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Abstract. The problems of stability of some beam -shaped frames and cylindrical shells with the elasto-
plastic material are considered. The possibility of modeling bars using finite elements of various types is studied. 
Plate elements and even one-dimensional beam finite elements can be used for modelling compressed rods with 
geometric and physical nonlinearity. For the problem of stability of a circular cylindrical shell is given the 
comparison of the authors' results obtained using the FEM with the experimental results of V.G. Sazonov and the 
calculations of A.V. Karmishin. 
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1. ANALYSIS OF DIFFERENT TYPES OF 
FINITE ELEMENTS IN THE STABILITY 
PROBLEMS WITH GEOMETRIC AND 
PHYSICAL NONLINEARITIES 

 
Let us investigate the possibilities of various 
finite element models concerning the 
geometrically and physically nonlinear problem 
of stability of a cantilever beam. The beam had 
a length l=100 cm and a square cross section 
10×10 cm, beam flexibility 
 

 = =  69. 
 

This value is less than the limiting flexibility for 
a beam with such geometrical parameters made 
of steel 10HSND ( = 72). The study used the 
model of an ideal Prandtl elasto-plastic material 
( yeiled=400 MPa). Four types of finite element 
models are considered: 
1. Using solid finite elements (FE) in the 
NASTRAN complex (Hex8); 
2. Using plate FE with loss of stability in the 
element plane; 
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3. Using plate FE with loss of stability out of the 
element plane; 

4. Using beam FE. 
 

 

 
Figure 1. Curves of deformation development of an axially compressed cantilever beam 

 
 
It was found that when using a three-
dimensional model (5x5x60 cubic elements) of 
the above-described axially compressed beam, a 
model of 60 one-dimensional beam elements, as 
well as flat square four-node FE (5 plate 
elements along the height of the section, located 
in the plane of loss of stability), the critical loss 
of stability loads at limiting points and post-
critical curves of unstable equilibrium states, 
almost coincided (Fig. 1). 
A slightly higher compression load ( cr 
had the model of a plate elements, bending at loss 
of stability "out of its plane". It follows from this 
that to solve physically and geometrically nonlinear 
stability problems it is not necessary to use models 
of beams from three-dimensional finite elements. 
Two-dimensional plate elements (and even one-
dimensional beam elements) make it possible to 
obtain acceptable results in majority of loss of 
stability  problems taking with elasto-plastic 
material behavior. The use of such elements 
significantly reduces the dimension of stability 
problems (in comparison with solid FE), and, as a 
consequence, reduces the time for their solution. 

2. ECCENTRICALLY COMPRESSED 
CANTILEVER BEAM 
 
In this paragraph, on the model (1200 flat four-
node FE) of the cantilever beam (lenght  
l = 1,2 m) which has a nonlinear material 
diagram with hardening (Fig. 2, =

3 , = 2,1 10  / ) and unloading 
according to a linear law, the influence of the 
initial imperfections in the application of a 
compressive force (offset) to the end section by 
the value of the loss of stability critical load. 
 

 
Figure 2. Stress-strain diagram for the material 

of the cantilever beam 
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Figure 2. Stress-strain diagram for the material 

of the cantilever beam 

 
Figure 3. Elasto-plastic buckling of a cantilever axially compressed beam: a) deformed form of the 
beam; b) a graph of reduction of the values of critical loads; c) curves of displacement of the end of 

the beam 
 
Imperfections in this problem were set in the 
form of different values of the offset of the point 
of the force application with respect to the 
center line of the beam (Fig. 3). A series of 
curves of equilibrium states was obtained for a 
beam made of an linear elastic material and for 
an elastoplastic rod made of a material with the 
above mentioned deformation law (Fig. 2). For 
a beam with a linear elastic material model, the 
curves of equilibrium states increase smoothly 
with increasing load, since the loss of stability 
of a linear elastic axially compressed beam 
occurs at the point of symmetric stable 
bifurcation [1,2].  
When the material of the beam obeys the 
diagram of elasto-plastic deformation, the 
bifurcation point becomes unstable (in the 
formulation of the Euler-Karman problem), and 

