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CONTROL OF A NONLOCAL IN TIME FINITE ELEMENT
MODEL OF THE DYNAMIC BEHAVIOR OF A COMPOSITE
BEAM BASED ON THE RESULTS OF A NUMERICAL
EXPERIMENT
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Abstract. The article presents numerical methods for controlling the parameters of temporal nonlocality of
computer models of rod structures made of composite materials. The finite element method is the most widely
used numerical method for solving practical problems of the analysis of mechanical systems. A nonlocal in time
internal damping model is integrated into the algorithm of this method. The one-dimensional model of the Euler-
Bernoulli beam is presented in the article. The equilibrium equation of a moving mechanical system is solved
numerically using an implicit scheme. In the article the damping matrix obtained from the condition of
stationarity of the total deformation energy was used. The article presents the study of non-local in time damping
model properties. The model is integrated into the finite element method. The non-local model is algorithmized
and programmed in the MATLAB software package.

Keywords: nonlocal in time damping, damping with memory, composite material,
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YIIPABJEHUE HEJOKAJBbHOHW BO BPEMEHU KOHEYHO-
JJEMEHTHOM MOJIEJIBIO TUHAMAWYECKOI'O MOBEJIEHUS
BAJIKH N3 KOMIIO3UTA 110 PE3YJIBTATAM YNCJIEHHOT'O
IKCIIEPUMEHTA

B.H. Cuoopos %, E.C. Baovuna %3, E.Il. /lemuna ’

! Poccuiickuii yausepcutet tpancnopra (MUUT), Mocksa, POCCU ST
2 HanmoHaIBHBINA UCCIIEI0BATENBCKUN MOCKOBCKHI FOCYJapCTBEHHEIN CTPOUTEIBHBIN yHUBepcHTeT, Mocksa, POCCHU S
3 UHCTUTYT IIpUKIagHON MeXaHuku Poccuiickol akamzemun Hayk, Mocksa, POCCUS

AHHOTanusi. B cratbe mpeAcTaBICHBI UWCICHHBIE METOIUKH YIIPABICHHA IapaMETpaMH BPEMEHHON
HEJIOKAJIBHOCTH PAcCUeTHBIX MOJENEH CTEP)KHEBBIX KOHCTPYKIMH N3 KOMIIO3UIIMOHHBIX MAaTepHaoB.
HenoxanbHast BO BpeMeHH MOJIENb AeMII(UPOBAHKS HHTETPHPOBAaHA B aJITOPUTM METOa KOHCUHBIX 2JICMEHTOB —
HauOosiee IIUPOKO IPHUMEHSIEMOI0 YHCIEHHOIO0 METOAAa IpPHU pELICHUH NPaKTHYEeCKUX 3aJad aHalnza
MEXaHUYCCKUX CUCTeM. B paboTe paccmarpuBaeTcsi OIHOMEpHAs Moeb Oanku Ditnepa-beprymm. YucnenHoe
pelleHne YpaBHEHUS PABHOBECHUs PACUETHON MOJENH KOHCTPYKLIHH B JBM)KEHUH BBIIOJIHSETCSA 1O HESIBHOM
cxeme. [Ipm sTOoM Marpuma aeMndupoBaHUS IOJdy4eHa M3 YCIOBHUSI CTAl[MOHAPHOCTH IIOJHOW SHEPrUH
nedopMHupoBaHUS JBMKYIIEHCS MEXaHHMYECKO cHcTeMbl. B craThe NpHUBEIEHBI Pe3yJbTaThl HCCIEAOBAHUS
HEJIOKaJIbHOM BO BPEMEHH pacuyeTHOM Mozenu, peanu3oBaHHoi B cpene MATLAB.

