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THE EFFECT OF THE AXIAL AND SHEAR STIFFNESSES
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Abstract. This article is about the nonlinear problems of the theory of elastic Cosserat — Timoshenko’s rods in the
material (Lagrangian) description. The variational definition for the problem as finding the stationary point of the
Lagrangian functional and differential formulation of static problems were given. The exact stability functional
and stability equations of the plane problem for physically linear elastic rods taking into account the axial, shear
and bending stiffnesses were received. The exact value of the critical load was obtained taking into account the
axial, shear and bending deformations in the problem of the stability of a rod compressed by an axial force. In the
present paper the stability of classical simplified rod’s models such as the Timoshenko beam and the Euler—
Bernoulli beam was investigated. Also, the stability of third simplified rod’s model, based on beam’s axial and
bending stiffnesses, was explored. The stability functionals, the stability equations and critical loads formulations
for this three types of simplified models were derived as a particular case of the general theory. There were made
the comparisons of described solutions which regards all the rod’s stiffnesses and solutions, based on simplified
models. The effect of the axial and shear stiffnesses on rod’s stability was analyzed.

Keywords: stability of structures; variational formulation; the stability functional; the stability equations;
the critical load

BO3JIEUCTBUE )KECTKOCTEM HA PACTSI’)KEHUE — C)KATHUE
U CIBUT HA YCTOMYUBOCTD YIIPYT'UX CTEPKHEN

J.A. Kysneuoea ', B.B. /lanun >, HM. Mankoe !

! lanbHeBOCTOUHBIN (enepanbHblil yauBepeutet, Bnagusocrok, POCCUS
Cankr-TletepOyprekuii monurexnuueckuii yanpepeutet Ierpa Bennkoro, Cankr-TlerepOypr, POCCHS

AHHoOTanusi. JlaHHAas CTaThsl MOCBAIIEHA HENMHEHHBIM 3aJadaM Teopuu ympyrux crepxkHeidl Koccepa —
Tumomenko B mMatepuaibHoM (JlarpamkeBoM) onmcanuu. [IprBeseHO BapHallMOHHOE OTpE/ENCHNE 3a1a4l B
BHJIE TIOMCKAa TOYKM CTallMOHApHOCTH (yHKIMOHaa Tuma Jlarpamka n audQepeHnuanbHble TOCTAaHOBKH
cTaTH4ecKuX 3a1ad. [lomydens! TouHbIe (PYHKIIMOHAT YCTOMIMBOCTH M YPaBHEHUS! YCTOHUMBOCTH IUIOCKOH 3aaun
A GU3NYECKN JTWHEHHBIX YIPYTHX CTEPXKHEW C YYeTOM IMPOAONBHOW, CIBUTOBOM M M3THOHOI KECTKOCTEH.
TouHOoe 3Ha4YeHHE KPUTHYECKONH HArpy3KH MOJIYYEHO C YYETOM TMPOJOJIbHBIX, CABHUIOBBIX W M3THOAIOIINX
nedopmanuii B 3amavye yCTOWYMBOCTH CTEPIKHS, C)KATOrO OCEBOW CHIIOW. B Hacrosimieit pabore mcciemoBaHa
YCTOWYMBOCTh KJIACCHUYECKHX YIPOIIEHHBIX CTEP)KHEBBIX MOJeNel, Takux kak Oanka TumorneHko u Oajika
Bepuymum - Diinepa. Takxke Oblia mcciaeqOBaHa YCTOMYMBOCTH TPEThEH YIPOIICHHOW MOJENN CTEpPIXKHS,
OCHOBAHHOW Ha yd4eTe MpOJIOJIbHON M M3THOHON kecTKocTel Oanku. OyHKIMOHAIBI YCTOHYUBOCTH, YpaBHEHHS
YCTOWYMBOCTH 1 (POPMYJIBI KPUTHUECKHUX CHJI JUISL ATUX TPEX THUIIOB YIPOIIEHHBIX MOJIeNIei ObUTH BBIBEICHBI B
KayecTBEe YaCTHOro ciydast obOmiell Teopuu. IIpoBeneHbI CpaBHEHHs ONMCAHHBIX PELICHHH C YYeTOM BCEX
KECTKOCTEH CTEP KHS M PELICHHH, OCHOBAHHBIX Ha YNPOIIECHHBIX MOJEIsIX. [IpoaHann3npoBaHo BIMSHAE OCEBOH
1 CABUTOBOM KECTKOCTH HAa yCTOMYMBOCTD CTEPIAKHSL.

