
62 International Journal for Computational Civil and Structural Engineering

THE EFFECT OF THE AXIAL AND SHEAR STIFFNESSES 
ON ELASTIC ROD’S STABILITY 

 
Daria A. Kuznetsova 1, Vladimir V. Lalin 2, Nikolay M. Malkov 1 

 

1 Far Eastern Federal University, Vladivostok, RUSSIA 
2 Peter the Great St.Petersburg Polytechnic University, Saint Petersburg, RUSSIA 

 
Abstract. This article is about the nonlinear problems of the theory of elastic Cosserat – Timoshenko’s rods in the 
material (Lagrangian) description. The variational definition for the problem as finding the stationary point of the 
Lagrangian functional and differential formulation of static problems were given. The exact stability functional 
and stability equations of the plane problem for physically linear elastic rods taking into account the axial, shear 
and bending stiffnesses were received. The exact value of the critical load was obtained taking into account the 
axial, shear and bending deformations in the problem of the stability of a rod compressed by an axial force. In the 
present paper the stability of classical simplified rod’s models such as the Timoshenko beam and the Euler–
Bernoulli beam was investigated. Also, the stability of third simplified rod’s model, based on beam’s axial and 
bending stiffnesses, was explored. The stability functionals, the stability equations and critical loads formulatio ns 
for this three types of simplified models were derived as a particular case of the general theory. There were made 
the comparisons of described solutions which regards all the rod’s stiffnesses and solutions, based on simplified 
models. The effect of the axial and shear stiffnesses on rod’s stability was analyzed. 
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three groups of differential equations: 
equilibrium equations, geometrical equations 
and physical equations. 
Equilibrium equations for the plane problem are: 

 
( cos sin ) + = 0;

( sin + cos ) + = 0;

+ ( sin + cos ) +

+ ( sin cos ) + = 0,

       (1) 

 
where N is axial force; Q is shear force; M is 
bending moment; qx, qy and m are distributed power 
and moment loads respectively. Functions x(s), 
y(s), and (s) are three degrees of freedom in the 
plane problems of the geometrically nonlinear 
deformation of the rod. In the reference unstressed 
configuration every point of the rod can be 

s 
length of the unstrained rod. (...)’ denote derivative 
with respect to s.  
The components of axial, shear and bending 

functions x(s), y(s), and (s) by geometrical 
equation: 
 

= cos + sin 1;

= sin + cos ; 

= .

           (2) 

 
Physical equations for the linear elastic material 
are: 
 

= ;  = ;  = ,       (3) 
 

where k1 = EA is axial stiffness; k2 = GAk is 
shear stiffness; k3 = EI is bending stiffness; E is 
Young’s modulus; A is cross-section area of the 
rod; G is shear modulus; k is cross-section form 
coefficient; I is moment of inertia. 
The Lagrange functional can be written in the 
following way: 
 

( , , ) = + +

( ) ( ( )

) ( ) ( ),                               (4) 

1.  INTRODUCTION 
 
The desire to reduce the material consumption of 
structures leads to the use of more flexible 
structural elements in modern construction. This 
increases the possibility of loss of stability of 
these elements. Traditional assessment methods 
of the rod’s stability based on the classical 
Euler’s formula, give only approximate values of 
critical loads for compliant elements. This is due 
to the fact that only the bending stiffness of the 
rods is taken into account in the Euler’s formula. 
In this paper, we obtain exact solutions to the 
stability problems of rods that take into account, 
in addition to bending stiffness, also axial and 
shear stiffnesses. 
The apparatus of the classical variational calculus 
is used to solve this problem. The traditional 
approach to the variational formulation of the 
problem of rod’s nonlinear deformation is to use 
the variational equation in the form of the principle 
of possible displacements [1-18]. In this paper, it is 
shown that the variational problem can be 
formulated as a problem of finding the stationarity 
point of a Lagrange-type functional, using 
energetically conjugate vectors of forces and 
deformations [19]. In this case, it becomes possible 
to obtain exact stability equations as the Euler’s 
equations for the second variation of the 
Lagrangian functional for the first time. From the 
exact stability functional and stability equations, it 
is possible as a consequence to obtain an 
approximate stability functional and stability 
equations, in which only bending stiffness (the 
Euler–Bernoulli beam) or only bending and shear 
stiffnesses (the Timoshenko beam) or only bending 
and axial stiffnesses (the Euler–Bernoulli beam 
taking into account the axial stiffness) are 
considered. 
 
