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Abstract. In the operation practice of overhead power transmission lines (OHL), the phenomenon of "gal-
loping" of conductors is well known — vibrations with frequencies of ~ 1 Hz and with amplitudes of the or-
der of the static sag [1, 2]. This phenomenon is observed, as a rule, when the symmetry of the conductor
section is violated due to icy deposits, which gives the conductor some aerodynamic efficiency. However,
this model does not explain all the observed cases of galloping. In this regard, it is advisable to pay atten-
tion to the little-known experience of Academician Abram F. loffe, who experimentally discovered the self-
excitation of a current-carrying conductor — a stretched string that heats up when connected to an electrical
circuit. Solving this issue can significantly expand the understanding of the nature of conductor galloping
and open up new ways to fend off this phenomenon, which poses a danger to the stability of the functioning
of energy systems. This requires a mathematical model of the OHL conductor describing the interaction of
mechanical and thermal processes. The purpose of this work is to construct the simplest version of this
model, on the basis of which the condition of self-excitation of thermomechanical self-excitation of real
OHL conductors can be justified.

Keywords: power transmission, sagging conductor, heat generation, heat transfer, thermomechanical processes,
vibrations, self-excitation, galloping

MOJEJb TEPMOMEXAHUYECKNUX KOJJEBAHUM
TOKOHECYIIUX MTPOBO/HHUKOB

A.H. lanunun ', E.C. Onyuun *, B.A. ®envommeiin *

'®I'BYH UHCTUTYT NPUKIAIHON MEXaHuK POCCHICKON akageMun HayK
2 AO «1leHTpanbHbIi Hay4HO-HCCIIEI0BATENBLCKMI MHCTUTYT MALIMHOCTPOESHHUS

AHHoOTanms. B npakTHKe 3KCIUTyaTanny BO3AYLIHBIX JUHHUN 3nekTponepenaun (BJID) nssecten dpenomen
«IUISICKM» TIPOBOJOB — KoJjiebaHus ¢ yactoTaMu ~1 'l M ¢ aMmuTygamMu mopsiika CTPEeiIbl CTaTHYeCKOro
npoBucanusi nposoxaa [1, 2], nHabGmiomaeMble, Kak NPaBHIIO, NPH MOTEPE CHUMMETPHM CEYCHMS IPOBOJA
BCJICICTBHE TOJIOJICTHBIX OTIIOXKEHHUH, UTO MPHUJAET MPOBOAY HEKOTOPOE a’poAMHaMudeckoe kauecTBo. Of-
HAKO 3Ta MOJENb HE 00BSICHICT BCEX HAONIOJAEMBIX CIydaeB IUIACKH. B cBsi3mM ¢ 3TUM 1enecoobpa3Ho 00-
paTUTh BHUMaHHE Ha MAJOU3BECTHBIN onbIT akagemuka A.D. Modde, sxciepumMeHTanb HO 00HAPYKUBIIETO
caMOBO30y’XKJJCHIE TOKOHECYIIETO MPOBOJHMUKA — HATAHYTOH CTPYHBI, HarpEBAIOLICICS MPHU BKIIOYECHUU B
DJEKTPUYECKYIO IleTb. Pelmenne 3Toro BOnpoca MOKET CyHIECTBEHHO PAaCHIMPHUTh MPEACTABICHHS O PUPO-
Jie TUIACKH TPOBOJIOB M OTKPBITH HOBBIE ITyTH MAPUPOBAHMS 3TOT0 (PEHOMEHA, MPEJICTABIISIOIIEr0 ONaCHOCTh
JUISE CTaOWIIBHOCTH (DYHKIIMOHUPOBAHUSI SHEPTeTUYECKUX cucTeM. [t Toro HeoOXxoauMa MareMaTH4ecKast
MoJieds npoBoga BJID, omuchiBaromas B3auMOJEHCTBHE MEXaHUYECKUX M TEIJIOBBIX TpoieccoB. llenbio
JTAHHOW paboTHI SBISETCS MIOCTPOCHHE HAauOOJIee MPOCTOr0 BapuaHTa ATOW MoJeiH, Ha 0a3e KOTOPOro Mo-
XKeT OBITh 0OOCHOBAHO YCJIOBHE CaMOBO30YXXIEHHS TEPMOMEXaHMUYECKOTO CaMOBO30YXIEHHUSI PEabHBIX
nposonoB BJID.

