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ON THE CALCULATIONS FOR THE STABILITY OF BEAMS,
FRAMES, AND CYLINDRICAL SHELLS IN THE
ELASTO-PLASTIC STAGE

Gaik A. Manuylov, Sergey B. Kosytsyn, Maxim M. Begichev
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Abstract. The problems of stability of some beams, Il-shaped frames and cylindrical shells with the elasto-
plastic material are considered. The possibility of modeling bars using finite elements of various types is studied.
Plate elements and even one-dimensional beam finite elements can be used for modelling compressed rods with
geometric and physical nonlinearity. For the problem of stability of a circular cylindrical shell is given the
comparison of the authors' results obtained using the FEM with the experimental results of V.G. Sazonov and the
calculations of A.V. Karmishin.
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O PACUETAX HA YCTOMYUBOCTH CTEP)KHEN, PAM
U HUJIUHAPUYECKHUX OBOJIOYEK B YIIPYT'O
MJIACTUYECKOHU CTAIUN

I A. Manyiinos, C.b. Kocuuvin, M.M. bezuuee

Poccuiickuit yausepcuret Tpancnopta, Mocksa, POCCHUA

AHHoTanus. B pabote paccmMaTpuBaroTCs BOMPOCH! YCTOHYMBOCTH HEKOTOPHIX cTepkHEH, [1-00pa3HBIX pam u
WIMHIPUUECKUX 000JIOUEK B YNPYro IJIACTHYECKOH cTajuy paboTel MaTepuana. PaccMOTpeHa BO3MOXKHOCTD
MOJIEINPOBAHMS CTEPKHEHN ITPU MOMOLIM KOHEYHBIX 2JIEMEHTOB Pa3iIM4YHbIX TUIOB. [lokasaHo, 4To [ pacuera
CKATBIX CTEPXKHEH C y4eTOM I'eOMETPUYECKON M (PM3MYECKOH HEIMHEIHOCTH MOYXHO MCIIOJIb30BATh IUIOCKHE U
JlayKe OJIHOMEpHbIE KOHEYHbIe AJIeMeHThI. Uil 331aun yCTOHYMBOCTH KPYrOBOM LIMJIMHIPUYECKOW O0OOJIOYKU
IPUBECHO CPAaBHEHHE PE3yIbTaTOB aBTOPOB, MOJMyUeHHBIX Mpu nomomu MKD ¢ pesyiabraTamMu SKCIIEpUMEHTOB
B.I'. CazonoBa u pacueramu A.B. Kapmumnna.

KaroueBble ciioBa: YCTOfI‘IPIBOCTL, TreoMEeTpruiICCKas HeHHHeﬁHOCTB, (1)PI3PI‘1€CK3.H HeHHHeﬁHOCTB,
METOA KOHCYHBIX 3JICMCHTOB

1. ANALYSIS OF DIFFERENT TYPES OF
FINITE ELEMENTS IN THE STABILITY
PROBLEMS WITH GEOMETRIC AND
PHYSICAL NONLINEARITIES

Let us investigate the possibilities of various
finite element models concerning the
geometrically and physically nonlinear problem
of stability of a cantilever beam. The beam had
a length /=100 cm and a square cross section
10x10 cm, beam flexibility
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A =MIl/\JE] = 69.

This value is less than the limiting flexibility for
a beam with such geometrical parameters made
of steel 10HSND (A, = 72). The study used the
model of an ideal Prandtl elasto-plastic material
(Oyeilea=400 MPa). Four types of finite element
models are considered:

1. Using solid finite elements (FE) in the
NASTRAN complex (Hex8);

2. Using plate FE with loss of stability in the
element plane;
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3. Using plate FE with loss of stability out of the
element plane;
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4. Using beam FE.
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Figure 1. Curves of deformation development of an axially compressed cantilever beam

It was found that when wusing a three-
dimensional model (5x5x60 cubic elements) of
the above-described axially compressed beam, a
model of 60 one-dimensional beam elements, as
well as flat square four-node FE (5 plate
elements along the height of the section, located
in the plane of loss of stability), the critical loss
of stability loads at limiting points and post-
critical curves of unstable equilibrium states,
almost coincided (Fig. 1).

