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1. INTRODUCTION 
 
Trends in the development of information 
technology are changing the classical idea of how 
to solve many problems that arise in civil 
engineering. Accelerated analysis of large 
information flows of multivariate solutions from 

the concept of the project to the decommissioning 
moment for a certain construction object requires 
the use of artificial intelligence methods. It is clear 
that machine learning, deep learning, and 
reinforcement learning are becoming the leading 
information technologies. For example, the 
development of neural networks makes it possible 
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1. INTRODUCTION 
 
Trends in the development of information 
technology are changing the classical idea of how 
to solve many problems that arise in civil 
engineering. Accelerated analysis of large 
information flows of multivariate solutions from 

the concept of the project to the decommissioning 
moment for a certain construction object requires 
the use of artificial intelligence methods. It is clear 
that machine learning, deep learning, and 
reinforcement learning are becoming the leading 
information technologies. For example, the 
development of neural networks makes it possible 

to more accurately solve the problem of finding and 
classifying defects or pathologies hidden from the 
human eye on the surface of a structure, even at an 
early stage of the destruction process. In pursuit of 
the goal of increasing the reliability of the solutions 
obtained, the solution methodology itself is 
modified [1]. Popular in computer vision, 
convolutional neural networks very often use the 
so-called pseudo-samples for training, which result 
from generating data using various random noises 
[2]. This approach to training neural networks has 
led to the creation of generative adversarial 
networks (GANs) [3]. The main idea of the GAN 
is to compete with two neural networks in a zero-
sum game, i.e. one network generates information 
and the other tries to please it. This competitive 
process must change over time to avoid overfitting 
the guessing network. When writing a scenario for 
generating pseudo data, it is necessary to use some 
universal multidimensional (even if two-
dimensional) stochastic process or a class of 
processes that allows you to display reality as 
closely as possible - stationary or non-stationary 
dynamics of the phenomenon under study. The 
modern development of the theory of stochastic 
processes makes it possible to introduce a certain 
class of processes that can be successfully used to 
create a GAN, and as a result, to increase the 
reliability of solving computer vision problems.  
In [4], a new class of centered Gaussian 
processes was introduced. More precisely, a 
centered Gaussian process { ( ), }X t t I R  
belongs to the quasi-helix with approximately 
stationary increments (QHASI) class if it fulfills 
the five following assumptions: 
 
 A1: (0) 0X   with probability 1; 
 A2:  there exists  0 such that  X   is 

self-similar with index ; 
 A3: there exist   

1 20 C C ; 
such that 2( , )s t I  

2 2
1

2
2

| | ( ( ) ( ))
| | ;

C t s X t X s
C t s

E
 

 A4: there exists  

3 1 2[ , ]C C C  
such that  2( , )s t I , t s , 0,st  when 

0t s , 2 2
3( ( ) ( )) ( )X t X s C t sE ,  

 A5: there exists  
4 1 2[ , ]C C C  

such that  t I , 2 2
4( ) | |X t C tE . 

 
Let us make some comments about the 
assumptions. Assumptions (A1) and (A5) are done 
for sake of convenience. Then, assumption (A2) 
means that the process X  is an attractive one. 
Finally, assumption (A3) means that the process 
X  is a -quasi-helix in the sense of [5], whereas 
assumption (A4) means that the increments of X  
are approximately stationary for small increments, 
this notion having been introduced in [6]. The 
underlying idea of the QHASI class is to replace the 
stationary increments property by assumptions 
(A3) and (A4). 
The QHASI class contains some famous Gaussian 
processes such that the fractional Brownian 
motion (fBM), the bifractional Brownian motion 
(bBM) and the sub-fractional Brownian motion 
(sfBM). The values of the associated constants  

1 2, 3 4, , ,C C C C   can be found in [4] for each of 
these processes. We refer on one hand to [6] for 
further information on the bBm and on the other 
hand to [7] for further information on the sfBm. 
Note also that the following processes are also 
elements of the QHASI class: 
 
 the sub bifractional Brownian motion (sbBm) 

(see [8]) 
 the generalized fBM (gfBm) (see [9], [10]) 

 
In [10], the generalized bifractional Brownian 
motion (gbBm) , , ,: H KY Y , was introduced. It 
is defined as follows: 
  