Karouesble ciioBa: QJICKTpoOIiepeaada, HpOBI/ICEIIOHII/Iﬁ mpoBOA, TCIIJIOBBLACIICHNUE, TCILJIOOTAA4a,
TECPMOMCXAHNICCKUEC NPOLCCCHI, KOHe6aHI/I${, CaMOBO36y)K,HeHI/I€, TaJoMupoOBaHUC
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INTRODUCTION

Open mechanical oscillatory systems interacting
with energy sources and the environment are
widely known in technology. These include, for
example, relay thermoregulators that include
current only in a given range; their mode of op-
eration is relaxation self—oscillation. In thermis-
tor generators, self-oscillations do not occur as a

result of circuit interruption, but due to the de-
pendence of resistance on temperature. A spe-
cial class of thermomechanical self-oscillations
was experimentally discovered by A.F. loffe,
who demonstrated, as an illustration for a lec-
ture course in physics, the self-excitation of a
conductor — a stretched string that heats up
when it is connected to a DC electric circuit.

- Jo Lfs 4

(fs ‘I'Z)(‘g

Figure 1. Kinematic parameters of three conductor states

The works devoted to the construction of a theo-
ry explaining this phenomenon are [3-7]. It is
shown that self-oscillations in such systems can
be caused by the interaction of a number of
thermomechanical factors: Joule heat release,
thermal and deformation changes in the electri-
cal resistance of the conductor (thermoresistive
effect), dependence of heat transfer to the medi-
um on the vibration amplitude. In [7] there are
indications of a repetition of the experience of
A F. Ioffe. Of practical interest is the question
of whether the concept of thermomechanical
vibrations can serve as an explanation for the
phenomenon of conductor galloping — low-
frequency vibrations of overhead power line
(OHL) conductors with frequencies of ~ 1 Hz
and with amplitudes of the order of static sag.
The authors of the cited works have made such
an assumption, but it has not yet received con-
vincing confirmation: there is no transfer of the
effect, modeled theoretically and observed in a
laboratory model, to the full-scale OHL conduc-
tors. The purpose of this work is to build, if pos-
sible, an elementary model suitable for as-
sessing the conditions for self-excitation of vi-
brations and transferring them to the actual op-
erating conditions of OHL.

1. MODEL OF CONDUCTOR
VIBRATION

The conductor is considered as an elastic flexi-
ble heavy thread in a homogeneous field of
gravity (Figure 1). With a static sag that is small

compared to the span length (/5 <</), the cur-

vature and tension of the conductor can be con-
sidered constant, and the conductor configura-
tion in the equilibrium state is a parabola

vs=fs(1-4x° /1) = fio(x).
It is assumed that the shape of vertical oscilla-
tions relative to the static equilibrium position

coincides with the shape function O'(x):
y(t,5) = y5(s)=z(1)o(x). The state parameters
are: the sag variation z(t), the angle of devia-
tion of the conductor plane from the vertical
¢(t), temperature @(¢). Ambient air tempera-
ture @, is at the moment of self-excitation of

vibrations.
There are three conductor states:
- natural:

f=/1,9=0,0=06,,
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when there are no deformations (6, — installa-

tion temperature before static deformations oc-
cur in it);
- stationary:

f:fs’ (0:0’ 9:95’

when the deformations and temperature corre-
spond to equilibrium with the electric voltage
switched on and stationary heat release Q ;

- perturbed (vibration mode):
f=fs+z, %0, =06, +1,

when perturbations are imposed on static de-
formations and temperature z, 77, due to chang-

es in configuration, heat release Q, (t) and heat

transfer.
The lengths of the conductor in the natural, stat-
ic and perturbed states are respectively equal to:

%={Hﬂ@j,L {Hﬁ@],
3/ 3/
=71 (fS + Z) .
32 '

Static and total deformations are:

S 3[2 (f:s ﬁ)z )’
e [ R SIS
8
= &g +?(22 +2Zfs)=8S +e.
When describing coupled thermomechanical

vibrations, the role of the elastic potential W
passes to the free energy [8]:

F =W =3ka,0e,
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wherek = E/3(1-2v) is modulus of volume

elasticity, e 1is volume strain, o, 1s coeffi-

cient of linear thermal expansion. ~ Expressing
the volume strain in terms of the elongation

strain by the formula e = (1 - 21/)8 , find the free

energy expression for the entire volume of the
conductor:

F= BzB(gS +8) —a, (0 +1-6,) (s + 5)} -

V2n[(f+2)(1-cosp)-2- 1+ 4]

Here B=ES
S =ra*> — effective conductor cross section
with section radius a; m — linear mass.