the cantilever axially compressed beam loses its 
stability «in large» (Fig. 3a). In this case, the 
drop in the critical loads values turns out to be 
strongly dependent on the magnitude of the 
initial imperfections (indicated offsets) (Fig. 
3c). The graph of the dependence of the critical 
loads at the limiting points on the offset value 
shown in Fig. 3b demonstrates that when the 
load was displaced from the axis by 0.01 m (the 
minimum used offset value) its critical value 
decreased by 
of 0.04 m by -
known statement of T. Karman about the 
extremely high sensitivity of short beams 
(beams that lose their stability in the elasto-
plastic stage of material operation) to the initial 
application of compressive load' offsets [3].
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Figure 4. Compressed pivotally supported beam 

 
3. ON THE LOSS OF STABILITY OF A 
COMPRESSED PIVOTALLY SUPPORTED 
BEAM IN THE ELASTO-PLASTIC STAGE 
 
A flat steel beam 10×2×0.4 cm (St. 3) is used to 
qualitatively demonstrate the loss of stability 
effects in the elastoplastic stage under kinematic 
loading in a press (Fig. 4a). Beam 
characteristics = 0,8 , = 1,07 , 
 = 86,6 < 100. 
The beam had hinged boundary conditions. 
According to the Tetmayer’s formula: 
 

= 3100 11,4, = 2112,7 , 
 =  = 1690,2  

 
The actual critical load observed during 
experiment This is 
explained by the high sensitivity of the critical 
load to the initial offsets of load, since here the 
curve of the initial post-critical equilibrium is 
unstable (with a bend at the apex at P = Pcrit, 
Fig. 4b). 
The moment of loss of stability of the elasto-
plastic beam onset corresponds to the maximum 
load. At the beginning of buckling, the beam is 
slightly bent along a curve close to a sinusoid. 
But unlike elastic loss of stability, the "new" 
compressed-bent equilibrium is unstable. The 
beam, as it were, "slips out" of the decreasing 
pressure in the press. At the same time, its shape 

is changing. The curvature of the middle zone of 
the beam becomes larger and larger. On the 
contrary, the zones adjacent to the supports try 
to “straighten out”. In the end, the rod takes the 
shape of an angle of ~130° 140° with a 
concentration of curvature near the middle 
section (Fig. 4c). In fact, a plastic hinge is 
formed here.  
The calculation of such a beam was carried out 
with the NASTRAN (2520 FE plate) to 
construct the equilibrium diagrams shown in 
Fig. 5. The calculated diagram  –  was taken 
as Prandtls diagram with a yield point =

2400 kg cm . The critical load was 1800 kg. 
But this is not the result of loading in the form 
of pure compression. The beam bending was 
provoked by a "small" lateral force Q = 30 kg. 
When performing a geometrically nonlinear 
calculation, such a “disturbing” force is 
required. But this force causes imperfections, to 
which the "elasto-plastic" beam is very 
sensitive.  
Fig. 5 shows the sequential development of 
stresses and deformations in the middle zone of 
the test sample after loss of stability in the 
elasto-plastic stage of material operation. The 
beginning of the formation of the plastic hinge - 
points 1 and 2. But if point 1 corresponds to the 
maximum load, then in point 2 the load dropped 
to ~0,3 . In points 3 and 4, the compressive 
load is even smaller. However, the zone of 
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Figure 5. The equilibrium diagram for the compressed pivotally supported beam 

 
4. ON SOLUTIONS OF ELASTO-PLASTIC 
PROBLEMS OF STABILITY OF FRAMES 
 
It is known that the solution of elastoplastic 
problems can be determined using two different 
approaches: the theory of small elastoplastic 
deformations and using the flow theory. 
According to the first theory, the relationship 
between stresses and deformations turns out to 
be finite; according to the flow theory, these 
relations are differential. 
If the loading is simple, then both theories of 
plasticity give the same results. 