A slightly higher compression load (AP« = 9%)
had the model of a plate elements, bending at loss
of stability "out of its plane". It follows from this
that to solve physically and geometrically nonlinear
stability problems it is not necessary to use models
of beams from three-dimensional finite elements.
Two-dimensional plate elements (and even one-
dimensional beam elements) make it possible to
obtain acceptable results in majority of loss of
stability ~ problems taking with elasto-plastic
material behavior. The use of such elements
significantly reduces the dimension of stability
problems (in comparison with solid FE), and, as a
consequence, reduces the time for their solution.
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2. ECCENTRICALLY COMPRESSED
CANTILEVER BEAM

In this paragraph, on the model (1200 flat four-
node FE) of the cantilever beam (lenght
/[ = 1,2 m) which has a nonlinear material
diagram with hardening (Fig. 2, o = ¢E —
—ke3/3,E =2,1-10° kg/cm?) and unloading
according to a linear law, the influence of the
initial imperfections in the application of a
compressive force (offset) to the end section by
the value of the loss of stability critical load.
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Figure 2. Stress-strain diagram for the material
of the cantilever beam
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Figure 3. Elasto-plastic buckling of a cantilever axially compressed beam: a) deformed form of the
beam; b) a graph of reduction of the values of critical loads; c) curves of displacement of the end of
the beam

Imperfections in this problem were set in the
form of different values of the offset of the point
of the force application with respect to the
center line of the beam (Fig. 3). A series of
curves of equilibrium states was obtained for a
beam made of an linear elastic material and for
an elastoplastic rod made of a material with the
above mentioned deformation law (Fig. 2). For
a beam with a linear elastic material model, the
curves of equilibrium states increase smoothly
with increasing load, since the loss of stability
of a linear elastic axially compressed beam
occurs at the point of symmetric stable
bifurcation [1,2].

When the material of the beam obeys the
diagram of elasto-plastic deformation, the
bifurcation point becomes unstable (in the
formulation of the Euler-Karman problem), and
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the cantilever axially compressed beam loses its
stability «in large» (Fig. 3a). In this case, the
drop in the critical loads values turns out to be
strongly dependent on the magnitude of the
initial imperfections (indicated offsets) (Fig.
3¢). The graph of the dependence of the critical
loads at the limiting points on the offset value
shown in Fig. 3b demonstrates that when the
load was displaced from the axis by 0.01 m (the
minimum used offset value) its critical value
decreased by ~ 30%, and at a maximum offset
of 0.04 m by ~ 52%. This confirms the well-
known statement of T. Karman about the
extremely high sensitivity of short beams
(beams that lose their stability in the elasto-
plastic stage of material operation) to the initial
application of compressive load' offsets [3].
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Figure 4. Compressed pivotally supported beam

3. ON THE LOSS OF STABILITY OF A
COMPRESSED PIVOTALLY SUPPORTED
BEAM IN THE ELASTO-PLASTIC STAGE

A flat steel beam 10x2x0.4 cm (St. 3) is used to
qualitatively demonstrate the loss of stability
effects in the elastoplastic stage under kinematic
loading in a press (Fig. 4a). Beam
characteristics A = 0,8 cm?, Jpin = 1,07 cm?,
A =86,6 <100.

The beam had hinged boundary conditions.
According to the Tetmayer’s formula:

Ocrit = 3100 — 11,4,= 2112,7 kg/cm?,
Porit = 0crir A = 1690,2 kg

The actual critical load observed during
experiment is less than 1690 kg. This is
explained by the high sensitivity of the critical
load to the initial offsets of load, since here the
curve of the initial post-critical equilibrium is
unstable (with a bend at the apex at P = Perit,
Fig. 4b).

The moment of loss of stability of the elasto-
plastic beam onset corresponds to the maximum
load. At the beginning of buckling, the beam is
slightly bent along a curve close to a sinusoid.
But unlike elastic loss of stability, the "new"
compressed-bent equilibrium is unstable. The
beam, as it were, "slips out" of the decreasing
pressure in the press. At the same time, its shape

is changing. The curvature of the middle zone of
the beam becomes larger and larger. On the
contrary, the zones adjacent to the supports try
to “straighten out”. In the end, the rod takes the
shape of an angle of ~130°— 140° with a
concentration of curvature near the middle
section (Fig. 4c). In fact, a plastic hinge is
formed here.

The calculation of such a beam was carried out
with the NASTRAN (2520 FE plate) to
construct the equilibrium diagrams shown in
Fig. 5. The calculated diagram ¢ — ¢ was taken
as Prandtls diagram with a yield point gy;,4 =

2400 kg/cm?. The critical load was 1800 kg.
But this is not the result of loading in the form
of pure compression. The beam bending was
provoked by a "small" lateral force Q = 30 kg.
When performing a geometrically nonlinear
calculation, such a “disturbing” force is
required. But this force causes imperfections, to
which the 'elasto-plastic" beam 1is very
sensitive.