KaroueBbie ciioBa: ,Z[eMH(bI/IpOBaHI/Ie HEJIOKAJIbHOC BO BpCMCHHU, ,Z[eMH(bI/IpOBaHI/Ie C NIaMAThIO,

KOMTIO3UTHBIN MaTepual, Konebanus 6anok Ditnepa-bepHymum, ypaBHEHHE PaBHOBECHS,
METO]] HAMMEHBIIHX KBaJPaTOB, METO/{ KOHEYHBIX JIEMEHTOB, HEesIBHAS CXEMa, IMHAMUKa MEXaHHYECKHX CHCTEM
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Control of a Nonlocal in Time Finite Element Model of the Dynamic Behavior of a Composite Beam Based

on the Results of a Numerical Experiment

INTRODUCTION

Today, the models of oscillatory processes
taking place in mechanical systems can be
modeled in  various ways. Also the
computational mathematical and algorithmic
apparatus has been significantly developed.
Despite this, scientists devote a special place to
the issue of adequate modeling of the damping
properties of structures made of structurally
complex materials. For example, the papers [1,
2] present ideas of damping kernels created as a
linear combination of decreasing functions. In
works [3, 4, 5] study the issues of constructing
the effective characteristics of a layered
composite material, the layers of which are
viscoelastic.

In this article, we present the results of
modeling of the damping properties of
structures made of structurally complex
materials, built on the assumption that the
material has nonlocal in time properties of
internal damping. In [6, 7, 8] the matrix form of
the modified equation of motion of mechanical
systems was studied:

M- V(ty) +a-D Vit
(1-a)- f G(t; — DV (D)dr

‘K- V(ti+1) = F(ti+1),

(1)

the integral term endows the classic
computational model with the time nonlocality.
Here 0 < a <1 is the temporal nonlocality
weight coefficient [7]; t, — initial time of the
oscillatory process. Matrices of masses M,
damping D and stiffness K of the computer
model are developed from the condition of a
minimum change in the total energy of a
mechanical system deformed in motion [6, 8, 9].
When « = 1 — the model preserves the locality
of the time component. The function G(t; — 7)
in equation (1) is usually called the damping
kernel function [7]. The Gaussian curve was
taken as the damping kernel into a solution:
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G(t; —7) = e W (E=D? (2)

the parameter u > 0 in (2) characterizes the area
of nonlocal properties of the time component,

. t 2u

while regardless of the value of pu, ftO\/_E.
e W E=D?gr = 1; T [sec] — all moments of
time preceding the considered component of the
time axis t;. Reducing the value of the
parameter u increases the level of nonlocality
along the time axis of the model. Such a
statement of the problem endows the damping
forces in the calculation model with the property
of "memory" (hereinafter, this property of the
model will be called "damping with memory").
Thus, in the numerical calculation of the
structure according to the implicit scheme in the
term (1), responsible for damping with memory,
the values of the rates of change of
displacements and deformations are taken into
account not only at the previous computational
step t;, but also at all previous time steps up to
t;.
The use of the kernel of the internal damping
operator (2) can be attributed to the
mathematical idealization of the description of
the distribution of the "memory" of the
composite in time, which is generally not based
on the features of the microstructure of the
material. To use the constructed model in
practical calculations, it must be calibrated
based on the data of a physical or alternative,
for example numerical experiment. In this case,
the parameter y in (2) becomes the main control
parameter of the considered computational
model, which sets the degree of nonlocality.

MODEL CALIBRATION TECHNIQUES

As an example, consider the oscillations of a beam
made from the composition material. The beam is
rigidly fixed at the edges and loaded with an
instantly applied uniformly distributed load. The
general physical and mechanical parameters of the
design and the values of the momentarily applied
load are presented in Table 1.
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Table 1

General parameters

of a fiberglass vinyl ester beam.
Young's of elasticity [Pa]: £=1720000;
Beam length [m]: L=12;
Material density [t/m’]: p=1.9;
Beam cross-sectional area (constant along
the entire length) [m?]: 4=0.06;
Moment of inertia [m*]: /=4.5000e-04;
Instantaneously applied load [N/m?]: g=-1.

To emphasize the necessity and benefit of further
studies of the nonlocal in time model of damping
properties of composite materials, the comparison
of the results of equation (1) solution in a local
statement (for @« = 1) with experimental data is
presented. The fig.1 shows the time history of
vertical displacements of the middle node of the
beam. The solid line shows the numerical solution
of the problem based on a one-dimensional local
in time computational model; dotted line - data
obtained as a result of a numerical experiment
implemented in the finite element software
package SIMULIA Abaqus (structurally complex
properties of the composition were taken into
account using an orthotropic material model).
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Figure 1. Vertical displacement of the middle
node of the oscillating beam made of a
composite material: V¢*P (t) — experimental
curve; V0Lt —is a time-local curve

