIMEHT apMuUpOBaHUS KOHCTPYKIHH.
ITpouHocTHble U nedOpPMaTUBHBIE XapPAKTEPUCTHKN OETOHA MPHUHUMAIOTCS (QYHKLUSMU OT CTEHEHU 3PENIOCTH
6eToHa, KOTOpas B CBOIO Ouepelb ONpeAeseTcs BpeMEeHEM M TeMIIepaTypod TBepjeHUs. BrimomHsaeTcs
ampobarus pa3paboTaHHOM MOJIENN MyTeM CPaBHEHMS C pacueToM B TPEXMEPHOH IMOCTaHOBKE B MPOTPAMMHOM
komrutekce ANSYS. Hccnenyercs BIUsIHUE TTOJI3y4eCTH M KOHTPAKIIMOHHOM yCaJKu OETOHA, CTETIEHH 3PEIOCTH
OeroHa 1 KO HUIIEHTa apMUPOBAHHS HA HAIPSHKEHHO-/1e)OPMHUPOBAHHOE COCTOSIHUE KOHCTPYKIIHH.

KaroueBble ciioBa: TEMIICPATYPHBIC HAIIPAKCHUA, MACCUBHBIC MOHOJIMTHBIC KOHCTPYKIUH,
q)yH,Z[aMGHTHaSI IIMTa, )K6H63066TOH, NOJIBy4YeCTh, yCaaKa
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INTRODUCTION

For massive monolithic structures, which
include foundation slabs, the problem of early
cracking at the construction stage is relevant.
This problem primarily arises because of
uneven heating of structures, which in turn is
due to the internal heat release of concrete
during hardening and heat exchange with the
environment [1-4].

Predicting the risk of early cracking is possible
using computer simulation methods.

When modeling rectangular in plane massive
foundation slabs, as a rule, a quarter of the
structure is considered together with the soil
massif [5] (Fig. 1).

Foundation

Soil massif

Figure 1. Calculation scheme of the foundation

The temperature field is determined from the
solution of the differential equation of heat
conduction [6]:

1 82T+82T+82T 10-= .or |
ox> oy o P ot’ M
where A is the coefficient of thermal

conductivity, 7 is the temperature, Q is the
density of internal heat sources (W/m?), p is the
material density, ¢ is the specific heat, 7 is the
time.

In the presence of convective heat exchange
with the environment (on the upper and side
surfaces of the foundation, the upper surface of
the soil), the boundary conditions are written as:
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/Ia—T+h(T—Tw)=O,
on

(2)
where 7 is the surface normal, 4 is the heat
transfer coefficient, 7. is the ambient

temperature.

On the side surfaces of the soil mass at a
sufficient distance from the foundation, the
temperature can be considered given:

3)

The thermal conductivity coefficient and the
specific heat capacity of concrete in equation (1)
are generally functions of time. However, this
factor cannot be taken into account in existing
software systems (ANSY'S, Abaqus, etc.)
According to [7], the thermal conductivity
coefficient A is the function of the hydration
degree &:

A(&)=4,(1.33-0.33¢). (4)

The hydration degree is determined from the
differential equation [8]:

o0& E
- = exp| ——= |,

o =7 () p( RT) ©)
where Ea is the activation energy, R is the
universal gas constant.

For the function f(&), the empirical formula can
be used [8]:

f(f)l(m%wj(éw—é)exp(—%, (©)

Here Ao, m, noand » are the material constants
depending on the type of cement.

When modeling the stress-strain state, it is
necessary to take into account the dependence
of the strength and deformation characteristics
of concrete on time. One of the few authors that
take this factor into account is T.C. Nguyen [9-
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11]. For the elastic modulus, an explicit
dependence on time is taken in the form

E(t)=E,(1-e™™). (7)

Formula (6) is not the only option for describing
the dependence of the elastic modulus on time.
Some other formulas can be found, for example,
in[12, 13].