Kinetic energy is

is tensile conductor stiffness;

2 1/2 ) 4 )
_ "0 _
K—m7 j o (x)dx-Eleo )

—1/2

where V, = \/z’z + (fs + 2)2¢2 — the speed of

the midpoint of the span.

Let's limit ourselves to taking into account the
aerodynamic drag. With normal flow, the linear
aerodynamic force is equal to F =—p,V [V'|Cpa

, where p,, V' — density and velocity vector of

incoming air. The drag coefficient for a circular
cylinder in the current range of Reynolds num-
bers Re =10’ ~10> changes slightly and can be
taken equal to C, =1,2.

Dissipative function [9] is

31/2 16
]

O =p,C, a‘ ; o’ (x)dx EpBC al‘Vo‘}-

—=1/2

We write the vibration equations in the La-
grange form:

alc, Vyz +

8 16
Eml[z —(f + 2)¢?] + 350
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de
+Bl[e + &g — ar(6s — 0y) — am] Frin

2 2
—§mgl + —mgl(l —cos¢) =0,

—ml[q.’)(z + )2 +2dz2(z+ ] +

6
+—pgalc,Vo(fs + 2)?¢? +

357
+§mgl(z +f)sing =0. (2)

2. CONDUCTOR TEMPERATURE

The conductor heating occurs due to Joule heat
generation, the power of which is uniform in
volume. When the conductor oscillates, it ac-
quires a velocity relative to the air, as a result of
which heat transfer occurs, uneven on the sur-
face. Taking into account the unevenness would
dramatically complicate the model, so the heat
transfer is taken into account according to New-
ton's law with an averaged heat transfer coeffi-
cient over the cross section and over the span
length. In this approximation, the temperature
distribution is axisymmetric and constant along
the conductor length, and the first law of ther-
modynamics takes the form [8, 10]:

de _
dt

_,10 a(‘93‘H7_‘90)
_Arar(r S ]+QS+QV(t),

pc%—? +3ka,0,
€)

where p and c¢ — density and specific heat ca-

pacity of the conductor.

The stationary component of the temperature
satisfies the equation and the boundary condi-
tions:

10( 0(6,-6,) ~
ﬂza[fTJ Os =0

6(49S - 90)
or

=0, )

0
3(6; - 6,)

pe +a(0,-6,-6,) =0.

a

42

Passing, as before, from e to ¢ and taking into
account (4), we transform (3) to the form

Let us apply to both parts of this equation the
averaging over the cross-sectional area:

“on on
pcf —rdr = /1 r—) dr +
0 ot

a
arEQ, erdr.

+ QVrdr—.I-
0

0

On the surface r=a, Newton's heat transfer
condition must be satisfied both for the total
temperature 6, — 6, +n and for its stationary
component; hence it follows that the variable
component must satisfy the condition
—-A0n/or =an. Taking this into account and
introducing the cross-sectional average tempera-
ture j = 2a~2 foa rndr, we arrive at an equation
for its change:
L 2a . .
pci] = Qy ——1 — arEfyé. (6)
Here, omitting for brevity a rather elementary
justification, the result is used: for the Fourier
numbers Fo=A/pca’w, characteristic of the
modes of dancing of the OHL, the amplitude of
the periodic temperature component is almost
constant over the conductor cross section, which
gave reason to replace the surface temperature
n(a) in (6) with its average value 7.

3. HEAT RELEASE AND HEAT
TRANSFER

The power of heat release in the span of a con-
ductor with electrical resistance R is equal to

W'=U*/R=I’R. In the general case, a
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change in resistance changes the current and
voltage simultaneously, but two limiting cases
can be distinguished: a circuit with a stabilized
voltage and a circuit with a stabilized current.

In the first case, as the resistance increases, the
heat release decreases, and in the second case, it
increases. Small fluctuations in resistance can-
not change the current in the OHL conductors,
which is determined by the large load re-
sistance, so the second option is of practical im-
portance W*=I’R(1+cos2am,t), where I — effec-

tive current, @, — its frequency. Since the oscil-
lation frequency of the conductor is small com-
pared to @,, we can neglect the variable com-

ponent in the expression for ™.