Fig. 5 shows the sequential development of
stresses and deformations in the middle zone of
the test sample after loss of stability in the
elasto-plastic stage of material operation. The
beginning of the formation of the plastic hinge -
points 1 and 2. But if point 1 corresponds to the
maximum load, then in point 2 the load dropped
to ~0,3 Pyqx- In points 3 and 4, the compressive
load is even smaller. However, the zone of

28 International Journal for Computational Civil and Structural Engineering



On the Calculations for the Stability of Beams, Frames, and Cylindrical Shells in the Elasto-Plastic Stage

compressive stresses (blue) has increased (along
the depth of the section). Finally, for point 5, the
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plastic hinge extended about 4 along the length
of the sample.
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Figure 5. The equilibrium diagram for the compressed pivotally supported beam

4. ON SOLUTIONS OF ELASTO-PLASTIC
PROBLEMS OF STABILITY OF FRAMES

It is known that the solution of elastoplastic
problems can be determined using two different
approaches: the theory of small elastoplastic
deformations and wusing the flow theory.
According to the first theory, the relationship
between stresses and deformations turns out to
be finite; according to the flow theory, these
relations are differential.

If the loading is simple, then both theories of
plasticity give the same results.
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If the loading is not simple, then the results
obtained using the flow theory, usually, match
better the experimental data in comparison with
the results given by the theory of small elasto-
plastic deformations.

Solutions for both theories are obtained as a
result of the convergence of iterative processes.
The FE-complex NASTRAN implements the
solving procedure according to the flow theory.
In the semi-automatic version of the stability
problems for frame systems in the elasto-plastic
stage solution, it is convenient to use the theory
of small elasto-plastic deformations with
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iterations by the method of elastic solutions with
variable elastic parameters.

The convergence of this iterative process in the
general case has not been rigorously proven.
However, numerous calculations show that for

ordinary "convex" (broken or smooth) o — ¢
diagrams, the iterations converge to such a

solution.

O
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Figure 6. The variable parameters of elasticity method.

The essence of the variable parameters of
elasticity in stability problems method will be
explained using Fig. 6.

Let the material have a bilinear o — ¢ diagram
with modules E and E». The first approximation
is the result of solving the elastic stability
problem. If the critical "elastic" stresses of the
first approximation

p

P
(1) — _¢r elast __
7 A A

is greater than the yield stress ayieled(a(l) >
ayieled)this means that the frame loses its
stability in the elastoplastic stage. The stress

oW is the first upper approximation for
Oglast—p1- Next, we find the relative deformation

€Y
(9

)

and stress @@ in the second section of the o —
€ diagram

a® = Oyieled T (8(1) - syieled)EZ

Here E,is the slope modulus in the second
section. The stress o) gives lower bound
Oglast—p1- As a result, we have the first two-

sided estimates
M < Oglast—pl < o®

Next, a new elasticity modulus is calculated
E®

@=2_ < pm
E® =—<E

This module takes into account the decrease in
the bending stiffness of the compressed beams
at the second iteration compared to the original
module E. The reduction factor

E®@
) =—<1
E
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is a multiplier as well in the bending stiffness of
compressed beams,

E] YE]

n T

as in the new force parameter v

The solution of the characteristic equation of the
second approximation gives the critical

parameter v( ) and the critical force P(®

o2 o ET
p@ — (Vgr)) Lp(2>l_2

Then all calculations of ¢, e@and 3 are
repeated. As a result, we obtain new improved
two-sided estimates (6 < ¢, 53 > ),

@ <ol o1 < o@

Iterations continue until the first few digits
match in the values 0™and o™, Usually,
two or three correct signs are enough for
O_eclr;lst—pl'

As an example, let us consider the solution of
the elasto-plastic stability of a U-shaped frame
with a box-shaped cross-section of 3x4 ¢cm and
0.4 cm thick walls by the method of variable
elastic parameters problem. Here: [ = 100 cm,
A = 4,96 cm?, ] =10 cm*, E, =2-

10 kg/cm?, E, =10,6-10° kg/cm?. The
stress Oyietea = 2000 Kr/cm? (bilinear
diagram).

The characteristic equation of the first

approximation (elastic problem) and its solution
1s

=0, v®¥ = 2,716,
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L
Vv = E]
P _ 2,716% % 2% 10° + 10 _ 147533 &
- 10% - %,
pM
o) = — = 29744 kg /cm?
(€8]
e =Z—=1,48723_3, &y, = 1073,

) = 2000 +(1,48723_3 — 1_3)0,6 * 10°
= 2292,3 kg/cm?

Thus, after the first iteration step, we have the
estimates

(22923 < 0&ust-p1 < 2974,4) kg/cm?