However, this approach is rather simplified,
since  the  physical and  mechanical
characteristics of concrete at each point depend
not only on the hardening time, but also on the
history of temperature changes over time. More
perfect is the concept of expressing the physical
and mechanical characteristics of concrete
through the degree of its maturity DM [14],
determined by the integral:

DM ()= jT(T)dT.

0

(8)

The ultimate compressive strength of concrete
at time 7 can be determined by the empirical
formula [15]:

—\ 0.55
R = R, exp(0.35 1_(15800—_122.5Tj ) O,

Tt

where R, is the strength of concrete at the age

of 28 days (MPa), T =DM /t, t is the age of
concrete in hours.

The elastic modulus of concrete £ (MPa) at time
t can be represented as a function of the
compressive strength Ry at time 7 [16]:

0.04R, +57
N (10)
3.8+0.8R,

E =1000

Accounting for the degree of maturity of
concrete by standard means of the existing finite
element software is also very difficult. In
addition, since the temperature is different at
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each point of the structure, the modulus of
elasticity becomes a function not only of time,
but also of coordinates. Thus, the problem of the
mechanics of an inhomogeneous body takes
place.

In addition to taking into account the
dependence of material characteristics on time,
the determination of the stress-strain state of
massive monolithic structures in the process of
erection requires taking into account creep
deformations and contraction shrinkage.

The purpose of this work is to develop a
methodology for calculating the stress-strain
state of massive monolithic foundation slabs in
the process of construction, taking into account
the above factors. A simplified technique is
proposed, which, based on the characteristic
features of the stress-strain state, makes it
possible to reduce a three-dimensional problem
to a one-dimensional one.

DERIVATION OF THE RESOLVING
EQUATIONS

Finite element modeling of the temperature field
in a three-dimensional formulation shows that
for massive foundation slabs, with the exception
of the edges, the temperature distribution is one-
dimensional, i.e. the temperature does not
depend on the x, y coordinates, and is a function
of the z coordinate only. (Fig. 2)

\\\\

09042022 20:17

54.419 Max

Figure 2. Temperature distribution in the
foundation slab due to internal heat release of
concrete during construction

Simulation of the stress-strain state in a three-
dimensional setting shows that, with the
exception of the edges, the stresses o, 7_, 7

xz 2 Txy
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and 7, are close to zero, and the stresses o,

and o, are approximately equal to each other,

even if the sides of the foundation are not equal
to each other (Fig. 3-7).
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Figure 3. Stress o, distribution
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Figure 4. Stress 7, distribution
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Figure 5. Stress . distribution
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Figure 6. Stress t_ distribution
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Figure 7. Stress distribution for o (top) and o,
(bottom)

Total deformations & and ¢, with the

exception of the edges, are almost constant
throughout the thickness of the slab, equal to
each other and do not depend on the coordinates
x and y (Fig. 8)
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Figure 8. Total strain distribution for ¢_(top)
and ¢, (bottom)

Based on these features, we propose the
simplified method for calculating the stress-
strain state.
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In a biaxial stress state, the relationship between
stresses and strains can be represented as:

1
£, =E(ax —Vvo,)+&,;

(11)

1
&, =E(O'y —-vo,)+é&,,

Here, the modulus of elasticity is taken as a
function of coordinates, & , are the forced

deformations, representing the sum of
temperature deformations, contraction shrinkage
deformations and creep strains:

(12)

e,=aAT +¢,+¢,.

At o, = o,=0 and ¢ = &, =&, expressing

stresses from (11) in terms of strains, we obtain:

O =

- (13)

V(g &)

We assume that the soil under foundation slab
does not prevent the free expansion of the
foundation in the directions x and y. The ¢ value
can be found from the condition that the axial
forces N=N =N, =0:

h

N=jadz=0, (14)
0
where 4 is the foundation slab thickness.
Substituting (13) into (14), we get:
IT(g j E(2)dz - jE(z)gf(z)dz) 0, (15)
From (15) it is possible to find ¢:
h
[E2)e,(2)dz
g=" i (16)
jE(Z)dZ
0
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The proposed approach also makes it possible to
take into account the reinforcement of the
structure in the case when the coefficients of
reinforcement along the x and y axes are the
same.