KaroueBble ci10Ba: ycToOWYMBOCTS KOHCTPYKIIHMIA, BapuannonHas GopMyIHpOBKa; GYHKIIMOHA YCTOHYMBOCTH;
ypaBHEHUsI yCTONYUBOCTH; KPUTHIECKAS HATPY3Ka
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1. INTRODUCTION

The desire to reduce the material consumption of
structures leads to the use of more flexible
structural elements in modern construction. This
increases the possibility of loss of stability of
these elements. Traditional assessment methods
of the rod’s stability based on the classical
Euler’s formula, give only approximate values of
critical loads for compliant elements. This is due
to the fact that only the bending stiffness of the
rods is taken into account in the Euler’s formula.
In this paper, we obtain exact solutions to the
stability problems of rods that take into account,
in addition to bending stiffness, also axial and
shear stiffnesses.

The apparatus of the classical variational calculus
is used to solve this problem. The traditional
approach to the variational formulation of the
problem of rod’s nonlinear deformation is to use
the variational equation in the form of the principle
of possible displacements [1-18]. In this paper, it is
shown that the variational problem can be
formulated as a problem of finding the stationarity
point of a Lagrange-type functional, using
energetically conjugate vectors of forces and
deformations [19]. In this case, it becomes possible
to obtain exact stability equations as the Euler’s
equations for the second variation of the
Lagrangian functional for the first time. From the
exact stability functional and stability equations, it
is possible as a consequence to obtain an
approximate stability functional and stability
equations, in which only bending stiffness (the
Euler—Bernoulli beam) or only bending and shear
stiffnesses (the Timoshenko beam) or only bending
and axial stiffnesses (the Euler—Bernoulli beam
taking into account the axial stiffness) are
considered.

2. VARIATIONAL FORMULATIONS OF
THE NONLINEAR STABILITY
PROBLEMS OF ELASTIC RODS

Formulation of the geometrically nonlinear
problem for the physically linear rod consists of
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three groups of differential equations:
equilibrium equations, geometrical equations
and physical equations.

Equilibrium equations for the plane problem are:

(Ncosgp — Qsing)’ + q,, = 0;

(Nsing + Qcosg)’ + q,, = 0;

M' + x'(Nsing + Qcosgp) +
+y'(Qsing — Ncosp) + m = 0,

(1)

where N is axial force; Q is shear force; M is
bending moment; g, gy and m are distributed power
and moment loads respectively. Functions x(s),
V(s), and ¢(s) are three degrees of freedom in the
plane problems of the geometrically nonlinear
deformation of the rod. In the reference unstressed
configuration every point of the rod can be
identified by the s coordinate, where 0 <s <L, L is
length of the unstrained rod. (...)” denote derivative
with respect to s.

The components of axial, shear and bending
deformations ¢, y, y are defined through the
functions x(s), y(s), and ¢(s) by geometrical
equation:

€ = x'cosp + y'sing — 1;
y = —x'sing + y'cosy;
Y =9

2)

Physical equations for the linear elastic material
are:

N =ki& Q = kyy; M = k31, (3)
where ki = EA is axial stiffness; ko = GAKk is
shear stiffness; ks = EI is bending stiffness; E is
Young’s modulus; A is cross-section area of the
rod; G is shear modulus; k is cross-section form
coefficient; I is moment of inertia.

The Lagrange functional can be written in the
following way:

LGy, @) = [ [5 (ke + oy ? + katp? -

—q:(x = 5) — g,y —mp)| ds — F,(x(1) -

—L) — Fy(L) — M;p(L), 4)
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where: Fi is "dead" load parallel to the X axis; F2
is "dead" load, parallel to the Y axis; M1 -
external moment applied at the end of the rod at
s=L.

In [20 - 23], it was proved that the differential
formulation of the problem (1)-(3) is
equivalent to the L— STAT wvariational
problem of the search of the stationary point of
functional (4).

The stability functional of the plane problem for
physically linear elastic rods taking into

account the axial, shear and bending stiffnesses,
resulting from the second variation the Lagrange
functional, can be written in the following way:

& (u,v,0) = %fOL[NBsB + NO(2yp +

+60(e + 1)) + Qpyp + Q(Oy — 2e5) +
+Mpig] ds, (5)

where the following notation is used:

NB = klgB; QB = kZVB; MB = k3l/)13;
gg=u"cosp —x'Osinp +v' singp +
+y'6 cos@; (6)
Vs =—Uu'sing —x'0cosqp+v' cosep—
—y'Osing;
Y, =06".