If the loading is not simple, then the results 
obtained using the flow theory, usually, match 
better the experimental data in comparison with 
the results given by the theory of small elasto-
plastic deformations. 
Solutions for both theories are obtained as a 
result of the convergence of iterative processes. 
The FE-complex NASTRAN implements the 
solving procedure according to the flow theory. 
In the semi-automatic version of the stability 
problems for frame systems in the elasto-plastic 
stage solution, it is convenient to use the theory 
of small elasto-plastic deformations with 

On the Calculations for the Stability of Beams, Frames, and Cylindrical Shells in the Elasto-Plastic Stage



30 International Journal for Computational Civil and Structural Engineering

iterations by the method of elastic solutions with 
variable elastic parameters. 
The convergence of this iterative process in the 
general case has not been rigorously proven. 
However, numerous calculations show that for 

ordinary "convex" (broken or smooth)  
diagrams, the iterations converge to such a 
solution.  
 

 

 
Figure 6. The variable parameters of elasticity method. 

 
The essence of the variable parameters of 
elasticity in stability problems method will be 
explained using Fig. 6. 
Let the material have a bilinear  diagram 
with modules E and E2. The first approximation 
is the result of solving the elastic stability 
problem. If the critical "elastic" stresses of the 
first approximation 
 

( )
=

 
=

( )

 
 
is greater than the yield stress ( )

>

this means that the frame loses its 
stability in the elastoplastic stage. The stress 

( ) is the first upper approximation for 
. Next, we find the relative deformation 

 
( )

=

( )

, 
 
and stress ( )

 in the second section of the 
 diagram 

 

( )
= + (

( )
)  

 
Here is the slope modulus in the second 
section. The stress ( ) gives lower bound 

. As a result, we have the first two-
sided estimates 
 

( )
< <

( ) 
 
Next, a new elasticity modulus is calculated 

( ) 
 

( )
=

( )

( )
<

( ) 
 
This module takes into account the decrease in 
the bending stiffness of the compressed beams 
at the second iteration compared to the original 
module E. The reduction factor 
 

( )
=

( )

< 1 
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second approximation gives the critical 
parameter ( ) and the critical force ( ) 
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Then all calculations of ( )

,
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repeated. As a result, we obtain new improved 
two-sided estimates ( ( )

<
( )

,
( )

>
( )). 

 
( )
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Iterations continue until the first few digits 
match in the values ( )and  

( ). Usually, 
two or three correct signs are enough for 

. 
As an example, let us consider the solution of 
the elasto-plastic stability of a U-shaped frame 
with a box-shaped cross-section of 3×4 cm and 
0.4 cm thick walls by the method of variable 
elastic parameters problem. Here: = 100 cm, 

= 4,96 cm ,  = 10 , = 2

10  , = 0,6 10  . The 
stress = 2000 /  (bilinear 
diagram).  
The characteristic equation of the first 
approximation (elastic problem) and its solution 
is 
 

6 +
 

= 0,   
( )

= 2,716,   

 = . 

( )
=

2,716 2 10 10

10
= 14753,3 ,   

 
( )
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( )

= 2974,4 /  
( )
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( )

= 1,48723 ,   = 10 , 
( )

= 2000 + (1,48723 1 )0,6 10

= 2292,3 /  
 
Thus, after the first iteration step, we have the 
estimates 
 

2292,3 < < 2974,4  /  
 
The new elasticity modulus for the second 
iteration 
 

( )
=

( )

( )
=

2294,3

1,48723
1541347 ,  

( )
=

( )

= 0,77 
 
Characteristic equation of the second iteration 
 

6 + 0,77
 

= 0,    2,8,
( )