The deformation of the i-th reinforcement layer
can be written as:

& +aAT

S, 85,0

(17)

where «, is the coefficient of linear thermal

expansion of steel, E_ 1s the modulus of

elasticity of steel.

We express from (17) the stress in the
reinforcement and take into account that the
reinforcement and concrete work together

(¢,,=¢):

6. =E.(6-aAT). (18)

The axial force represents the sum of the forces
perceived by the reinforcement and concrete:

N= jadz+z o, A,=0 (19)

where A . is the cross-sectional area of the

reinforcement of the i-th layer per 1 meter of the
length of the slab.

Substituting (13) and (18) into (19), we obtain
the following formula for e:

iE(z)gf. (2)dz+(1-v))_Ea,AT, A

Sl SI

e=" . (20)

fE(z)dz +(1-v)Y E A,

CALCULATION ALGORITHM

The first step in calculating the stress-strain state
of foundation slabs is to determine the
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temperature field. As mentioned earlier, with the
exception of the edges of the foundation slab, the
temperature distribution is one-dimensional, and
to determine the function T7(z,7), instead of

equation (1), one can use the equation:

2

Az, t) -

(17)

To solve equation (17), a grid in z and 7 is
introduced. When solving this equation by the
finite element method, the problem is reduced to
a system of differential equations

[C]%?+[K]{T}+{F}=o, (18)

where [C] is the damping matrix, [K] is the
thermal conductivity matrix, {F'} is the load vector.
The integration of system (18) is carried out
together with the solution of differential
equation (5) using the Euler method or other
difference schemes.

Further, at each time step, the stress-strain state
is calculated.

Contraction shrinkage ¢, is determined by the

empirical formula [17]:

£,(1)=—(02B-2)(alnt —b)-107° <0, (17)

where B is the concrete class (MPa), aand b
are the empirical coefficients

For quick hardening concrete a=0.31 and
b=0.4, for slow hardening concrete a=0.41
and b=0.85.

To determine creep strains, a viscoelastic model
of hereditary aging of concrete is used [13]. In
the case of a biaxial stress state, the creep law is
written as:

x:m(o- (O —vo, (1) -

—j(a (r)-vo,(7)):

aC(t 0 (19)
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The measure of creep was used in the form:

Cn =T 0-e7 ),
(20)
(o(r):%, —0.05 days .

From (18), the creep deformation, taking into
account the equality of stresseso, ando, can

be written as:

aC(z 0

=—(1- V)I o(r)- @1

The stress calculation is carried out step by
step. The creep strains in the next step are
determined from the strains and stresses in the
previous step. If the forced deformation &, in

each node is known at the current step, one
can find the value ¢ using formula (20). And
then the stress in each node can be calculated
using formula (11).

RESULTS AND DISCUSSION

To test the developed technique, a test problem
was solved for a foundation slab with
dimensions a=8 m, b=10 m, Hr = 2 m. The
initial temperature of the concrete mix, the
ambient temperature, and the initial temperature
of the soil were assumed to be the same and
equal to 10.5 °C for simplicity. B25 class
concrete was assumed with thermophysical
properties: A, = 2.67 W/(m-°C), p = 2500

kg/m®, ¢ = 1000 J/(kg-°C). Thermal properties
of the soil were: 4 = 1.5 W/(m-°C), p = 1600
kg/m’, ¢ = 1875 J/(kg-°C). Heat transfer
coefficients on the upper surface of the soil and
on the top of the foundation were 25 W/(m?-°C)
and 4.5 W/(m?-°C) respectively. The time
interval from 0 to 72 hours was considered.
Thermal expansion coefficient of concrete was
a =107 1/°C.
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We have used for concrete the time dependence
of the density of internal sources which is
shown in Fig. 9.
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Figure 9. Dependence of the density of internal
heat sources of concrete on time

The comparison was carried out with the
solution in the ANSYS software package in a
three-dimensional formulation. When
calculating in ANSY'S, the modulus of elasticity
of concrete was assumed to be constant in time
and equal to 245x10* MPa, which
corresponded to the average value of the
modulus of elasticity over the thickness of the
slab at the age of 72 hours.