The quantities X, y, ¢, €, v, ¥, N, Q, M denote the
equilibrium state characteristics, satisfying the
system of equations (1) - (3), as well as boundary
conditions. These quantities are characteristics of
the equilibrium state, whose stability is studied.
The quantities with the subscript "B" are denoted
variations; u(s), o(s), and 6(s) variations of
coordinates x, y and angle of rotation o,
respectively.

The stability equations are the Euler’s equations
for the variational problem ®..— STAT. Euler’s
equations resulting from the condition §®_.. = 0
are the further equations:
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( (N, cos @ — Q, sinp)' —
—(6(Nsing + Q cos (p))’ = 0;

(N, sing + Q, cos @)’ +
+(6(N cos @ — Q sin <p))' =0;

S M, +u'(Nsing + Q cos @) +
+v'(Q sin¢gp — N cos @) + x' (N, sin @ +
+Q, cos ¢ +0(N cos ¢ — Q sin (p)) +
+y'(Qy sin¢@ — N, cos ¢ +

\ +6(N sing + Q cos ¢)) = 0.

(7)

System (7) is a system of equations for the
functions u, v, and 6. Functions x, y and ¢, as well
as N, Q, M are fixed and are solutions to problem
(1) -3).

Equations (7) are the exact equations of the problem
of the equilibrium state of the rod for the case of the
plane problem. We would like to stress that the
derived system of the stability equations is exact. No
simplifying assumptions were made about the
displacement and rotation angles quantity, and the
character of the equilibrium state of the rod. The
resulting functional (5) and equations (7) are written
in general terms and are applicable for any type of
load and boundary conditions.

In [20 - 23], stability equations (7) were also
obtained by the second way like the equations in
variations of the equilibrium equations (1).

The classic Euler problem (hinged rod under the
axial potential dead load shown in Figure 1) is
considered as an example. The equilibrium
configuration is rectilinear.

Y

Figure 1. Design model of the rod
Boundary values for this example are:

s=0: x(0)=0; y(0)=0; M(0) =0;
s=L: (Ncosgp —Qsing)|s, +

T; y(L)=0; M(L) =0. ®)
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The exact solution of the nonlinear problem (1) -
(3) and (8) is described by the formulas:

y - ) (p ] &= kl - kl ]
y=0 ¥=0
N=-T;, Q=0 M=0. 9)
'=e+l= N +1=
T TR T T TR
Substitute equations (9) into the stability
functional (5) wusing expressions (6). The

functional components containing u describes
the axial deformations, not associated with the
load T, and can be omitted when studying
stability. Finally, the stability functional for this
example can be written as:

1

2
o041 o[ -0(1-3)) +
+k36'? +T6 ((1 — kl) 6 — 2v’>] ds.  (10)

The stability equations, which follow from the
condition § @, = 0, have the form:

I(kz(u'—(1—k11)9)'—7"9' - 0;
k0" + k, (v’ - (1 —kl) 9)-

-(1 +T(i—kil)>1= 0.

A detailed solution to the system of equations
(11) was considered in [20 - 23].

The critical (minimal) force value is calculated
from the quadratic equation [20 - 23]:

(1)

T2 (Z-L)+T=T;=0, (12)

ky ki

2
ks Euler's force for the hinged rod

where T = —;

[24].
It is easy to show that the only positive value of
the critical load, following from equation (12) is:
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_ /1+4TE(%—%)—1

Ccr 1 1
Z(E‘E)

Solution (13) is the exact solution of the problem
of the hinged rod when axial, shear and bending
stiffnesses are taken into account.

. (13)

3. THE STABILITY OF SIMPLIFIED
ROD’S MODELS

3.1. The Timoshenko beam

The Timoshenko beam theory is based on taking
into account the effect of shear deformation on
the stress and strain state of the rod. The classic
Euler problem (hinged rod under the axial
potential dead load shown in Figure 1) is
considered as an example. When analyzing the
stability of the Timoshenko beam, the
assumption is made that the change in the
geometric dimensions of the rod under
subcritical deformations is considered negligible.
For instance, the length of the rod is unchanged
in the process of loading. Thus, the rod is stressed
but not deformed. So:

N=kie=-T;€=0; > k; >0 -
- (kp)™t = 0.