, , , , ,( ) : ( ) ( ) ( ),
0, 0, 0,

H K H K H KY t Y t B t B t
t

 

 
where ,{ ( ), }H KB t t R  is a bBm with indices  
0 1H  and 0 1K  . 
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Set ( 2 )/2
1

2
( ) KK , 0 1K . We insist on the 

fact that the process Y  was already introduced for 
specific values of  , , and K . More 
precisely, the sfBm corresponds to (1), (1), ,1HY , the 
sbBm to ( ), ( ), ,K K H KY  and the gfBm to , , ,1HY . 
In [10], it was proved that the gbBm was an 
element of the QHASI class under some 
conditions on  H  and K . More precisely, the 
following result was established. 
 
Theorem 1.  Assume that  2 1HK  . Then the 
gbBm is an element of the QHASI class, with 
 
  HK , 
  2 2

1 ( ) 2 KC , 
  1 2 2

2 2 (( ) 2 )K HKC , 

  1 2 2
3 2 KC , 

  2 2 2
4 2(1 2 ) .HK KC  

 
 
The first aim of this paper is to show that the 
gbBm is an element of the QHASI class for any  
 

( , , , ) ]0, [ ]0, [ ]0,1[ ]0,1]H K . 
 
Our first result is stated in the following theorem. 
 
Theorem 2.  Assume that  2 1HK . Then the 
gbBm is an element of the QHASI class, with 
 
  HK , 
  2 1 2 2

1 2 (1 2 ) ( )HK KC , 
  1 2 2

2 2 ( )KC , 

  1 2 2
3 2 KC , 

  2 2 2
4 2(1 2 ) .HK KC   

 
 
Let us make some comments on the above 
theorems. As it was already observed in [4], [8] 
and [12], the hyperbola  2 1HK   plays a key 
role. It has also an influence on the values of the 
constants  1C   and  2C . Let focus our attention 
on two specific cases. First, when 

( 2 )/2
1

2
( ) KK , theorem 2 generalizes 

proposition 1.1 in [8]. Next, when  1K  and 
2 1H , the values of the constant 2C  given in 
the above theorem and in [9] are similar, but the 
value of 1C  given in Theorem 2 is less precise 
than the value of 1C  given in [9]. It can be 
explained by the fact that, when  1K  , direct 
computations are available. 
The second aim of this paper is to answer to the 
following question: can we extend the QHASI 
class to two-dimensional processes? To this 
purpose, we introduce the following notation.  
 
Let 

1 , 0X s s  
and  

2 , 0X t t  
 

be two elements of the QHASI class. For any 
1,2i , we denote by  1 2, 3 4, , ,i i i i iC C C C  

the associated constants. Set 
 

2 2
1 1 2 1 1 1 2, ( ( ))s s X s X sE  

and  
2 2
2 1 2 2 1 2 2, ( ( )) .t t X t X tE  

 
Set  ,u s t   and  ( , )ij i ju s t , 1 , 2i j . 
We consider some Gaussian sheets  

,X u u R R  such that 
 

1 1

2 2 .

ij i j i i

j j

X u X u X s X s

X t X t

E E

E
 

 
We can easily derive the variance of the process 
X . We have 
 

1 2

2 2 2
1 2

2 2
4 ,X

X u X s X t

C s t

E E E
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We can easily derive the variance of the process 
X . We have 
 

1 2

2 2 2
1 2

2 2
4 ,X

X u X s X t

C s t

E E E
 

 

where 4 14 24XC C C . 
 
Note that when the process 1X  is a fBm with 
Hurst index 10 1H  and the process 2X  is a 
fBm with Hurst index 20 1H , the process  
X  is a fractional Brownian sheet (fBS) with 
indexes  1H  and 2H . There is a huge literature 
on the fBs. We refer to [13] for further 
information on this process. 
The rest of the paper is organized as follows. In 
section 2, we prove Theorem 2, whereas the 
properties of the two-dimensional process  X   
are studied in section 3. In section 4, we focus 
our attention on specific sheets and illustrations 
for the computer vision problem related to the 
surface anomalies detection. Section 5 concludes 
the main results of this research. 
 