=
 

1,139
= 2,458 

 
Continuing the calculations, we obtain the 
estimates  
 

2348,4 < < 2436  /  
 
The third iteration gives 
 

2353 < < 2360  /  
 
We restrict ourselves to the third approximation 
and assume that 2356 / . 
Critical load .  = 11688,6 kg. 
It is interesting to note that according to the 
solution using a beam FE at = 1/100000, the 
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critical load turned out to be very close to the 
calculated one (  ( ) = 11739 ). 
However, when comparing with the results 
( ~9880,5 ) obtained with the help 
of plate FE, one can see the difference (~
in the critical force. There are no convincing 
explanations for this discrepancy yet. It is 
impossible to explain the difference between the 
flow theory and the theory of small elasto-
plastic deformations, since the result ,  
obtained using the beam FE was calculated 
according to the theory of flows ( =

11739 ), and, as shown above, is in good 
agreement with the value of  obtained 
on the basis of the theory of small elasto-plastic 
deformations ( = 11688 ). Let us 
consider additional solutions to the problem of 
elasto-plastic buckling of a U-shaped frame 
(Fig. 7), composed of 100 cm long beams and 
having 4 × 3 cm rectangular tubular sections 0.4 
cm thick. The analytic model of the frame is 

lower sections of the frame struts are sealed. 
Nodal load (two vertical compressive forces P). 
The diagram of material operation is bilinear 
with module = 2 10   in the first 
section and module = 0,3 = 0,6

10   for the second section ( =

2000 ). The imperfections were 
specified in the form of 2 small horizontal nodal 
forces 22; 0.00001; 
0.0001; 0.001 and 0.01. With such 

seen from the above results, with the loss of 
stability in the elasto-plastic stage, the drop in 
the critical load with an increase in the "forced" 
initial imperfections is quite noticeable. This is 
a significant difference from the "elastic" loss of 
stability (stable symmetric bifurcation), the 
curves of the initial supercritical equilibrium at 

ry close to each other 
(Fig. 7).  
 

 

 
Figure 7. Deformation diagrams of U-shaped frame with different initial imperfections 
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The sensitivity of the elasto-plastic critical load 
to initial imperfections exists due to the fact that 
the post-critical equilibrium of the frame after 
elasto-plastic loss of stability is unstable. 
The nature of a sharp decrease in elasto-plastic 
critical loads is clearly visible in Fig. 7. At  = 

( )/  
That is quite a lot. 
Note that when using plate elements and a 
nonlinear elastic material model, the critical 

= ) practically coincided with the 
corresponding values from the elastic-plastic 
calculation. 
An attempt was made to use a beam FE 
element. For a linearly elastic material, the 
results of calculating  turned out to be quite 
close to those calculated "manually". 
 

 = 147,54  => 

2,716 2 10
10

10
 = 147533  

 
However, the elasto-plastic calculation gave a 
significantly lower critical force (   

117,4 ). The obtained value of the critical 
load on the NASTRAN is in good agreement 
with the result of the calculation by the method 
of variable parameters of elasticity (~ 117 kN). 
 
 
5. STABILITY OF A CIRCULAR 
CYLINDRICAL SHELL UNDER AXIAL 
COMPRESSION 
 
Let us compare the study results on the stability 
of a circular cylindrical shell under axial 
compression made by the author (numerical 
simulation according to the NASTRAN FEM) 
with the results of experiments by V.G. Sazonov 
and the calculations of A.V. Karmishin, given in 
the book [4]. 
Three series (each with six samples) of shells 

mm and thicknesses h = 1.0; 1.5; 2.0 mm were 
subjected to tests. The shells were made from 
pipes and checked for wall thickness differences 

- AMG6. The 
material diagram is shown in Fig. 8, the values 

 
 