 
2.  VARIATIONAL FORMULATIONS OF 
THE NONLINEAR STABILITY 
PROBLEMS OF ELASTIC RODS 
 
Formulation of the geometrically nonlinear 
problem for the physically linear rod consists of 
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where: F1 is "dead" load parallel to the X axis; F2 
is "dead" load, parallel to the Y axis; 1 - 
external moment applied at the end of the rod at 
s = L.  
In [20 - 23], it was proved that the differential 
formulation of the problem (1)-(3) is 

AT variational 
problem of the search of the stationary point of 
functional (4). 
The stability functional of the plane problem for 
physically linear elastic rods taking into  
account the axial, shear and bending stiffnesses, 
resulting from the second variation the Lagrange 
functional, can be written in the following way: 
 

( , , ) = + 2 +

+ ( + 1) + + ( 2 ) +

+ ,              (5) 

 
where the following notation is used: 
 

= ; = ; = ; 
= cos sin +  sin +

+ cos ;                                                     (6) 
= +  

sin ; 
= . 

 
The 
equilibrium state characteristics, satisfying the 
system of equations (1) - (3), as well as boundary 
conditions. These quantities are characteristics of 
the equilibrium state, whose stability is studied. 
The quantities with the subscript "B" are denoted 
variations; u(s), (s), and (s) variations of 

respectively. 
The stability equations are the Euler’s equations 
for the variational problem 
equations resulting from the condition = 0 
are the further equations: 

( )

( + ) = 0;

( + ) +

+ ( ) = 0;

+ ( + ) +

+ ( ) + ( +

+ + ( ) +

+ ( +

+ ( + ) = 0.

(7) 

 
System (7) is a system of equations for the 

 

(1) - (3). 
Equations (7) are the exact equations of the problem 
of the equilibrium state of the rod for the case of the 
plane problem. We would like to stress that the 
derived 
simplifying assumptions were made about the 
displacement and rotation angles quantity, and the 
character of the equilibrium state of the rod. The 
resulting functional (5) and equations (7) are written 
in general terms and are applicable for any type of 
load and boundary conditions.  
In [20 - 23], stability equations (7) were also 
obtained by the second way like the equations in 
variations of the equilibrium equations (1). 
The classic Euler problem (hinged rod under the 
axial potential dead load shown in Figure 1) is 
considered as an example. The equilibrium 
configuration is rectilinear. 
 

 
Figure 1. Design model of the rod 

 
Boundary values for this example are: 
 

= 0:  (0) = 0;   (0) = 0;   (0) = 0;  
= L:  ( )| +

;   (L) = 0;   (L) = 0.                   (8) 
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The exact solution of the nonlinear problem (1) - 
(3) and (8) is described by the formulas: 
 

= 0;  = 0;  = = ;  

= 0;  = 0;  
= ;  = 0;  = 0.              (9) 

= + 1 = + 1 = 1 . 

 
Substitute equations (9) into the stability 
functional (5) using expressions (6). The 
functional components containing u describes 
the axial deformations, not associated with the 
load T, and can be omitted when studying 
stability. Finally, the stability functional for this 
example can be written as: 
 

( , ) = 1 +

+ + 1 2 .         (10) 

 
The stability equations, which follow from the 
condition = 0, have the form: 
 

1 = 0;

+ 1

1 + = 0.

        (11) 

 
A detailed solution to the system of equations 
(11) was considered in [20 - 23]. 
The critical (minimal) force value is calculated 
from the quadratic equation [20 - 23]: 
 

+ = 0,       (12) 

 

where = – Euler's force for the hinged rod 

[24]. 
It is easy to show that the only positive value of 
the critical load, following from equation (12) is: 

 

= ,              (13) 

 
Solution (13) is the exact solution of the problem 
of the hinged rod when axial, shear and bending 
stiffnesses are taken into account.  
 