Based on the simulation results, it was concluded
that the computer model, local in time, approximates
the (dynamic) oscillatory process inside a structure
made of a structurally complex material with a
reliability that is not sufficient for further application
in design justification process. Calculations using
isotropic or local one-dimensional models for
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composites give a significant error, which is
unacceptable in the calculation of such structures
subjected to dynamic effects.
The article presents two main approaches
(methodologies) to determining the optimal
value of the parameter u for a non-local in time
one-dimensional model of the dynamic behavior
of a structure made of composite material.
In this work the following indices are used:
Ve*P(t) — displacement vector obtained as a
result of a numerical experiment implemented
in the software package SIMULIA Abaqus;
ymodel(t) _ the displacement vector obtained
as a result of solving equation (1), according to
the implicit scheme by the modified Newmark
method [10];
vSY™MR(t) — a curve synthesizing the values of
the displacement vector obtained as a result of a
numerical experiment.
fe7°"(u) — a sum of squared deviations of
vector elements V°%€L(t) to V¥ (t).

Methodology 1. Direct construction of a search
model for the optimal nonlocality parameter of the
dynamic properties of the composite by the least
squares method (LSM).This technique provides an
automated search for the value of the parameter p,
in which the sum of the squared deviations
O (u) takes the minimum value. Fig. 2 shows
the dependency graph f¢"°"(u), showing the
behavior of the non-local model (1) in a fairly
wide range of parameter values 1 < u < 200 (the
value of u was not further increased in this work).
In Figure 3, we have localized the range of u
values relative to f¢""°" (i) smallest value.
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Figure 2. Dependence of f¢""°" on u. The
ordinate shows the summation of the squared
deviations f¢"°7 (i)
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Figure 3. Dependence of f€""°" on u, localized
in the region of extreme values of u: the
abscissa shows the values of the parameter | in
the range 1 < u < 40, the ordinate shows the
sum of squared deviations f°7°" (1)

As a result of processing the data of the LSM
experiment, we obtain V™%l (t) with the
minimum value f€7°7(t), corresponding to the
value u = 2,68601. Below, in Figure 4, there
are two graphs of the vertical displacement of
the middle section of an oscillating beam made
of composite material: Vé*P(t) — experimental
displacement data; V™°49¢!(t) — displacement
data based on a calibrated time-nonlocal
damping model at u = 2,68601 sec.

—p= Vomdel W
==

Figure 4. Time history of the composite beam
middle node vertical displacement: V®*P (t) —
experimental curve; V™% (t) — calibrated
non-local in time curve at u = 2,68601 sec.

As can be seen from the fig 4., the non-local in
time computational model, approximates the
oscillatory process of an element made of a
structurally complex material with sufficient
reliability. The result of the search for the optimal
nonlocality parameter value for a one-dimensional
composite beam, shows the efficiency of the
constructed model. However, this technique
seems to be computationally difficult. Below we
describe the developed alternative technique,
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which is simpler both in terms of computational
costs and the search for the optimal value of the
nonlocality parameter u for a composite material.

Methodology 2. Search for the optimal value of
the nonlocality parameter based on the least
squares method using a synthesizing curve.

Under the synthesizing curve, vSY""(t), we
will mean some analytical (interpolating) curve
approximating the experimental data with a
satisfactory accuracy, Ve*P(t). Below is an
algorithm for constructing an expression for
such a curve by the least squares method in the
form of the polynomial of the fourth degree:

3)

VM) = ap+a; -t +
+a, -t +az - t3+a, - t4

{aj}jzl — the desired polynomial coefficients

calculated in comparison with the values of
Vexr(t).

Representing (3) in matrix form, we find the
coefficients a; by the least squares method from
the conditions for the minimum sum of squared
deviations of the values Vé*P(t) from the
desired curve vyt (¢):

F(ag, ay,a3,a3,a,) =
N

= minZ(Vexp(ti) — vsynth(ti))z’ (4)

i=1

N —number of nodes taken along the time axis t.
Below, the minimum condition is expressed in

. . .. OF :
partial derivatives . equated to zero, written as
j

a system, where j = 0,1,2,3,4 — is the number of
the required coefficient a;.