The stability functional for the Timoshenko
beam follows from the stability functional in
equation (10), taking (k;)~1 = 0:

®..(v,6) = ngL[kge'Z + ko (v — 0)% +
+T6(6 — 2v')]ds. (14)
The stability equations for the Timoshenko beam,

arising from the stability functional in equation
(14), can be written in the following way:

k(' = 0) —T6" = 0;
ke + o —0) (14 1) =0. (1Y)
2

The solution to the system of equations (15),
which is an exact solution to the stability problem
for the Timoshenko beam, taking into account
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the shear and bending stiffnesses, can be written
in the following way:

k 4T
Tcr:f( /1+k—2’5—1>.

To assess the effect of the axial stiffness of an
initially rectilinear rod compressed by an axial
dead load T, as shown in Figure 1, let us compare
the values of the critical load calculated by the
exact formula, according to equation (13), taking
into account the axial, shear and bending
stiffnesses, with values, calculated by equation
(16) for the Timoshenko beam, taking into
account only the shear and bending stiffnesses.
Figure 2 shows the graphs for the strut, made of
the I-beam, as an example.

(16)

104 wweee the Euler-Bernoulli beam,

taking into account the
axial stiffhess (equation 22)

1,02

1 - = - the Euler-Bernoulli beam
(equation 19)

=098 - N

Vi

the exact solution (equation
13)

= 0.96

0,94

— « =The Timoshenko beam
(equation 16)

0,92

YEEE
E z o
(=} ™0
3 o~

35K2
40K1

g ;

40K3
40K4
40K5

- ﬁI—E-i;jma ¢
Figure 2. The effect of the axial and shear
stiffnesses on values of the critical load

20k1
23k1

Based on the analysis of the results, we can
conclude that the inclusion of the axial stiffness
increases the critical load. Thus, we take into
account the rod’s internal "reserves" under the
action of the "dead" axial load, adding the axial
stiffness to the calculation of the rod’s stability.

3.2. The Euler—Bernoulli beam

Let us consider the stability of the Euler-
Bernoulli beam, which does not take into account
the effect of shear deformation on the stress and
strain state of the rod, as well as the hypothesis
of non-deformability of the rod in the subcritical
state is accepted. The classic Euler problem
(hinged rod under the axial potential dead load
shown in Figure 1) is considered as an example,
as for the Timoshenko beam.

Daria A. Kuznetsova, Vladimir V. Lalin, Nikolay M. Malkov

The stability functional for the Euler-Bernoulli
beam follows from the stability functional in
equation (10), taking (k)™ = 0; (k,)™* =0:

.. (v,0) = % [ Thesv" = Tu'?]ds. (17)

Euler’s equation, which follows from the
condition § P, = 0, can be written as:

kv + Tv" = 0. (18)
The solution to the stability equation (18) is the

classical common Euler formula for the critical
load exclude the axial and shear stiffnesses.

7T2k3

7}; - 2

(19)

To assess the effect of the axial and shear
stiffnesses of an initially rectilinear rod
compressed by an axial dead load T, as shown
in Figure 1, let us compare the values of the
critical load calculated by the exact formula,
according to equation (13), taking into account
the axial, shear and bending stiffnesses, with
values, calculated by equation (19) for the
Euler-Bernoulli beam, taking into account only
the bending stiffness. Figure 2 shows the
graphs for the strut, made of the I-beam, as an
example. For illustrative purposes, the figure 2
also shows the graph of the critical load values
for the Timoshenko beam, calculated by
equation (16), and the graph of the critical load
values for the Euler-Bernoulli beam, taking
into account axial stiffness, calculated by
equation (22).

Based on the analysis of the results, we can
conclude that the inclusion of the axial and shear
stiffnesses significantly reduces the critical load.
Thus, the use of the classical Euler formula in
equation (19) leads to the risk of loss of stability
by the rod even before reaching the critical load
calculated by the equation (13).

3.3. The Euler—Bernoulli beam taking into
account the axial stiffness

Let us consider the stability of the Euler-
Bernoulli beam, which takes into account the
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axial stiffness, but does not take into account the
effect of shear deformation on the stress and
strain state of the rod. However, the hypothesis
of non-deformability of the rod in the subcritical
state is not accepted in contrast to the classic the
Euler-Bernoulli beam. The classic Euler problem
(hinged rod under the axial potential dead load
shown in Figure 1) is considered as an example,
as for the Timoshenko beam.