 
3.  THE STABILITY OF SIMPLIFIED 
ROD’S MODELS 

3.1.  The Timoshenko beam 
The Timoshenko beam theory is based on taking 
into account the effect of shear deformation on 
the stress and strain state of the rod. The classic 
Euler problem (hinged rod under the axial 
potential dead load shown in Figure 1) is 
considered as an example. When analyzing the 
stability of the Timoshenko beam, the 
assumption is made that the change in the 
geometric dimensions of the rod under 
subcritical deformations is considered negligible. 
For instance, the length of the rod is unchanged 
in the process of loading. Thus, the rod is stressed 
but not deformed. So: 

 
= = ;  = 0;      

 ( ) = 0. 
 
The stability functional for the Timoshenko 
beam follows from the stability functional in 
equation (10), taking ( ) = 0: 

 

( , ) = [ + ( ) +

+ ( 2 )] .                     (14) 
 

The stability equations for the Timoshenko beam, 
arising from the stability functional in equation 
(14), can be written in the following way: 
 

( ) = 0;

+ ( ) 1 + = 0.
     (15) 

The solution to the system of equations (15), 
which is an exact solution to the stability problem 
for the Timoshenko beam, taking into account 
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the shear and bending stiffnesses, can be written 
in the following way: 
 

= 1 + 1 .             (16) 

 
To assess the effect of the axial stiffness of an 
initially rectilinear rod compressed by an axial 
dead load T, as shown in Figure 1, let us compare 
the values of the critical load calculated by the 
exact formula, according to equation (13), taking 
into account the axial, shear and bending 
stiffnesses, with values, calculated by equation 
(16) for the Timoshenko beam, taking into 
account only the shear and bending stiffnesses. 
Figure 2 shows the graphs for the strut, made of 
the I-beam, as an example. 
 

 
Figure 2. The effect of the axial and shear 

stiffnesses on values of the critical load 
 

Based on the analysis of the results, we can 
conclude that the inclusion of the axial stiffness 
increases the critical load. Thus, we take into 
account the rod’s internal "reserves" under the 
action of the "dead" axial load, adding the axial 
stiffness to the calculation of the rod’s stability. 

3.2.  The Euler–Bernoulli beam 
Let us consider the stability of the Euler-
Bernoulli beam, which does not take into account 
the effect of shear deformation on the stress and 
strain state of the rod, as well as the hypothesis 
of non-deformability of the rod in the subcritical 
state is accepted. The classic Euler problem 
(hinged rod under the axial potential dead load 
shown in Figure 1) is considered as an example, 
as for the Timoshenko beam. 

The stability functional for the Euler-Bernoulli 
beam follows from the stability functional in 
equation (10), taking ( ) = 0; ( ) = 0  

 

( , ) = [ ] .   (17) 
 

Euler’s equation, which follows from the 
condition = 0, can be written as: 
 

+ = 0.                 (18) 
 

The solution to the stability equation (18) is the 
classical common Euler formula for the critical 
load exclude the axial and shear stiffnesses. 
 

= .                     (19) 

 
To assess the effect of the axial and shear 
stiffnesses of an initially rectilinear rod 
compressed by an axial dead load T, as shown 
in Figure 1, let us compare the values of the 
critical load calculated by the exact formula, 
according to equation (13), taking into account 
the axial, shear and bending stiffnesses, with 
values, calculated by equation (19) for the 
Euler-Bernoulli beam, taking into account only 
the bending stiffness. Figure 2 shows the 
graphs for the strut, made of the I-beam, as an 
example. For illustrative purposes, the figure 2 
also shows the graph of the critical load values 
for the Timoshenko beam, calculated by 
equation (16), and the graph of the critical load 
values for the Euler-Bernoulli beam, taking 
into account axial stiffness, calculated by 
equation (22). 
Based on the analysis of the results, we can 
conclude that the inclusion of the axial and shear 
stiffnesses significantly reduces the critical load. 
Thus, the use of the classical Euler formula in 
equation (19) leads to the risk of loss of stability 
by the rod even before reaching the critical load 
calculated by the equation (13). 

