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Abstract. The article presents numerical methods for controlling the parameters of temporal nonlocality of 
computer models of rod structures made of composite materials. The finite element method is the most widely 
used numerical method for solving practical problems of the analysis of mechanical systems. A nonlocal in time 
internal damping model is integrated into the algorithm of this method. The one-dimensional model of the Euler-
Bernoulli beam is presented in the article. The equilibrium equation of a moving mechanical system is solved 
numerically using an implicit scheme. In the article the damping matrix obtained from the condition of 
stationarity of the total deformation energy was used. The article presents the study of non-local in time damping 
model properties. The model is integrated into the finite element method. The non-local model is algorithmized 
and programmed in the MATLAB software package. 
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INTRODUCTION 
 
Today, the models of oscillatory processes 
taking place in mechanical systems can be 
modeled in various ways. Also the 
computational mathematical and algorithmic 
apparatus has been significantly developed. 
Despite this, scientists devote a special place to 
the issue of adequate modeling of the damping 
properties of structures made of structurally 
complex materials. For example, the papers [1, 
2] present ideas of damping kernels created as a 
linear combination of decreasing functions. In 
works [3, 4, 5] study the issues of constructing 
the effective characteristics of a layered 
composite material, the layers of which are 
viscoelastic.  
In this article, we present the results of 
modeling of the damping properties of 
structures made of structurally complex 
materials, built on the assumption that the 
material has nonlocal in time properties of 
internal damping. In [6, 7, 8] the matrix form of 
the modified equation of motion of mechanical 
systems was studied: 
 
 

( ) + · · ( ) · 

· (1 ) · ( ) ( ) · 

· · ( ) = ( ), 
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the integral term endows the classic 
computational model with the time nonlocality. 
Here 0 < < 1 is the temporal nonlocality 
weight coefficient [7];  – initial time of the 
oscillatory process. Matrices of masses M, 
damping D and stiffness K of the computer 
model are developed from the condition of a 
minimum change in the total energy of a 
mechanical system deformed in motion [6, 8, 9]. 
When = 1 – the model preserves the locality 
of the time component. The function ( ) 
in equation (1) is usually called the damping 
kernel function [7]. The Gaussian curve was 
taken as the damping kernel into a solution: 
 

( ) =
( )  (2) 

 

 
the parameter > 0 in (2) characterizes the area 
of nonlocal properties of the time component, 
while regardless of the value of ,  

( )
= 1 ;  [ ] – all moments of 

time preceding the considered component of the 
time axis . Reducing the value of the 
parameter  increases the level of nonlocality 
along the time axis of the model. Such a 
statement of the problem endows the damping 
forces in the calculation model with the property 
of "memory" (hereinafter, this property of the 
model will be called "damping with memory"). 
Thus, in the numerical calculation of the 
structure according to the implicit scheme in the 
term (1), responsible for damping with memory, 
the values of the rates of change of 
displacements and deformations are taken into 
account not only at the previous computational 
step , but also at all previous time steps up to 

. 
The use of the kernel of the internal damping 
operator (2) can be attributed to the 
mathematical idealization of the description of 
the distribution of the "memory" of the 
composite in time, which is generally not based 
on the features of the microstructure of the 
material. To use the constructed model in 
practical calculations, it must be calibrated 
based on the data of a physical or alternative, 
for example numerical experiment. In this case, 
the parameter  in (2) becomes the main control 
parameter of the considered computational 
model, which sets the degree of nonlocality. 
 
 
MODEL CALIBRATION TECHNIQUES 
 
As an example, consider the oscillations of a beam 
made from the composition material. The beam is 
rigidly fixed at the edges and loaded with an 
instantly applied uniformly distributed load. The 
general physical and mechanical parameters of the 
design and the values of the momentarily applied 
load are presented in Table 1.  
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Table 1 
General parameters  

of a fiberglass vinyl ester beam.
Young's of elasticity [ ]: E=1720000;  
Beam length [m]: L=12;  
Material density [t/m3]:  =1.9;  
Beam cross-sectional area (constant along 
the entire length) [m2]: A=0.06;  
Moment of inertia [m4]: I=4.5000e-04;  
Instantaneously applied load [N/m2]: q=-1. 

 

 
To emphasize the necessity and benefit of further 
studies of the nonlocal in time model of damping 
properties of composite materials, the comparison 
of the results of equation (1) solution in a local 
statement (for = 1) with experimental data is 
presented. The fig.1 shows the time history of 
vertical displacements of the middle node of the 
beam. The solid line shows the numerical solution 
of the problem based on a one-dimensional local 
in time computational model; dotted line - data 
obtained as a result of a numerical experiment 
implemented in the finite element software 
package SIMULIA Abaqus (structurally complex 
properties of the composition were taken into 
account using an orthotropic material model). 
 