The stability functional for this simplified rod’s
model follows from the stability functional in
equation (10), taking (k,)"1 =0 :

Tv'?
T

(l_kl

ey (v,0) =2 [ [(’i”l";z - )] ds. (20)

Euler’s equation, which follows from the
condition § P, = 0, can be written as:

e2y)

The solution to the equation (21), which is an
exact solution to the stability problem for the
Euler-Bernoulli beam, taking into account the
axial and bending stiffnesses, can be written in
the following way:

k 4T
Tcr=§(1— | ‘k—f>-

To assess the effect of the shear stiffnesses of an
initially rectilinear rod compressed by an axial dead
load T, as shown in Figure 1, let us compare the
values of the critical load calculated by the exact
formula, according to equation (13), taking into
account the axial, shear and bending stiffnesses,
with values, calculated by equation (22) for the
Euler-Bernoulli beam, taking into account the axial
and bending stiffnesses. Figure 2 shows the graphs
for the strut, made of the I-beam, as an example. For
illustrative purposes, the figure 2 also shows the
graph of the critical load values for the Timoshenko
beam, calculated by equation (16), and the graph of
the critical load values for the Euler-Bernoulli beam,
calculated by equation (19).

(22)
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Based on the analysis of the results, we can
conclude that the value of the critical load
obtained from equation (22) is greater than the
value obtained from the exact formula (13) and
the value obtained from Euler's formula (19).
Thus, the use of equation (22) leads to the risk of
loss of the rod’s stability even before reaching
the critical load calculated by the equation (22).
Therefore, as shown in figure 2, it is
unacceptable to take into account the axial
stiffness without taking into account the shear
stiffness, when analyzing the rod’s stability.

4. CONCLUSIONS

1. The formulations of the problems are
presented in the form of a system of
differential  equations and  variational
formulations in the form of the problem of
finding the stationarity point functional of the
Lagrange type.

2. For the plane problems, equations of
equilibrium stability problems are obtained as
the Euler equations for the second variation of
the Lagrange functional

3. The exact universal solution in equation (13),
taking into account axial, shear and bending
stiffnesses, which gives the exact value of the
critical load was obtained for the problem of the
stability of a rod compressed by an axial force.

4. There were made the comparisons of exact
solutions which regards all the rod’s
stiffnesses and solutions, based on three
simplified models.

5. It was shown, that considering axial stiffness
leads to increasing the values of the critical
load. Thus, we take into account the rod’s
internal "reserves" under the action of the
"dead" axial load, adding the axial stiffness to
the calculation of the rod’s stability.

6. It was shown, that inclusion of the axial and
shear stiffnesses significantly reduces the
critical load. Thus, the use of the classical
Euler formula leads to the risk of loss of
stability by the rod even before reaching the
critical load calculated by the exact equation.
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7.

It was shown, that taking into account the
axial stiffness, without taking into account the
shear stiffness, significantly increases the
critical load. Therefore, it is unacceptable to
take into account the axial stiffness without
taking into account the shear stiffness, when
analyzing the rod’s stability.

It was shown, that the obtained exact value of
the critical compressive load, taking into
account all rod’s stiffnesses, has a lower value
than the critical load value calculated by the
classical Euler’s formula. Since both formulas
are equally simple for manual calculation, the
resulting exact formula can be recommended
for use in all cases in which Euler's formula
was previously used.

REFERENCES

1.

68

Goloskokov D.P., Zhilin P.A. Obshaja
nelinejnaja teorija uprugih sterzhnej s
prilozheniem k opisaniju jeffekta Pojntinga.
Deposited VINITI No. 1912-V87 Dep. p 20
Eliseev V.V. Mehanika uprugih sterzhne;.
Saint-Petersburg: SPbGPU Press, 1994, 88
pages (in Russian).

ZHilin P.A., Sergeev A.D. Ravnovesie i
ustojchivost tonkogo sterzhnya
nagruzhennogo konservativnym
momentom//Trudy SPbGTU. Mekhanika i
processy upravleniya, SPb.: SPbGPU Press,
1994, Volume 448, pp. 47-56 (in Russian).
ZHilin P.A., Sergeev A.D., Tovstik T.P.
Nelinejnaya teoriya sterzhnej 1 ee
prilozheniya // Trudy XXIV letnej shkoly
«Analiz 1 sintez nelinejnyh mekhanicheskih
kolebatelnyh system», Saint-Petersburg:
SPbGPU Press, 1997, pp. 313-37 (in
Russian).

ZHilin P.A. Prikladnaya mekhanika.
Teoriya uprugih tonkih sterzhnej. Saint-
Petersburg: SPbGPU Press, 2007, 102 pages
(in Russian).

Eliseev V.V., Zinoveva T.V. Mekhanika
tonkostennyh konstrukcij. Teoriya sterzhne;j.
Saint-Petersburg: SPbGPU Press, 2008, 96
pages (in Russian).