 
Figure 8. Stress-strain diagram of the 

elastoplastic material AMG6 
 

Table 1. Coordinates of the AMG6 stress-strain 
diagram 

Point  strain stress, kg/mm2 

1 0 0 

2 0,002 13,40 

3 0,0025 15,20 

4 0,003 16,40 

5 0,004 17,40 

6 0,008 ,40 

 
ests of shells with h = 1 mm and h = 1.5 mm 

were carried out on a laboratory machine with a 
mechanical wire ZDM-10, shells with h = 2 mm 
- on a machine with a Sapper-100 hydraulic 
drive. The alignment of the models was ensured 
by marking the machine plates. To prevent 
distortions, ball joints were used (this is 
evidenced by stable test results). The models 
loading was carried out in stages at a low speed. 
Fig. 8 shows the ( ) diagrams obtained by 
recalculating the ( ) diagram using the 
formulas 
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=
2

,       = . 
 
At loads close to  (Fig. 8), a pronounced 
bending deformation state is observed at the 
edges of the shell. The maximum deflection 
amplitude before the loss of stability reaches 
approximately 0.1 h. 
When =  for shells with h = 1 mm and h = 
1.5 mm, at one of the edges of the shell, the loss 
of stability occurs in an asymmetric shape, 
accompanied by a drop in stresses to = , 
and the maximum deflection at the edge 
increases approximately up to 0.3h. However, 
the shell does not lose its bearing capacity, 
continuing to perceive the load. Then, at =

, the buckling shapes change and the shell 
loses its bearing capacity. 
Shells with h = 2 mm also lose stability in their 
asymmetric shape, but no sharp drop in the load 
is observed. The buckling begins with the 
formation of four regular indentations along the 
ring, which increase with additional loading, 
and the load decreases. 
When modeling cylinders by the finite element 
method, two material models were considered: 
an infinitely elastic and an elasto-plastic one 
based on the digitization of the diagram given in 
[4] (Fig. 8). The load was applied kinematically 
to the upper end of the shell through a rigid-
element (absolutely rigid plate). 
The obtained calculations results compared with 
the results of experiments by V.G. Sazonov and 
calculations by A.V. Karmishin are given in 
table 2. 
The loss of stability in the experiment of 
V.G. Sazonov occurred at stresses 
corresponding to the flat section of the diagram. 
Calculation using a nonlinear elastic model by 
A.V. Karmishin gave a good correlation with 
the experimental results (columns 2 and 3). 
The curve of subcritical and supercritical 
equilibrium states for a shell 1 mm thick, 
obtained by NASTRAN, is shown in Fig. 10.  
When using an elastic model of the material, the 
critical load on the shell was 22.8 kN (point 1 in 

2). 

 
Figure 9. Experimentally obtained deformation 

diagrams of cylindrical shells 
 

The subcritical equilibrium of the shell is 
axisymmetric; a nonlinear edge effect exists 
near the edges of the shell. Then the loss of 
stability occurs, and the shell goes into a distant 
stable equilibrium, characterized by the 
formation of a two-row belt of the rhombic-
triangular indentations [5, 6] (Fig. 10 point 2). 
The compression load was reduced to 8.4 kN. 
With further loading, a secondary bifurcation 
occurs  the restructuring of this belt into a three-
row one (Fig. 10 point 3). After the loss of 
stability at point 2 (and under conditions of 
further loading), it turned out that the rigid 
element shifted and a skew appeared towards 
one part of the lateral surface of the shell. 
Cyclic symmetry has been lost. 
The elasto-plastic equilibrium curve of the shell 
is completely different. Up to a load of 
~3,9 , the relationship between load and 
shortening is linear. Further, with a compression 
of ~3,9 , a sharp increase in shortening was 
observed with a very weak increase in the load 
up to the limit point 4. (Fig. 10). Then the 
equilibrium of the shell became unstable. The 
development of dents was not along the entire 
lateral surface, but only near the end sections, in 
the zone of the elasto-plastic edge effect 
(point 5, Fig. 10). 
Thus, it can be concluded that with the 
compressed circular cylindrical shells’ elasto-
plastic loss of stability, there is no “jump” in the 
load. However, it is 3.5-4 times less than the 
critical loads of elastic loss of stability. 
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At loads close to  (Fig. 8), a pronounced 
bending deformation state is observed at the 
edges of the shell. The maximum deflection 
amplitude before the loss of stability reaches 
approximately 0.1 h. 
When =  for shells with h = 1 mm and h = 
1.5 mm, at one of the edges of the shell, the loss 
of stability occurs in an asymmetric shape, 
accompanied by a drop in stresses to = , 
and the maximum deflection at the edge 
increases approximately up to 0.3h. However, 
the shell does not lose its bearing capacity, 
continuing to perceive the load. Then, at =