The new elasticity modulus for the second
iteration

2294,3

= 1,48723_,
@) E@)

Y@ == =077

E

= 1541347—2,
CM

Characteristic equation of the second iteration

EJ EJ
6+ 0,77 % T =0, vy =282
_ V2 er
= 1135 = 2458

Continuing the calculations, we obtain the

estimates

(2348,4 < 05t p1 < 2436) kg/cm?

The third iteration gives
(2353 < 0ase—p1 < 2360) kg/cm?

We restrict ourselves to the third approximation
and assume that ogjgse—p = 2356 kg/cm?.

Critical load Py, ¢1q5¢—p1 = 11688,6 kg.

It is interesting to note that according to the
solution using a beam FE at ¢ = 1/100000, the
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critical load turned out to be very close to the
calculated one (Pgjgs¢—p; (beam) = 11739 kg).
However, when comparing with the results
(Pelast—p1~9880,5 kg) obtained with the help
of plate FE, one can see the difference (~16.5%)
in the critical force. There are no convincing
explanations for this discrepancy yet. It is
impossible to explain the difference between the
flow theory and the theory of small elasto-
plastic deformations, since the result Pgjpg o,
obtained using the beam FE was calculated
according to the theory of flows (Pgjgse—p =
11739 kg), and, as shown above, is in good
agreement with the value of Pgjyq_p, obtained
on the basis of the theory of small elasto-plastic
deformations (Pgjgs¢—p = 11688 kg). Let us
consider additional solutions to the problem of
elasto-plastic buckling of a U-shaped frame
(Fig. 7), composed of 100 cm long beams and
having 4 X 3 cm rectangular tubular sections 0.4
cm thick. The analytic model of the frame is
made up of 10492 plate FE (NASTRAN). The

5,000x10-
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lower sections of the frame struts are sealed.
Nodal load (two vertical compressive forces P).
The diagram of material operation is bilinear
with module E = 2-10° kg/cm? in the first
section and module E,=03FE =0,6"
10% kg/cm? for the second section (op =
2000 kg/cm?). The imperfections were
specified in the form of 2 small horizontal nodal
forces &P, where ¢ = 0.0000022; 0.00001;
0.0001; 0.001 and 0.01. With such
imperfections, the critical loads are 98.805;
98.7; 97.65; 90.36 and 71.04 (kN). As can be
seen from the above results, with the loss of
stability in the elasto-plastic stage, the drop in
the critical load with an increase in the "forced"
initial imperfections is quite noticeable. This is
a significant difference from the "elastic" loss of
stability (stable symmetric bifurcation), the
curves of the initial supercritical equilibrium at
e =0 and € = 0.001 are very close to each other

(Fig. 7).
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Figure 7. Deformation diagrams of U-shaped frame with different initial imperfections
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The sensitivity of the elasto-plastic critical load
to initial imperfections exists due to the fact that
the post-critical equilibrium of the frame after
elasto-plastic loss of stability is unstable.

The nature of a sharp decrease in elasto-plastic
critical loads is clearly visible in Fig. 7. At € =
0.01 APcr% = (98.8—71.04)/98, 8-100% = 28%.
That is quite a lot.

Note that when using plate elements and a
nonlinear elastic material model, the critical

loads (98.2 kN at € = 0.00001 and 98.65 kN at
1

~ 500000
corresponding values from the elastic-plastic

calculation.

An attempt was made to use a beam FE
element. For a linearly elastic material, the
results of calculating B, turned out to be quite
close to those calculated "manually".

) practically coincided with the

Perorast = 147,54 kN =>
10
2,716 -2 10° -~ kg = 147533 kg

However, the elasto-plastic calculation gave a
significantly lower critical force (Pey eiast-pt =
117,4 kN). The obtained value of the critical
load on the NASTRAN is in good agreement
with the result of the calculation by the method
of variable parameters of elasticity (~ 117 kN).

5. STABILITY OF A CIRCULAR
CYLINDRICAL SHELL UNDER AXIAL
COMPRESSION

Let us compare the study results on the stability
of a circular cylindrical shell under axial
compression made by the author (numerical
simulation according to the NASTRAN FEM)
with the results of experiments by V.G. Sazonov
and the calculations of A.V. Karmishin, given in
the book [4].

Three series (each with six samples) of shells
with length L = 136 mm, outer diameter d = 79
mm and thicknesses h = 1.0; 1.5; 2.0 mm were
subjected to tests. The shells were made from
pipes and checked for wall thickness differences

Volume 18, Issue 3, 2022

(= 2%). The shell material - AMG6. The
material diagram is shown in Fig. 8, the values
of € and & are given in Table 1.
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Figure 8. Stress-strain diagram of the
elastoplastic material AMG6

Table 1. Coordinates of the AMGG stress-strain

diagram
Point Ne strain stress, kg/mm?