Daria A. Kuznetsova, Vladimir V. Lalin, Nikolay M. Malkov

10.

I1.

12.

13.

14.

15.

16.

17.

18.

Jelenic G., Crisfield M.A. Geometrically
exact 3D beam theory: implementation of a
strain — invariant finite element for static and
dynamics // Comp. Meths. Appl. Mech.
Engng, 1999, Volume 171, pp. 141-71.
Shabana A.A., Yakoub R.Y. Three
dimensional absolute nodal coordinate
formulation for beam elements: theory //
ASME, Journal of Mechanical Design,
2001, Volume 123 (4), pp. 606-613.

Reddy J.N. An Introduction to Nonlinear
Finite Element Analysis. Oxford University
Press, 2004, 482 pages.

Antman S. S. Nonlinear problems of
elasticity. Springer, Berlin Heidelberg New
York, 2005, 835 pages.

Gerstmayr J., Shabana A.A. Analysis of thin
beams and cables using the absolute nodal
coordinate formulation // Nonlinear Dynamics,
2006, Volume 45 (1-2), pp. 109-130.
Shabana A.A. Computational continuum
mechanics. Cambridge University Press,
2008, 349 pages.

Wriggers P. Nonlinear finite element
methods. Springer-Verlag Berlin
Heidelberg, 2008, 566 pages.

Krenk S. Non-linear modelling and analysis
of solids and structures. Cambridge
University Press, 2009, 361 pages.
Ibrahimbegovic A. Nonlinear Solid
Mechanics.  Springer  Science+Business
Media B.V, 2009, 585 pages.

Bigoni D. Nonlinear solid mechanics:
bifurcation theory and material instability.
Cambridge University Press, 2012, 550
pages.

Coskun S., Oztiirk B. Elastic Stability
Analysis of Euler Columns Using Analytical
Approximate Techniques Advances in
Computational Stability Analysis ed Dr.
Safa Bozkurt Coskun ISBN: 978-953-51-
0673-9, InTech, DOI: 10.5772/45940
Bagmutov V.P., Belov A.A., Stoljarchuk
A.S. Jelementy raschetov na ustojchivost"
ucheb.  posobie.  Volgograd:  ITUNL
VolgGTU, 2010, 56 pages (in Russian).

International Journal for Computational Civil and Structural Engineering



The Effect of the Axial and Shear Stiffnesses on Elastic Rod’s Stability

19.

20.

21.

22.

23.

24.

Lalin V.V. Razlichnye formy uravnenij
nelinejnoj dinamiki uprugih sterzhnej //
Trudy SPbGPU, 2004, Volume 489, pp.121-
128 (in Russian).

Lalin V.V., Rozin L.A., Kushova D.A.
Variacionnaja postanovka ploskoj zadachi
geometricheski nelinejnogo deformirovanija
1 ustojc’ hivosti uprugih sterzhnej //
Inzhenerno — stroitel'nyj zhurnal, 2013,
Volume 1, pp. 87-96 (in Russian).

Lalin V.V., Zdanchuk E.V., Kushova
D.A., Rozin L.A. Variacionnye postanovki
nelinejnyh  zadach s  nezavisimymi
vrashhatel'nymi stepenjami svobody //
Inzhenerno — stroitel'nyj zhurnal, 2015,
Volume 4, pp. 54-80 (in Russian).

Lalin V.V., Kushova D.A. Geometricheski
nelinejnoe  deformirovanie 1 ustojchivost'
ploskih uprugih sterzhnej s uchetom zhestkostej
na rastjazhenie-szhatie, sdvig 1 izgib //
International Journal for Computational Civil
and Structural Engineering, 2013, Volume 9, pp.
178-185 (in Russian).

Lalin V.V., Kushova D.A. Reshenie zadachi
ustojchivosti szhatogo sterzhnja
dinamicheskim  metodom s  uchetom
zhestkostej na sdvig 1 rastjazhenie //
Stroitel'naja mehanika 1 raschet sooruzhenij,
2014, Volume 5 (256), pp. 49-54 (in Russian).
Perel'muter A.V., Slivker V.I. Ustojchivost'
ravnovesija  konstrukcij 1  rodstvennye
problemy. Volume 1. Moscow: SKAD SOFT
Press, 2010, 704 pages (in Russian).

CIIMCOK JIMTEPATYPbBI

I.

IonockokoB JILII., Kuaun II.A. O6mas
HEeJMHEWHas TeOpHsl YNPYTUX CTEpKHEH C
NpWIOKEHWEM K ommcaHuto  3ddexra
[Totintunra // Jlemonupoano BUHUTU
Nel1912-B87 Her., 20 c.