 
2. PROOF OF THEOREM 2 
 
Recall first that  1 2 2HK  , and therefore  

1/ 2H   and  1/ 2K . Note that the values 
of  2 3, ,C C   and  4C   were already given in 
[CEN18]. The proof of the theorem will be 
divided into four steps. 
 
Step 1. Let us determine the value of the constant  

1C . Combining proposition 10 with lemma 12 
presented in [10], we have for 0t s  
 

2 2
, , ,

2
, , , , , ,

21 2 2

2
,

1 2
1/2,2

, : ,

2

,

2 ,

H K

H K H K

HKK

H K

K HK
HK

s t s t

Y t Y s

t s

F s t

F s t

E

 

 
where 

2 2
2 2

, , 2 0
2

KH H
HK HK

H K
t sF s t t s , 

2 2
1/2,2 , 2 0

2

K
HK HK

HK
t sF s t t s . 

 
Let us establish a suitable upper bound of 
 

2 1 2
, 1/2,2( ) ( , ) 2 ( , )K HK

H K HKF s t F s t . 
 

 Recall that  
 

2 2 2 2 22 ( ) 2 ( ) . 
 

Thus, we have   
 

2 1 2
, 1/2,2

2 2
,

2 1
1/2,2

( , ) 2 ( , )

2 ( , )

2 ( , )

K HK
H K HK

H K

HK K
HK

F s t F s t

F s t

F s t

 

 
Note that  2 1 (2 1) 1 0HK K H K  . 
Next, combining inequality (2.4) in [8] with 
straight computations, we get 
 

2 1
, 1/2,2

2 21
2

22 1 2 2

2 22 11
2

, 2 ( , )

2

2 2

2 2 .

K

K

HK K
H K HK

KH H

HKK HK HK HK

HK HKK HK

F s t F s t

t s

t s t s

t s t s

 

 
Hence, we get 
 

22 1 2 2 2 2

2 22 11
2

22 1 2 2

, 2 2

2 2

2 1 2 .

K

HKK

HK HKK HK

HKHK K

s t t s

t s t s

t s

 

 
The constant 1C  is now determined. 
 
Step 2. The aim of this step is to show that 

1 3 2C C C . Since1 2 2HK  and 0 1K , 
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we have  
 

2 12 2 1 2K HK , 
 

and therefore  
 

2 12 2 2 .HK K K  
 
The last inequality can be rewritten as follows  
 

2 1 12 (1 2 ) 2 .HK K K  
 

Hence 1 3 2C C C . 
Step 3. Let us show that  4 2 3C C C  . To 
determine the sign of  3 4C C  , it suffices to 
study the function  ,H KT   defined by 
 

1 2
,

2 1

( ) (2 1)

2(2 1) 2 1, .

K
H K

HK K K

T x x

x x R
 

 
We will distinguish the following two cases. 
 
Case 1. 1K   and  2 1H . 
We have  2 1

,1( ) 2(2 1)H
HT x x . Keep in mind 

that 0  and 0 . Once 0x , it follows 
that ,1( ) 0HT x . Thenceforward, 3 4C C . 
 
Case 2.  1K   and  1 2HK .  
The function  ,H KT  has a unique minimum at 
the point  

2

0 1
2 1

2 1

HK K

Kx . 

 
Since   

2 0HK K , 
 

we obviously have  0 0x . Moreover, recall 
that, when 0x x , ,H KT is a non-increasing 
function, otherwise a non-decreasing one. Note 
that 
 

1
, (0) 2 1 0K

H KT . 

Thus we have  , ( ) 0H KT x   for any  0x  , 
and therefore  3 4C C . 
 
Step 4. Let us show that 1 4C C . It suffices to 
verify  
 

2 1 2 2

2 2 2

2 1 2

2 1 2 .

HK K

HK K
 

 
This inequality can be rewritten in the form  
 

2 2 2 21 2 2 1 2HK K HK K , 
 

which is equivalent to  
 

221 2 0.HK K  
 
Since 2 0HK K , 1 4C C . 
This completes the proof of the theorem. 
 