, the buckling shapes change and the shell 
loses its bearing capacity. 
Shells with h = 2 mm also lose stability in their 
asymmetric shape, but no sharp drop in the load 
is observed. The buckling begins with the 
formation of four regular indentations along the 
ring, which increase with additional loading, 
and the load decreases. 
When modeling cylinders by the finite element 
method, two material models were considered: 
an infinitely elastic and an elasto-plastic one 
based on the digitization of the diagram given in 
[4] (Fig. 8). The load was applied kinematically 
to the upper end of the shell through a rigid-
element (absolutely rigid plate). 
The obtained calculations results compared with 
the results of experiments by V.G. Sazonov and 
calculations by A.V. Karmishin are given in 
table 2. 
The loss of stability in the experiment of 
V.G. Sazonov occurred at stresses 
corresponding to the flat section of the diagram. 
Calculation using a nonlinear elastic model by 
A.V. Karmishin gave a good correlation with 
the experimental results (columns 2 and 3). 
The curve of subcritical and supercritical 
equilibrium states for a shell 1 mm thick, 
obtained by NASTRAN, is shown in Fig. 10.  
When using an elastic model of the material, the 
critical load on the shell was 22.8 kN (point 1 in 

2). 

 
Figure 9. Experimentally obtained deformation 

diagrams of cylindrical shells 
 

The subcritical equilibrium of the shell is 
axisymmetric; a nonlinear edge effect exists 
near the edges of the shell. Then the loss of 
stability occurs, and the shell goes into a distant 
stable equilibrium, characterized by the 
formation of a two-row belt of the rhombic-
triangular indentations [5, 6] (Fig. 10 point 2). 
The compression load was reduced to 8.4 kN. 
With further loading, a secondary bifurcation 
occurs  the restructuring of this belt into a three-
row one (Fig. 10 point 3). After the loss of 
stability at point 2 (and under conditions of 
further loading), it turned out that the rigid 
element shifted and a skew appeared towards 
one part of the lateral surface of the shell. 
Cyclic symmetry has been lost. 
The elasto-plastic equilibrium curve of the shell 
is completely different. Up to a load of 
~3,9 , the relationship between load and 
shortening is linear. Further, with a compression 
of ~3,9 , a sharp increase in shortening was 
observed with a very weak increase in the load 
up to the limit point 4. (Fig. 10). Then the 
equilibrium of the shell became unstable. The 
development of dents was not along the entire 
lateral surface, but only near the end sections, in 
the zone of the elasto-plastic edge effect 
(point 5, Fig. 10). 
Thus, it can be concluded that with the 
compressed circular cylindrical shells’ elasto-
plastic loss of stability, there is no “jump” in the 
load. However, it is 3.5-4 times less than the 
critical loads of elastic loss of stability. 
 