The change in conductor resistance R depends
on the change in length, cross-sectional area
(tensoresistive effect [11]), and the temperature
dependence of resistivity:

dR _(dp,  di_dS)
R p. L S/

dl d
7:8+QT777 &:ﬁlna
P

e

ds
= 2(am—ve);

where p, — resistivity, g ~4.10°K" — coeffi-

cient of temperature dependence of electrical
resistivity, £, =1+2v — coefficient characteriz-

ing the tensoresistive effect, v — Poisson's ratio
of conductor material. As a result, taking into
account that o, << 3, we find

R=4p,(B0+ Be)l/nd”,

and the variable component of the heat release
power per unit volume of the conductor is (here-
inafter, the tilde sign above the variable 7 is

omitted):
12
0, (=165 (Bn+ Be). (D)
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Heat transfer depends on the speed of blowing
with ambient air and on the presence of icy de-
posits on the surface of the wire. Let's look at
the first of these factors. Heat transfer from the
wire surface is taken into account according to
Newton's law. The heat transfer coefficient is
determined by  the  Nusselt  number
a =Nu-4,/d, depending on the Reynolds and

Grashof numbers

Re=Vd/v,,
Gr = gf,d’ (775 _773)/‘//}2?-

Here: A;,v,, [, are coefficient of thermal con-

ductivity, kinematic viscosity and the coeffi-
cient of volumetric thermal expansion of air, d —
conductor diameter. Approximation of the data
contained in [12, 13] leads to the following rela-
tionship (at a constant flow rate):

a:0,47ﬂ;73 Re++/Gr/2 . (8)

We assume that this dependence is also true for
the instantaneous values of the Reynolds num-
ber with its periodic change (quasi-stationary
model), and the conductor speed during vibra-
tions will be replaced by its average value over
the span VV = 2V, /3. At low velocities ¥, which
are characteristic of the initial stage of soft self-

excitation of oscillations (Re<<+/Gr/2), the
determining factor is the free convection effect

and o =0.394Gr A, /d .

The reason for the dance is traditionally associ-
ated with the icing of the wire [1, 2], as a result
of which its cross section becomes similar to a
wing profile, and the excitation of the dance is
likened to a flutter. However, practice shows [1]
that dancing can also occur with a uniform dep-
osition of a thin layer of ice, in which the sec-
tion does not acquire an aerodynamic quality.
From the standpoint of the thermomechanical
model, the role of the ice sheath may be to
change the thermal regime of the wire. In this
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regard, it is necessary to assess the degree of
this influence.

Taking into account the significant uncertainty
in the shape of ice deposits, for evaluation we
consider a simplified auxiliary problem, replac-
ing the axisymmetric model with a flat one: an
infinite plate with a thickness of 2a (analogous
to a wire) contacts with plates with a thickness
O (analogous to an ice shell). Considering, due
to symmetry, half of the region and placing the
origin of coordinates on the contact surface, we
write down the equations of heat conduction:

T, = x,. Ty + el@t (—g < x <0);

1€1
TZ = XzTZN (0 <x< 6).
Assuming T, = ”n,(x), T, =¢e"'n,(x), we ar-

rive at the equations for the amplitudes
—ion, + i +q =0, —ion, + 7,n;,=0;

X2 = /11’2 / p, 20 — coefficients of thermal conduc-

tivity of the conductor and ice, ¢ =0/ p,c,. The
solutions of the equations have the form of heat

waves 7, = eXp(iVsz) , Where v, , = \/10)/7(1,2 .

The characteristic values of the thermal parame-
ters of ice are [14, 16]:

p,: 200kg/m*, c,: 2kJ/kg K,

A, 0.1 W/m-K (granular frost),

p,: 900 kg/m’, ¢,: 2kI/kg K,
A, 0 22 W/m-K (ice).

At vibration frequencies ~1 Hz the value
|V2| ~10° 10" 1/m, |v1|~ 250. It follows that

the variable temperature component does not
penetrate deeply into the ice shell and attenuates
at a distance of less than 1 mm from the wire
surface. This allows us to represent the tempera-
ture amplitudes in the form:

_ lq Vix —V|x
n=-—+A4e" +4e"

—VHX
, 1, =B‘e 2
1)

9

under boundary conditions:

n'(=a)=0, An/(0)=An}(0),
m,(0)=1,(0).