 
3. PROPERTIES OF THE PROCESS X 
 
Let us state some basic properties of the process X  
 
Proposition 3. We have 
  ( , )X   is a Gaussian process, 
  ( ,0) (0, ) 0X s X t ,  
 for any  0 0s  , the one-dimensional 

process  1
0 0 , , 0s X s t t   is a  

14 2C X  process, 
 for any  0 0t  , the one-dimensional 

process  2
0 0, , 0t X s t s   is a  

24 1C X   process. 
  

Proof. The first two points are obvious. To prove 
the third point, it suffices to compute  
 

1 1
0 0 1 0 0 2, ,s X s t s X s tE . 
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Let us state some basic properties of the process X  
 
Proposition 3. We have 
  ( , )X   is a Gaussian process, 
  ( ,0) (0, ) 0X s X t ,  
 for any  0 0s  , the one-dimensional 

process  1
0 0 , , 0s X s t t   is a  

14 2C X  process, 
 for any  0 0t  , the one-dimensional 

process  2
0 0, , 0t X s t s   is a  

24 1C X   process. 
  

Proof. The first two points are obvious. To prove 
the third point, it suffices to compute  
 

1 1
0 0 1 0 0 2, ,s X s t s X s tE . 

We have 
 

1 1
0 0 1 0 0 2, ,s X s t s X s tE  

1

1 1

2
0 1 0 1 0 2 1 2 2

2 2
0 14 0 2 1 2 2

14 2 1 2 2 .

s X s X s X t X t

s C s X t X t

C X t X t

E E

E

E

 

 
We omit the proof of the last point.            

 
 
Keep in mind that the flavor of the QHASI class 
consists in the quasi-helix property in the sense of 
Kahane [2] and its approximately stationary one. 
To extend these concepts to two-dimensional 
processes, let us recall that the increment  of 
X  between the points  11 1 1,u s t  and 

22 2 2,u s t  is defined as follows 
 

11 22 12 21X u X u X u X u , 
 

where  12 1 2,u s t  and 21 2 1,u s t . 
Set  
 

2 2
11 22,u uE . 

 
We can establish the following essential 
proposition. 
 
Proposition 4. We have 
 

2 2 2
11 22 1 1 2 2 1 2, , ,u u s s t t . 

 
Proof. As far as we know, the above 
proposition has not been written yet. Therefore 
we will prove it. Direct computations yield 
 

2
11 22

2 2 2 2
1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

2 2
1 1 1 2 2 1 2 2

2 2
2 1 2 2 1 1 1 2

,

2

.

u u

X s X s X t X t

X s X s X t X t

X s X s X t X t

X t X t X s X s

E E E E

E E

E E E

E E E

 

Since 
 

2 2
1 1 2 1 1 1 1 1 2

2
1 2

, 2s s X s X s X s

X s

E E

E
 

 
and 
 

2 2
2 1 2 2 1 2 1 2 2

2
2 2

, 2

,

t t X t X t X t

X t

E E

E
 

 
we have 

 
2

11 22

2 2 2 2
1 1 1 2 2 1 2 2

2
1 1 2 2 1 2 2

2 2
2 1 2 2 1 1 1 2

,

2 ,

u u

X s X s X t X t

s s X t X t

X t X t X s X s

E E E E

E

E E E

 

2
1 1 2 2 1 2 2

2 2
2 1 2 2

2 2
1 1 1 2 1 1 1 2

2
1 1 2 2 1 2 2

2 2 2
2 1 2 2 1 1 2

2 2 2
1 1 2 2 1 2 2

2 1 2 2

2 2
1 1 2 2 1 2

2 ,

2

2 ,

,

,

2

, , .

s s X t X t

X t X t

X s X s X s X s

s s X t X t

X t X t s s

s s X t X t

X t X t

s s t t

E

E E

E E E

E

E E

E E

E

 

 
The proof of the proposition is now complete.  
 
Combining the above proposition with the fact 
that the processes 1X  and 2X  are elements of 
the QHASI class, we get the following results. 
 
Proposition 5. We have 

1 2

1 2

2 2 2
1 1 2 1 2 11 22

2 2
2 1 2 1 2

,

,
X

X

C s s t t u u

C s s t t
 

where  1 11 21XC C C   and  2 12 22XC C C . 
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Proposition 6. When  2 1 0s s , 2 1 0s s ,  
and  2 1 0t t  , 2 1 0t t , we have 

1 22 22
11 22 3 2 1 2 1, ( ) ( )Xu u C s s t t , 

where  3 13 23XC C C  . 
 