Enucee B.B. Mexannka ynpyrux CTep>KHE.
CII6, Mza-o CIIOITIY, 1994. — 88 ¢

AKunun ILLA., Ceprees A.Jl. PaBHoBecue u
YCTOMYHBOCTD TOHKOTO CTEpIKHS,
Harpy>KeHHOTO KOHCEPBATUBHBIM MOMEHTOM

Volume 18, Issue 4, 2022

10.

I1.

12.

13.

14.

15.

// MexaHHKa ¥ TPOIIeCChI yrpaBiieHus. Tpy bl
CIIOI'TY. 1994. No 448. c. 47-56.

Kunamn I1.A., Ceprees A.[., ToBctuk
T.II. Henunuelinasg Teopusi CTepKHEH U ee
npwioxenuss // Tpyasr XXIV nerneit
IIKOJIbI «AHamM3 W CHHTE3 HEIMHEHHBIX
MEXaHUYECKUX KOJIeOaTeIbHBIX CHCTEMY,
Cankr-IlerepOypr, 1997, c. 313-37.
AKunun IILA. Ilpuxnangsas MexaHHKa.
Teopust ToHkux ympyrux crepxkneind. CIIO,
N3n-o CIIGITIY. 2007. — 102 c.

Emncees B.B., 3unoBneBa T.B. Mexanuka
TOHKOCTEHHBIX  KOHCTPYKLIMIA. Teopus
crepxxren. CI16, M3n-Bo CIIGITIY. 2008. —
96 c.

Jelenic G., Crisfield M.A. Geometrically
exact 3D beam theory: implementation of a
strain — invariant finite element for static and
dynamics // Comp. Meths. Appl. Mech.
Engng, 1999, Volume 171, pp. 141-71.
Shabana A.A., Yakoub R.Y. Three
dimensional absolute nodal coordinate
formulation for beam elements: theory //
ASME, Journal of Mechanical Design,
2001, Volume 123 (4), pp. 606-613.

Reddy J.N. An Introduction to Nonlinear
Finite Element Analysis. Oxford University
Press, 2004, 482 pages.

Antman S. S. Nonlinear problems of
elasticity. Springer, Berlin Heidelberg New
York, 2005, 835 pages.

Gerstmayr J., Shabana A.A. Analysis of thin
beams and cables using the absolute nodal
coordinate formulation // Nonlinear Dynamics,
2006, Volume 45 (1-2), pp. 109-130.
Shabana A.A. Computational continuum
mechanics. Cambridge University Press,
2008, 349 pages.

Wriggers P. Nonlinear finite element
methods. Springer-Verlag Berlin
Heidelberg, 2008, 566 pages.

Krenk S. Non-linear modelling and analysis
of solids and structures. Cambridge
University Press, 2009, 361 pages.
Ibrahimbegovic A. Nonlinear Solid
Mechanics.  Springer  Science+Business
Media B.V, 2009, 585 pages.

69



16. Bigoni D. Nonlinear solid mechanics:
bifurcation theory and material instability.
Cambridge University Press, 2012, 550
pages.

17. Coskun S., Oztiirk B. Elastic Stability
Analysis of Euler Columns Using Analytical
Approximate Techniques Advances in
Computational Stability Analysis ed Dr.
Safa Bozkurt Coskun ISBN: 978-953-51-
0673-9, InTech, DOI: 10.5772/45940

18. barmytoB B.IL., besioB A.A., CToasipuyk
A.C. OneMeHTBI pacueToB Ha
ycToitunBocTh: yued. mocobue. Bonrorpan:
MUYHJI BoarI' TV, 2010. — 56c.

19. Jlaaun B.B. Paznuunbie hopmbl ypaBHEHHI
HEJIMHEHHON JTUHAMUKHU YIPYTUX CTEPKHEU
/I Tpyasr CIIOI'TIY. 2004, Ne489, c. 121-
128.

20. Jlanun B.B., Po3un JI.A., Kymosa JI.A.
BapunanvoHHass  IOCTaHOBKAa  IUIOCKOM
3aJjaud  TEOMETPUYECKH  HEJIMHEHHOIo
ne(OPMHUPOBAHUS U YCTOHYUBOCTH YIIPYTUX
cTrepkHe //  VHXEHEepHO-CTPOUTEIHHBIN
xKypHain, 2013, Ne 1 (36), c. 87-96.