Here t; — time coordinate; N — the number of
points taken on the time axis. The system of
equations (4) is represented in matrix form:

Koef -a =35, (5)
Then
N N
tz4 1
24 2
Koef = : : )
N N
t} ti
)
Qo
- ( ; ) (6)
Ay
N
> (e
i=1
§= : ,
N
PRI OR
i=1
as well as the solution of equation (5):
a= Koef™1-5, (7)

The Fig. 5 graphically presents a comparison
of the experimental values of dynamic vertical
displacements of the middle node of the beam
FE model VéP(t), with the displacement
values obtained using the synthesizing curve
vsynth(t)'
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Figure 5. Graphical comparison of the
numerical experimental values of the middle
node vertical displacements V¢*P (t), with the
displacement values obtained using the
synthesizing curve vSY™"(t) for the time period
T = 0.65 sec.
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The Fig. 5 shows some difference between the
values of the experiment and the model values,
which indicates the possibility of developing the
presented methodology by clarifying the
appropriate type of curve.

The main advantage of using the synthesizing
curve lies in the "simplicity" of its further
application in identifying the optimal value of
the temporal nonlocality parameter of the model
u. This is also determined by the fact that the
derivatives of such a synthesizing function can
be represented as a functional dependence. This
greatly simplifies the calculation and results
analysis at the model calibration stage.

Let us substitute the expressions of the
synthesizing curve vSY™"(t,) and its derivatives
v/ SYMER (), v YRR (t) of the first and second
order into equation (1):

M - (12a,t? + 6ast; + 2a,) +
+a-D- (4a4ti3 + 3a3ti2 + 2a,t; + al) +
+(1 =)D [ Ee D (day(t; -

)3 + 3a3(t; — 1)% + 2a,(¢; — 1) +
+ay)dr + K - (agtf + ast? + ayt? +
+a1ti + ao) = F(ti).

(8)

Now we transform equation (8) in such a way
that the terms containing the desired parameter
u, are located to the left side, and those free
from it are to the right:

t

1—-a)2
ﬂ-D : f e D (4q,(t; — 7)% +

\/E t

0
+3a3(t; — 1) + 2a,(t; — 1) + a;)dt =
=F(t;) — M - (12a,t? + 6ast; + 2a,) —
—a - D - (4a,t? + 3ast? + 2at; + a;) —
—K - (agtf + ast? + at? + a1t; + aq).

©)

Let us denote in (9) by R(t;) the “effective
load” vector calculated for the i moment of
time:

R(t;) = F(t) —
—M - (12a4t? + 6ast; + 2a,) —
—aD - (4a,t? + 3ast? + 2a,t; + a;) —
—K - (aqt} + ast? + ayt? + ast; + ao).

(10)
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Then the total effective load vector will look

like:
N
R = Z R(t).
i=1

Now we denote by Z(, t;), the integral operator
in (8) - (9), calculated for the i-th moment of
time and containing the nonlocality parameter
of the model u:

(11)

t

2Gut) = [ e a6 -7 +
o (12)
+3a3(t; — 1)% + 2a,(t; — 1) + a;)dr,

T — time parameter characterizing the moments
of time preceding the moment ¢;.
Then the total integral operator takes the form:

N
2 =) 2. (13)

Substituting expressions (11) and (13) into
(9), we obtain an equation for an unknown
quantity (the nonlocality parameter of the
model p):

2 1
—M-Z(u) -~ .p-l.R

T 1-«a

The solution of equation (14) is algorithmized
and performed in accordance with the stated
method 2 and programmed in MATLAB. As a
result of the numerical solution (14), we
obtained the value of the nonlocality
parameter in the middle node of the composite
beam, equal to u = 2.78328 sec. Figure 6
shows a graph of the values of the vector
ymodel(r) of to pu=278328 sec, in
comparison with the experimental values
Vexr(t).

(14)
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Figure 6. Vertical displacement of the composite
beam middle node: VP (t) — experimental curve;
ymedel(t) — calibrated non-local in time curve at
u = 2.78328 sec.

In Table 2 comparison of the calibration results
of the non-local model by the two methods
described with the results of the local model is
presented. The average relative error is calculated

100% <y |7E*P(t)-vmodel(t)
by the formula " =1 1o ,

where N=251 — is the number of nodal points
taken along the time axis.

Table 2.