 

 

 
Figure 10. The diagram of the cylinder’s deformation with a 1 mm thickness and a view of the 

model at characteristic points 
 

Table 2. comparison of results of authors the results of experiments by V.G. Sazonov and 
calculations by A.V. Karmishin 

 

Shell’s 
thickness, 

mm 

Critical stresses, kg/mm2 

Expiriment  
(V.G. Sazonov) 

Plastic shell buckling  
(A.V. Karmishin) 

Elastic 
analysis 

(Nastran) 
Elasto-plastic 

analysis 

1 2 3 4 5 
1    20,45 

1,5 22,6 21,4 148,11 25,75 
2  22,6 178,84 30,55 

 
 
REFERENCES 
 
1. Manuylov G.A., Kositsyn S.B., Begichev 

M.M. Chislennoye modelirovaniye protsessov 
poteri ustoychivosti ravnovesiya 
tonkostennykh elementov konstruktsiy v 
usloviyakh uprugoplasticheskikh deformatsiy. 
Trudy Mezhdunarodnoy nauchno-
prakticheskoy konferentsii «Inzhenernyye 
sistemy – 2011», Moscow, 05 – 08 april 2011.  
– Moscow: RUDN. – 2011. – p. 377-383.  

2. Manuylov G.A., Kositsyn S.B., Begichev 
M.M. Sravnitel'nyy analiz ustoychivosti 

nekotorykh tonkostennykh konstruktsiy pri 
uprugikh i uprugo-plasticheskikh 
deformatsiyakh // Tezisy doklada 70 
Nauchno-metodicheskoy i nauchno-
issledovatelskoy konferentsii MADGTU 
(MADI). 30 january – 03 february 2012, 
Moscow: MADI, 2012 – p. 21 – 22. 

3. Timoshenko S.P. Ustoychivost uprugikh 
sistem / M.: Ogiz, Gostekhizdat. – – 
533 p.  

4. Karmishin A.V., Lyaskovets V.A., 
Myachenkov V.I., Frolov A.N. Statika i 
dinamika tonkostennykh obolochechnykh 

On the Calculations for the Stability of Beams, Frames, and Cylindrical Shells in the Elasto-Plastic Stage



36 International Journal for Computational Civil and Structural Engineering

konstruktsiy. – Moscow: Mashinostroyeniye. 
– – 376 p.  

5. Manuylov G.A., Kositsyn S.B., Begichev 
M.M. O yavlenii poteri ustoychivosti prodol'no 
szhatoy krugovoy tsilindricheskoy obolochki. 
chast 1: O poslekriticheskom ravnovesii 
obolochki // International Journal for 
Computational Civil and Structural Engineering 
Volume 12, Issue 3. – 2016. – p. 58-72.  

6. Manuylov G.A., Kositsyn S.B., Begichev 
M.M. O yavlenii poteri ustoychivosti 
prodol'no szhatoy krugovoy tsilindricheskoy 
obolochki. chast II. Maksvellova sila i 
energeticheskiy bar'yer // International 
Journal for Computational Civil and 
Structural Engineering) Volume 12, Issue 4. 
– 2016. – p. 103-115. 

 
 

 
 
1. 

 

-
– 

– 
– 383. 

2. 
 

-
-

-  

– 
2012 – – 22. 

3.  
-  

4. 
 

– – 
–  

5. 
 

International Journal for Computational Civil 
and Structural Engineering V lume 12, Issue 
3. – 2016. – p. 58-72. 

6. 
 

II. 

// International Journal for Computational Civil 

4. – 2016. – p. 103-115. 
 

 
Gaik A. Manuylov, Ph.D., Associate Professor, 
Department of Structural Mechanics, Russian University 

- -81. 
 
Sergey B. Kosytsyn, Dr.Sc., Professor, Head of 
Department of Theoretical Mechanics, Russian University 

-16- 73; E-mail: kositsyn-
s@yandex.ru, kositsyn-s@mail.ru 
 
Maxim M. Begichev, Ph.D., Associate Professor, 
Department of Theoretical Mechanics, Russian University 

-16-73; E-mail: 
noxonius@mail.ru. 

 

- -81 
 

-
16-73; E-mail: kositsyn-s@yandex.ru, kositsyn-s@mail.ru 
 

./  
-16-73; E-mail: noxonius@mail.ru. 

Gaik A. Manuylov, Sergey B. Kosytsyn, Maxim M. Begichev