3.3.  The Euler–Bernoulli beam taking into 
account the axial stiffness 
Let us consider the stability of the Euler-
Bernoulli beam, which takes into account the 

Daria A. Kuznetsova, Vladimir V. Lalin, Nikolay M. Malkov



67Volume 18, Issue 4, 2022

axial stiffness, but does not take into account the 
effect of shear deformation on the stress and 
strain state of the rod. However, the hypothesis 
of non-deformability of the rod in the subcritical 
state is not accepted in contrast to the classic the 
Euler-Bernoulli beam. The classic Euler problem 
(hinged rod under the axial potential dead load 
shown in Figure 1) is considered as an example, 
as for the Timoshenko beam. 
The stability functional for this simplified rod’s 
model follows from the stability functional in 
equation (10), taking ( ) = 0  

 

( , ) = .  (20) 

 
Euler’s equation, which follows from the 
condition = 0, can be written as: 
 

+ = 0.              (21) 

 
The solution to the equation (21), which is an 
exact solution to the stability problem for the 
Euler-Bernoulli beam, taking into account the 
axial and bending stiffnesses, can be written in 
the following way: 
 

= 1 1 .           (22) 

 
To assess the effect of the shear stiffnesses of an 
initially rectilinear rod compressed by an axial dead 
load T, as shown in Figure 1, let us compare the 
values of the critical load calculated by the exact 
formula, according to equation (13), taking into 
account the axial, shear and bending stiffnesses, 
with values, calculated by equation (22) for the 
Euler-Bernoulli beam, taking into account the axial 
and bending stiffnesses. Figure 2 shows the graphs 
for the strut, made of the I-beam, as an example. For 
illustrative purposes, the figure 2 also shows the 
graph of the critical load values for the Timoshenko 
beam, calculated by equation (16), and the graph of 
the critical load values for the Euler-Bernoulli beam, 
calculated by equation (19). 

Based on the analysis of the results, we can 
conclude that the value of the critical load 
obtained from equation (22) is greater than the 
value obtained from the exact formula (13) and 
the value obtained from Euler's formula (19). 
Thus, the use of equation (22) leads to the risk of 
loss of the rod’s stability even before reaching 
the critical load calculated by the equation (22). 
Therefore, as shown in figure 2, it is 
unacceptable to take into account the axial 
stiffness without taking into account the shear 
stiffness, when analyzing the rod’s stability. 
 
 
4.  CONCLUSIONS 
 
1. The formulations of the problems are 

presented in the form of a system of 
differential equations and variational 
formulations in the form of the problem of 
finding the stationarity point functional of the 
Lagrange type. 

2. For the plane problems, equations of 
equilibrium stability problems are obtained as 
the Euler equations for the second variation of 
the Lagrange functional 

3. The exact universal solution in equation (13), 
taking into account axial, shear and bending 
stiffnesses, which gives the exact value of the 
critical load was obtained for the problem of the 
stability of a rod compressed by an axial force. 

4. There were made the comparisons of exact 
solutions which regards all the rod’s 
stiffnesses and solutions, based on three 
simplified models. 

5. It was shown, that considering axial stiffness 
leads to increasing the values of the critical 
load. Thus, we take into account the rod’s 
internal "reserves" under the action of the 
"dead" axial load, adding the axial stiffness to 
the calculation of the rod’s stability. 

6. It was shown, that inclusion of the axial and 
shear stiffnesses significantly reduces the 
critical load. Thus, the use of the classical 
Euler formula leads to the risk of loss of 
stability by the rod even before reaching the 
critical load calculated by the exact equation. 
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7. It was shown, that taking into account the 
axial stiffness, without taking into account the 
shear stiffness, significantly increases the 
critical load. Therefore, it is unacceptable to 
take into account the axial stiffness without 
taking into account the shear stiffness, when 
analyzing the rod’s stability. 

8. It was shown, that the obtained exact value of 
the critical compressive load, taking into 
account all rod’s stiffnesses, has a lower value 
than the critical load value calculated by the 
classical Euler’s formula. Since both formulas 
are equally simple for manual calculation, the 
resulting exact formula can be recommended 
for use in all cases in which Euler's formula 
was previously used. 
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