It is obvious that  1 3 2X X XC C C  and  

1 4 2X X XC C C . Roughly speaking, we can say 
that the process  X   is a quasi-helix in the 
sense of Kahane [2] and has approximately 
stationary increments. We can associate to  X   
the six constants 1 2 1 2, 3 4, , , , .X X X XC C C C
Thus, we answer to the question stated in the 
introduction. Indeed we are able, on one hand to 
extend the definition of the QHASI class to two 
dimensional processes, and on the other hand to 
create new Gaussian sheets. 
 
 
4. SOME SPECIFIC SHEETS 
 
4.1. The fractional Brownian sheet 
Let 1X  be a fBm with Hurst index 10 1H  
and 2X  be a fBm with Hurst index 20 1H . 
As already mentioned, the process X  constructed 
as described earlier is the fBs. Note that its six 
associated constants are  1 2, ,1,1,1,1H H . It 
implies that calculi are quite convenient for the fBs. 
This partially explains its popularity. 
 
4.2. The subfractional Brownian sheet 
Let 1X  be a sfBm with Hurst index 10 1H  
and 2X  be a sfBm with Hurst index  

20 1H . We can construct the process  X . 
To determine the six associated constants, we 
have to consider the four following cases: 
 
 when  1

1 2H   and  1
2 2H  , the constants 

are 
1 2

1 2

2 1 2 1
1 2

2 1 2 1

, ,1, 2 2 2 2 ,

1, 2 2 2 2 ;

H H

H H

H H
 

 when 1
1 2H  and 1

2 2H , the constants are 
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4.3. The bifractional Brownian sheet 
Let 1X  be a bBm with Hurst indices  

10 1H  and 10 1K  as well as 2X  be a 
bBm with Hurst indices 20 1H  and 

10 1K . We can construct the process X . Its 
six associated constants are 
 

1 2 1 2 1 22 2
1 1 2 2, , 2 , 2 , 2 ,1 .K K K K K KH K H K  

 
4.4. Other possible sheets 
Following the same ideas, we can construct the 
sub-bifractional Brownian sheet, the generalized 
fractional Brownian sheet and the generalized 
bifractional sheet. There is no difficulty to give 
the six associated constants. We can also mix the 
different elements of the QHASI class in order to 
create new sheets. For example, let 1X  be a fBm 
with Hurst index 10 1H  and 2X  be an 
element of the QHASI class with the associated 
constants 1 2, 3 4, , ,C C C C . We can construct 
the process X  using six associated constants 
 

1 1 2, 3 4, , , ,H C C C C  
 
In some sense, the influence of the fBm vanishes. 
This is not really surprising since the fBm has 
stationary increments. 
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Proposition 6. When  2 1 0s s , 2 1 0s s ,  
and  2 1 0t t  , 2 1 0t t , we have 

1 22 22
11 22 3 2 1 2 1, ( ) ( )Xu u C s s t t , 

where  3 13 23XC C C  . 
 
It is obvious that  1 3 2X X XC C C  and  

1 4 2X X XC C C . Roughly speaking, we can say 
that the process  X   is a quasi-helix in the 
sense of Kahane [2] and has approximately 
stationary increments. We can associate to  X   
the six constants 1 2 1 2, 3 4, , , , .X X X XC C C C
Thus, we answer to the question stated in the 
introduction. Indeed we are able, on one hand to 
extend the definition of the QHASI class to two 
dimensional processes, and on the other hand to 
create new Gaussian sheets. 
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associated constants are  1 2, ,1,1,1,1H H . It 
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Following the same ideas, we can construct the 
sub-bifractional Brownian sheet, the generalized 
fractional Brownian sheet and the generalized 
bifractional sheet. There is no difficulty to give 
the six associated constants. We can also mix the 
different elements of the QHASI class in order to 
create new sheets. For example, let 1X  be a fBm 
with Hurst index 10 1H  and 2X  be an 
element of the QHASI class with the associated 
constants 1 2, 3 4, , ,C C C C . We can construct 
the process X  using six associated constants 
 

1 1 2, 3 4, , , ,H C C C C  
 
In some sense, the influence of the fBm vanishes. 
This is not really surprising since the fBm has 
stationary increments. 
 