1 0 0

2 0,002 13,40
3 0,0025 15,20
4 0,003 16,40
5 0,004 17,40
6 0,008 19,40

Tests of shells with h = 1 mm and h = 1.5 mm
were carried out on a laboratory machine with a
mechanical wire ZDM-10, shells with h =2 mm
- on a machine with a Sapper-100 hydraulic
drive. The alignment of the models was ensured
by marking the machine plates. To prevent
distortions, ball joints were used (this is
evidenced by stable test results). The models
loading was carried out in stages at a low speed.
Fig. 8 shows the o.(g.) diagrams obtained by
recalculating the P(A) diagram using the
formulas
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At loads close to g, (Fig. 8), a pronounced
bending deformation state is observed at the
edges of the shell. The maximum deflection
amplitude before the loss of stability reaches
approximately 0.1 h.

When ¢ = g, for shells with h =1 mm and h =
1.5 mm, at one of the edges of the shell, the loss
of stability occurs in an asymmetric shape,
accompanied by a drop in stresses to o = o,
and the maximum deflection at the edge
increases approximately up to 0.3h. However,
the shell does not lose its bearing capacity,
continuing to perceive the load. Then, at ¢ =
or, the buckling shapes change and the shell
loses its bearing capacity.

Shells with h = 2 mm also lose stability in their
asymmetric shape, but no sharp drop in the load
is observed. The buckling begins with the
formation of four regular indentations along the
ring, which increase with additional loading,
and the load decreases.

When modeling cylinders by the finite element
method, two material models were considered:
an infinitely elastic and an elasto-plastic one
based on the digitization of the diagram given in
[4] (Fig. 8). The load was applied kinematically
to the upper end of the shell through a rigid-
element (absolutely rigid plate).

The obtained calculations results compared with
the results of experiments by V.G. Sazonov and
calculations by A.V. Karmishin are given in
table 2.

The loss of stability in the experiment of
V.G. Sazonov occurred at stresses
corresponding to the flat section of the diagram.
Calculation using a nonlinear elastic model by
A.V. Karmishin gave a good correlation with
the experimental results (columns 2 and 3).

The curve of subcritical and supercritical
equilibrium states for a shell 1 mm thick,
obtained by NASTRAN, is shown in Fig. 10.
When using an elastic model of the material, the
critical load on the shell was 22.8 kN (point 1 in
Fig. 10, stress 93.2 kg / mm?).
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Figure 9. Experimentally obtained deformation
diagrams of cylindrical shells

The subcritical equilibrium of the shell is
axisymmetric; a nonlinear edge effect exists
near the edges of the shell. Then the loss of
stability occurs, and the shell goes into a distant
stable equilibrium, characterized by the
formation of a two-row belt of the rhombic-
triangular indentations [5, 6] (Fig. 10 point 2).
The compression load was reduced to 8.4 kN.
With further loading, a secondary bifurcation
occurs the restructuring of this belt into a three-
row one (Fig. 10 point 3). After the loss of
stability at point 2 (and under conditions of
further loading), it turned out that the rigid
element shifted and a skew appeared towards
one part of the lateral surface of the shell.
Cyclic symmetry has been lost.

The elasto-plastic equilibrium curve of the shell
is completely different. Up to a load of
~3,9 kN, the relationship between load and
shortening is linear. Further, with a compression
of ~3,9 kN, a sharp increase in shortening was
observed with a very weak increase in the load
up to the limit point 4. (Fig. 10). Then the
equilibrium of the shell became unstable. The
development of dents was not along the entire
lateral surface, but only near the end sections, in
the zone of the -elasto-plastic edge -effect
(point 5, Fig. 10).

Thus, it can be concluded that with the
compressed circular cylindrical shells’ elasto-
plastic loss of stability, there is no “jump” in the
load. However, it is 3.5-4 times less than the
critical loads of elastic loss of stability.
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Figure 10. The diagram of the cylinder’s deformation with a 1 mm thickness and a view of the
model at characteristic points

Table 2. comparison of results of authors the results of experiments by V.G. Sazonov and

calculations by A.V. Karmishin

Shell’s Critical stresses, kg/mm? .
thickness, Expiriment Plastic shell buckling alflleﬁizt:i:s Elasto-plastic
mm (V.G. Sazonov) (A.V. Karmishin) (Nastran) analysis
2 3 4 5
19,5 19,2 93,20 20,45
1,5 22,6 21,4 148,11 25,75
2 23,9 22,6 178,84 30,55
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