Figure 10 shows the change in time of the
maximum temperature in the foundation and
the temperature on the upper surface, obtained
from the solution of a one-dimensional
problem, taking into account the dependence
of the thermal conductivity coefficient on the
degree of hydration. The dashed lines
correspond to the solution in the ANSYS
software package in a three-dimensional
setting at a constant thermal conductivity
coefficient. From the graphs presented, it can
be seen that, firstly, the conditions on the side
surfaces of the foundation do not affect the
temperature distribution in the center, and,
secondly, the change in the thermal
conductivity coefficient over time can be
neglected.
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Figure 10. Time change of temperatures in the
foundation

Fig. 11 and 12 show the change in time of stresses
o, in the center of the foundation at the upper and

lower surfaces respectively (at points with the
highest tensile stresses). Curve 1 corresponds to the
solution according to the author's method at a
constant modulus of elasticity without taking into
account creep and contraction shrinkage. Curve 2
corresponds to the solution taking into account the
dependence of the elasticity modulus on the degree
of concrete maturity, but without taking into
account creep and contraction shrinkage. Curve 3
takes into account the dependence of the elastic
modulus on time, creep, and contraction shrinkage.
Curve 4 was plotted taking into account the factors
listed above and a reinforcement factor of 2%. The
dashed line shows the solution in the ANSYS
software package.
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3500 |= = ANSYS 2
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Figure 11. Change in stresses o _at the upper

surface of the foundation
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Figure 12. Stress o change at the bottom
surface of the foundation

Figures 11-12 show the following:

1. The results obtained with E = const
according to the author's method and in the
ANSYS software package differ slightly.

2. Neglecting the dependence of the elasticity
modulus of concrete on the degree of its
maturity leads to an overestimation of stresses
in concrete.

3. Neglect of the concrete creep also leads to
overestimation of stresses.

4. When reinforcement is taken into account,
the stresses in concrete at the stage of
construction are higher, which, firstly, can be
explained by the presence of a small difference
between the coefficients of linear thermal
expansion of steel and concrete («, = 1.15-107

1-10°), and secondly by the

contraction shrinkage of concrete.

5. With the accepted initial data, the tensile
stresses in concrete during the curing process
can reach almost 3 MPa. Similar results were
obtained earlier in the works [14,18].
Obviously, concretes of mass classes (B25-B35)
are not able to withstand such stresses,
especially at the stage of structure formation,
and measures are needed to reduce the risk of
early cracking. Such measures include the
regulation of the kinetics of heat release of
concrete [19, 20] and the parameters of heat

and o, =
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transfer on surfaces [21], the installation of
cooling systems [22], etc.

CONCLUSIONS

A simplified, but at the same time effective
method for determining the stress-strain state of
massive monolithic foundation slabs during the
construction process was proposed.

It was shown that the problem of calculating
thermal stresses in massive monolithic
foundation slabs can be reduced to a one-
dimensional one without compromising the
accuracy of the results.

The developed technique was tested by
comparison with the results of calculations in
the ANSYS software package in a three-
dimensional formulation. The discrepancy
between the results is insignificant.

The proposed method makes it possible to take
into account the dependence of the modulus of
elasticity of concrete on the degree of its
maturity, creep, contraction shrinkage, and
reinforcement coefficient.

It has been established that neglect of creep and
changes in the modulus of elasticity of concrete
over time leads to overestimated stress values.
The contraction shrinkage of concrete and the
difference in the coefficients of linear thermal
expansion of concrete and reinforcement lead to
the fact that with an increase in the coefficient
of reinforcement, the stresses in concrete at the
stage of construction increase.
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