 
Figure 1. Vertical displacement of the middle 

node of the oscillating beam made of a 
composite material: ( ) – experimental 

curve; ( ) – is a time-local curve 
 

Based on the simulation results, it was concluded 
that the computer model, local in time, approximates 
the (dynamic) oscillatory process inside a structure 
made of a structurally complex material with a 
reliability that is not sufficient for further application 
in design justification process. Calculations using 
isotropic or local one-dimensional models for 

composites give a significant error, which is 
unacceptable in the calculation of such structures 
subjected to dynamic effects. 
The article presents two main approaches 
(methodologies) to determining the optimal 
value of the parameter  for a non-local in time 
one-dimensional model of the dynamic behavior 
of a structure made of composite material.  
In this work the following indices are used: 
  ( ) – displacement vector obtained as a 
result of a numerical experiment implemented 
in the software package SIMULIA Abaqus; 
 ( ) – the displacement vector obtained 
as a result of solving equation (1), according to 
the implicit scheme by the modified Newmark 
method [10]; 
 ( ) – a curve synthesizing the values of 
the displacement vector obtained as a result of a 
numerical experiment. 
 ( ) – a sum of squared deviations of 
vector elements ( ) to ( ).  
 
Methodology 1. Direct construction of a search 
model for the optimal nonlocality parameter of the 
dynamic properties of the composite by the least 
squares method (LSM).This technique provides an 
automated search for the value of the parameter , 
in which the sum of the squared deviations 

( ) takes the minimum value. Fig. 2 shows 
the dependency graph ( ), showing the 
behavior of the non-local model (1) in a fairly 
wide range of parameter values 1 200 (the 
value of  was not further increased in this work). 
In Figure 3, we have localized the range of  
values relative to ( ) smallest value.
 

 
Figure 2. Dependence of  on . The 

ordinate shows the summation of the squared 
deviations ( ) 
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Figure 3. Dependence of  on , localized 

in the region of extreme values of  : the 
abscissa shows the values of the parameter  in 
the range 1 40, the ordinate shows the 

sum of squared deviations ( ) 
 
As a result of processing the data of the LSM 
experiment, we obtain ( ) with the 
minimum value ( ), corresponding to the 
value = 2,68601. Below, in Figure 4, there 
are two graphs of the vertical displacement of 
the middle section of an oscillating beam made 
of composite material: ( ) – experimental 
displacement data; ( ) – displacement 
data based on a calibrated time-nonlocal 
damping model at = 2,68601 sec. 
 

 
Figure 4. Time history of the composite beam 
middle node vertical displacement: ( ) – 
experimental curve; ( ) – calibrated 
non-local in time curve at = 2,68601 sec. 

 
As can be seen from the fig 4., the non-local in 
time computational model, approximates the 
oscillatory process of an element made of a 
structurally complex material with sufficient 
reliability. The result of the search for the optimal 
nonlocality parameter value for a one-dimensional 
composite beam, shows the efficiency of the 
constructed model. However, this technique 
seems to be computationally difficult. Below we 
describe the developed alternative technique, 

which is simpler both in terms of computational 
costs and the search for the optimal value of the 
nonlocality parameter  for a composite material. 

 
Methodology 2. Search for the optimal value of 
the nonlocality parameter based on the least 
squares method using a synthesizing curve. 
Under the synthesizing curve, ( ), we 
will mean some analytical (interpolating) curve 
approximating the experimental data with a 
satisfactory accuracy, ( ). Below is an 
algorithm for constructing an expression for 
such a curve by the least squares method in the 
form of the polynomial of the fourth degree: 
 

( ) = + · + 
+ · + · + · , 

(3) 

 

  – the desired polynomial coefficients 
calculated in comparison with the values of 

( ). 
Representing (3) in matrix form, we find the 
coefficients  by the least squares method from 
the conditions for the minimum sum of squared 
deviations of the values ( ) from the 
desired curve ( ): 
 

( , , , , ) = 

= min ( ) ( ) , 
(4) 

 
 – number of nodes taken along the time axis .  

Below, the minimum condition is expressed in 
partial derivatives  equated to zero, written as 
a system, where = 0,1,2,3,4 – is the number of 
the required coefficient .   
 

+ + + + 1   =

+ + + +   =

+ + + +   =

+ + + +   =

+ + + +   =
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Here  – time coordinate;  – the number of 
points taken on the time axis. The system of 
equations (4) is represented in matrix form: 
 

= , 
 

(5) 

Then 
 

=

1

,  

 

= , (6) 

=

( )

( )

, 

 
as well as the solution of equation (5): 
 

= , 
 

(7) 

 

The Fig. 5 graphically presents a comparison 
of the experimental values of dynamic vertical 
displacements of the middle node of the beam 
FE model ( ), with the displacement 
values obtained using the synthesizing curve 

( ). 
 