The value of
the non- Relative
locality calculation
parameter p, error, [%]
[sec]

Local model - 44,08

Non-local

model

calibrated by 2.68601 4.52

methodology 1

Non-local

model

calibrated by 2.78328 4.52

methodology 2

CONCLUSION

A non-local damping model applied to dynamic
calculations of structures made of composite
materials gives a result with a smaller relative
calculation error in comparison with the
experimental results than a local one.
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Two techniques have been developed for
controlling a non-local model of nonlocal in time
damping properties according to experimental
data. Those techniques are presented in the
article on the example of a specific composite
sample analysis. When rounding the error to a
hundredth of a percent, both techniques give a
result with the same reliability of calculations. To
date, technique 1 seems to be basic, while
technique 2 is more promising in terms of
algorithmization of the process of modeling the
temporal nonlocality of damping properties of
composite materials. The choice of synthesizing
curves suitable for real experimental data is a
matter for a separate study.
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Cudopos Bnaoumup Hukxonaesuu, dIeH-KOPPECHIOHICHT

PAACH, mnpodeccop, HIOKTOp TEXHHYECKHX HayK,
3aBeayroni Kadenpoil WHPOPMATUKM W HPUKIATHON
MateMaTnkn  HammonanmpHOro — MCCiEI0BaTEIbCKOTO
MocKoBCKOro TOCYZapCTBEHHOTO CTPOUTEIBEHOTO
yHHUBepcuTeTa, npodeccop kadempsl «CTpouTenpHbIC
KOHCTPYKIINH, 31aHHUS U COOPYKEHHsD» MHCTUTYTa IMyTH,
CTPOUTENILCTBA u COOpY KEHUI Poccuiickoro
yHuBepcurera tpancnopra (MUNTa); 127994, Poccus, 1.
MockBa, yi. Ob6pasioBa, 1.9, ctp. 9, TenedoH:

+74956814381, e-mail: sidorov.vladimir@gmail.com.

baovuna Enena Cepeeegna, KaHIUAAT TEXHUYECKUX HAYK,
JoneHT Kagenpbl «CHCTEMBI  aBTOMAaTH3MPOBAaHHOTO
MIPOCKTUPOBaHUs» MHCTHTYTa MyTH, CTPOUTENHCTBA W
coopyxkeHuil Poccuiickoro yHuBepcUTETa TpPaHCIIOpPTa
(MHUUTa), crapmmii Hay4dHBIA cOTpyaHHK HaydHo-
00pa3oBaTeIBLHOTO LEHTpa KOMITBIOTEPHOT'O
MOJICJTUPOBaHUSl YHHUKAJIbHBIX 3JaHUN, COOPYXKEHUU u
KOMIIJIEKCOB MocKkoBCKOTo rOCY/apCTBEHHOTO
CTPOUTEJBHOIO  YHHMBEPCUTETa, CTaplIMi  Hay4HBIH
cotpymauk OtThena MeXaHHKH CTPYKTYPUPOBAaHHOH U
reTeporeHHON cpenbl MHCTHTYTa NMPUKIIaJHOH MEXaHUKH
Poccuiickoii akageMuu Hayk,

127994, Poccus, T. Mocksa, yi. O6pasmosa, 1.9, ctp. 9,
tenedon: +74956092116, e-mail: shepitko-es@mail.ru.

Jlemuna Enena Ilempoena, WHXEHEP-UCCIEN0BATEID
OTAENa AaHAIUTHYECKUX (YHAAMEHTAIBHBIX HAyYHbBIX
HCCIIeI0BaHUN o JUHAMHKE CTPOUTEIBHBIX
KOHCTPYKIIHHI Hay4dHo-00pa3oBaTebHOT0O LIEHTpa
KOMIIBIOTEPHOTO MOJICIMPOBAHMs YHUKAIbHBIX 3/1aHUl,
coopysxenuit u kommiekcos (HOLL KM), npenogasarens
kagenpbl [IpukmamHoil MareMaTMKd M HMHPOPMATHKU

MOCKOBCKOTO TOCyIapCTBEHHOTO CTPOHTEIEHOTO
yampepcureta (HUY MI'CVY); 129337, Poccus, T.
MockBa, SpocmaBckoe mocce, A. 26, TenedoH

+74957819988, e-mail: detinaep@mgsu.ru
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