4.5. Illustrations 
Now we give several illustrations of an image 
generation, using the fractional Brownian sheet 
(see Fig. 1) and the subfractional Brownian sheet 
(see Fig.3, Fig. 5, Fig. 7, and Fig. 9). As it is 
possible to notice these images are similar with 
the pictures which one can obtain by thermal 
camera, say for some heated surface. Since our 
goal is only to augment quantity of training 
samples, we just suppose that minimal values of 
the generated process correspond to “black” 
pixels and maximal values corresponds to 
“white” pixels. Setting “red” color as a normal 
temperature for the heated surface, it is possible 
to see “overheated” areas. To make the corrupted 
areas more visible we apply color-based 
segmentation using k-means clustering (see 
Fig. 2, Fig. 4, Fig. 6, Fig. 8, and Fig. 10). 
 

 
Figure 1. Test 1 - the fractional Brownian sheet 

with parameters 0.75,0.75,1,1,1,1   

Figure 2. Segmented areas for Test 1 
 

 
Figure 3. Test 2 – the subfractional Brownian 

sheet with parameters 
0.75,0.75,1,0.34,1,0.34  

 
Figure 4. Segmented areas for Test 2 

Figure 5. Test 3 – the subfractional Brownian 
sheet with parameters 

0.75,0.25,1,0.76,1,0.76  
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Figure 6. Segmented areas for Test 3 

 
Figure 7. Test 4 – the subfractional Brownian 

sheet with parameters 
0.25,0.75,1,0.76,1,0.76  

 
Figure 8. Segmented areas for Test 4 

 
Figure 9. Test 5 – the subfractional Brownian 

sheet with parameters 
0.25,0.25,1, 1.67, 1,1.67)

 
Figure 10. Segmented areas for Test 5 

 
It is obvious that only by changing the parameters 
of the stochastic process we get different corruption 
processes for the surface. Moreover, any repetition 
of the generation even with the same parameters 
gives new image preserving the main tendency of 
the corruption process.   
 
 
5. CONCLUDING REMARKS 
 
We have completed previous results by proving 
that the gbBm is an element of the QHASI class 
with no condition on the parameters. When 
2 1HK , the constant 1C  has been determined. 
Then we have proposed a construction of several 
Gaussian sheets based on the QHASI class. We 
have studied the main properties of these sheets 
such that the self-similarity one, the quasi-helix one 
and the approximately stationary one. The QHASI 
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5. CONCLUDING REMARKS 
 
We have completed previous results by proving 
that the gbBm is an element of the QHASI class 
with no condition on the parameters. When 
2 1HK , the constant 1C  has been determined. 
Then we have proposed a construction of several 
Gaussian sheets based on the QHASI class. We 
have studied the main properties of these sheets 
such that the self-similarity one, the quasi-helix one 
and the approximately stationary one. The QHASI 

class is therefore extended to two dimensional 
processes. The associated constants are 
determined. We have also focused our attention on 
new specific sheets, the well-known fractional 
Brownian one becoming a particular case. 
We insist on the fact that a natural extension can be 
done for three dimensional processes. In this case, 
the increment  of X  between the points   
 

111 1 1 1( , , )u x y z  
 
and   
 

222 2 2 2( , , )u x y z  
 
is defined as follows 
  

222 112 121 211

122 212 221 111 ,
X u X u X u X u

X u X u X u X u
 

 
where   
 

( , , ),1 , , 2ijk i j ku x y z i j k  
 
are points in 3R . We can also determine the seven 
associated constants: the first three ones deal with 
self-similarity whereas the last ones deal with the 
constants , 1 4iC i . Following the same lines, 
we can build n  dimensional processes. However, 
the increment  has no simple expression. This is 
why we omit this extension. 
The numerical illustrations were shown for the 
Gaussian sheets. This generalized presentation of 
the class of stochastic processes was used to 
augment the training samples for generative 
adversarial networks in computer vision problem. 
The same approach can be used in 3,R which 
permits solve many applied problems devoted to 
default diagnostics by computer vision.  
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