 
Figure 5. Graphical comparison of the 

numerical experimental values of the middle 
node vertical displacements ( ), with the 

displacement values obtained using the 
synthesizing curve ( ) for the time period 

= 0.65 sec. 

The Fig. 5 shows some difference between the 
values of the experiment and the model values, 
which indicates the possibility of developing the 
presented methodology by clarifying the 
appropriate type of curve. 
The main advantage of using the synthesizing 
curve lies in the "simplicity" of its further 
application in identifying the optimal value of 
the temporal nonlocality parameter of the model 

. This is also determined by the fact that the 
derivatives of such a synthesizing function can 
be represented as a functional dependence. This 
greatly simplifies the calculation and results 
analysis at the model calibration stage.  
Let us substitute the expressions of the 
synthesizing curve ( ) and its derivatives 

 ( ),
 ( ) of the first and second 

order into equation (1): 
 

· 12 + 6 + 2 + 
+ · · 4 + 3 + 2 + + 
+(1 ) · ·

( )
·(4 (

) + 3 ( ) + 2 ( ) +

+ ) + · + + +

+ + = ( ). 

 
 
 
(8) 

 
Now we transform equation (8) in such a way 
that the terms containing the desired parameter 

, are located to the left side, and those free 
from it are to the right: 
 

(1 )2
· ·

( )
(4 ( ) + 

+3 ( ) + 2 ( ) + )  = 
= ( ) · 12 + 6 + 2  

· · 4 + 3 + 2 +  
· + + + + . 

 
 
 
 
(9) 

 
Let us denote in (9) by ( ) the “effective 
load” vector calculated for the  moment of 
time: 
 

( ) = ( )  
12 + 6 + 2  

4 + 3 + 2 +  
+ + + + . 

 
 
(10) 
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Then the total effective load vector will look 
like:
 

= ( ). 
 
(11) 

 
Now we denote by ( , ), the integral operator 
in (8) - (9), calculated for the -th moment of 
time and containing the nonlocality parameter 
of the model : 
 

( , ) =
( )

(4 ( ) + 

+3 ( ) + 2 ( ) + ) , 

 
 

(12) 

 
 – time parameter characterizing the moments 

of time preceding the moment . 
Then the total integral operator takes the form: 
 

( ) = ( , ). 
 
(13) 

 
Substituting expressions (11) and (13) into 
(9), we obtain an equation for an unknown 
quantity (the nonlocality parameter of the 
model ): 
 

2
( ) =

1

1
. (14) 

The solution of equation (14) is algorithmized 
and performed in accordance with the stated 
method 2 and programmed in MATLAB. As a 
result of the numerical solution (14), we 
obtained the value of the nonlocality 
parameter in the middle node of the composite  
beam, equal to = 2.78328 sec. Figure 6 
shows a graph of the values of the vector 

( ), of to = 2.78328 sec, in 
comparison with the experimental values 

( ). 
 
 

 
Figure 6. Vertical displacement of the composite 

beam middle node: ( ) – experimental curve; 
( ) – calibrated non-local in time curve at 

= 2.78328 sec. 
 
In Table 2 comparison of the calibration results 
of the non-local model by the two methods 
described with the results of the local model is 
presented. The average relative error is calculated 
by the formula ( ) ( ) 

( )
, 

where N=251 – is the number of nodal points 
taken along the time axis. 
 

Table 2. 

 

The value of 
the non-
locality 
parameter , 
[sec] 

Relative 
calculation 
error, [%] 

Local model - 44,08 
Non-local 
model 
calibrated by 
methodology 1 

2.68601 4.52 

Non-local 
model 
calibrated by 
methodology 2 

2.78328 4.52 

 
 
CONCLUSION 
 
A non-local damping model applied to dynamic 
calculations of structures made of composite 
materials gives a result with a smaller relative 
calculation error in comparison with the 
experimental results than a local one. 
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Two techniques have been developed for 
controlling a non-local model of nonlocal in time 
damping properties according to experimental 
data. Those techniques are presented in the 
article on the example of a specific composite 
sample analysis. When rounding the error to a 
hundredth of a percent, both techniques give a 
result with the same reliability of calculations. To 
date, technique 1 seems to be basic, while 
technique 2 is more promising in terms of 
algorithmization of the process of modeling the 
temporal nonlocality of damping properties of 
composite materials. The choice of synthesizing 
curves suitable for real experimental data is a 
matter for a separate study. 
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