Daria A. Kuznetsova, Vladimir V. Lalin, Nikolay M. Malkov

21. Jlanun B.B., 3nanuyk E.B., Kymosa /[.A.,
Po3un JI.A. BapuanmoHHble TTOCTaHOBKH
HEMMHEWHBIX  3a7ad ¢  He3aBUCHMBIMU
BpalaTeIbHbIMA ~ CTETICHSIMH  CBOOOIBI  //
WNnxeHnepHo —cTpouTenbHbIN xypHai, 2015,
Ne 4, c. 54-80.

22. Jlamun B.B., Kymosa JI.A. I'eomeTpuuecku
HEJIMHENHOe nedopmupoBanue "
YCTOWYHMBOCTH TUIOCKHUX YIPYTUX CTEP)KHEH ¢
YUETOM KECTKOCTEH Ha pacTsKeHUe-CXKATHUE,
cnur U m3ru0 // International Journal for
Computational ~ Civil and  Structural
Engineering, 2013, Ne 9, c. 178-185.

23. Jlanmun B.B., Kymoa J[I.A. Pemenue
3a/la4yil YCTOMYMBOCTH CXKATOTO CTEPIKHS
JUHAMUYECKMM  METOAOM C  Y4ETOM
KECTKOCTe Ha CIBUT M pacTsokeHue //
CrpoutenbHasi  MeXaHMKa W pacyeT
coopyxennii, 2014, Ne 5 (256), c. 49-54.

24. Ilepenrbmyrep A.B., CumBkep B.H.
VYCTOMUMBOCTh paBHOBECHSI KOHCTPYKIMH M
poactBeHHble  mpobiembl.  Toml. M.:
WzparensctBo CKA [ CODT, 2010. — 704 c.

Daria A. Kuznetsova, Ph.D.; Associate Professor of
Department of Geoinformation Technologies of
Polytechnic Institute of Far Eastern Federal University; 10
Ajax Bay, Russky Island, Vladivostok 690922, Russia; e-
mail: kuznetcova.dal@dvfu.ru. ORCID: 0000-0002-6551-
9271; eLibrary.ru SPIN-kox: 1399-3200

Viadimir V. Lalin, Professor, Dr.Sc.; Professor of Higher
School of Industrial, Civil and Road Construction, Institute
of Civil Engineering, Peter the Great St. Petersburg
Polytechnic University, Polytechnicheskaya, 29, St.
Petersburg 195251, Russia; e-mail: vllalin@yandex.ru.
ORCID: 0000-0003-3850-424X

Nikolay M. Malkov, Ph.D. Associate Professor; Associate
Professor of Department of Geoinformation Technologies
of Polytechnic Institute of Far Eastern Federal University;
10 Ajax Bay, Russky Island, Vladivostok 690922, Russia;

Kysueyosa Japvs Anexcanopogua, KaHaujaT
TEXHUYECKHUX HAyK; JIOLIEHT Jenapramenra
reonH()OPMAIMOHHBIX TeXHOJIOTHH [lONUTEeXHUYIECKOTO
HWHCTHUTYTa JlanbHEBOCTOUYHOTO denepanbHOTO
VYuuBepcurera, Oyxta Askc, 10, octpoB Pycckuid, T.
BrnaauBocToK, 690922, Poccus; e-mail:
kuznetcova.dal@dvfu.ru. ORCID: 0000-0002-6551-9271;
eLibrary.ru SPIN-kox: 1399-3200

Jlanun Bnaoumup Braoumuposuu, npodeccop, TOKTOp
TEXHUYECKHUX HayK, 3aBeyIOLIHH Kagenpoi
«CrpourenbsHas MeXaHHKa u CTPOUTEJbHBIE
koHCTpykimm»y DPI'BOY BIIO Cankr-IletepOyprckoro
MOJIUTEXHUYECKOr0 yHuBepcutera, 195251, Poccus, T.
Cankr-IlerepOypr, IMonmnrexumueckast yi., 29. e-mail:
vllalin@yandex.ru. ORCID: 0000-0003-3850-424X

Manvkose Huxonaii Muxatinosuy, KaHIAJAT TEXHAUCCKUX

HayK, JIOLICHT; JIOLICHT JHemapramenTa
reonH(OPMAaMOHHBIX TeXHOJOrui [lonuTexHu4eckoro
WHCTUTYTA JlanpHEeBOCTOUYHOTO denepalibHOrO

VYuuBepcurera;, Oyxra Asikc, 10, octpoB Pycckwmid, T.
Bnanueocrok, 690922, Poccusi;

70 International Journal for Computational Civil and Structural Engineering