Determining the constants, we find

& & _
o~ 9 1__6\\/'\): ., i|(2a+x) .
0] I+¢ I+¢&

Taking into account that & =v,4, /v,4, =0.01+0.1,
as well as the estimate v,a~2+5, we will make

up for the interface x =0 the ratio of the type of
heat transfer condition from the conductor to the
icy shell —An =, n,, from which follows an

approximate estimate of the equivalent heat transfer
coefficient:

!

aak(; = _ﬂ'l i(O) ~ ﬂ'lvlg = 1’21/2 .

m

)

Therefore, for an iced wire, the variable tempera-
ture can be calculated in the same way as for a
bare conductor when using the value ¢, as the

heat transfer coefficient in equation (6). Note that
for v,0>2, which is already achieved at

o0 >1mm, the heat transfer with respect to the

variable temperature does not depend on the speed
of blowing the conductor with the air flow.

4. RESOLUTION SYSTEM OF
EQUATIONS AND SIMILARITY
PARAMETERS

Let's move on to compiling a resolving system
of equations. Let us transform (2), substituting
expressions for deformations (1) into them and
passing to dimensionless variables:
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g=2, T=tlr, 1= |5 9= (9

- fs ’ 5¢ 0,

Note that the accepted time scale differs by only
10% from the oscillation period of a mathemati-
cal pendulum with length f;. Let us represent

the heat transfer coefficient (8) as
a=2u(q,0)/d , tne u(q, ¢) =
Jar(@.d)+ a2

w(a,0) = i + (1 + a7,
o, =044 falv,r, a; =0.15/Gr.

Considering that in static equilibrium the ten-
sion in the conductor 7 =B(e&;—¢,), where

& =a,(6;,—6,), is related to the sag by the
ratio 87f, = mgl® , we finally obtain

i+ev(q,¢)g— A+ qQd*+
+(1+28)q+BBq*+q°) +1-

—cos¢ —yI(l+q) =0, (11)
L+ @) +6v(q )1+ )¢ +
+24¢ + sing = 0, (12)

Substituting (7), (8) or (9) into equation (6), tak-
ing into account expression (1) for strains and
passing to the previously accepted dimension-
less values, we finally obtain:

9 =9 +&(q% +2q) -
—xq(L+q) =94u(4,¢).  (13)

The parameters ¢, £, 7, &, &,, & are deter-

mined by the formulas (14) below.

The first and second terms in the right part deter-
mine the change in the heat output power due to the
dependence of the electrical resistance on tempera-
ture and on the conductor deformation (strain-
resistive effect); the third term describes thermoe-
lastic connectivity — cooling by increasing the de-
formation (downward movement) and heating by
decreasing it (upward movement); the last term

Volume 18, Issue 4, 2022

determines the heat transfer due to the conductor
movement relative to the air during vibrations.
Thus, the system is described by equations
(11)—(13) and a set of dimensionless similarity
parameters:

o =022059 o2 0.15JGr,

VT
= 64Bf; Ipr
3mgl*’ pelrtd*’
815
$ :éesﬂla S Z#éjﬂZ: (14)
2
A4 ﬂ;BT ’ Z:16/} aTEHO’
d*pc 317 pcb
8 f,0,0,B &r
7 = 2 = s
mgl Eg—&;
— 3p6deCL
= .
Tm

In the presence of icy deposits with the parame-
ters indicated above A,, p,, c, heat transfer to

air is replaced by heat transfer to ice and param-
eter A in (14) is taken as

A= 41'{‘/1 +2p \//12 P5Cs / pcd and the parameter

4 in (13) is assumed to be 1.

It is advisable to express the similarity parame-
ters (14) in terms of operational and easily
measured values in the experiment, fixing the
design parameters and characteristics of alumi-
num as the predominant conductor material:

a,=5.5-10"d/ f;, a, =443d’ (65— 6,),

3 12
B = 1.09-104?—5, £=533.10"" JIs

O,d*
[2
;:21.3.10-187*/75, (15)
S :22.7-10*15—12”;
? da‘'re,’
2
A=1.6-10’8\/§, =3.69f§‘90,
d 1’6,
y=490—fsfs, g=0.67ﬁ;
/ m
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in the presence of ice

A:AOE, A,=10"-10",

In an experimental study of the excitation of
vibrations on a laboratory model, it is most con-
venient to vary the measurable operational pa-
rameters of the model: the conductor tempera-
ture before turning on the current 6,, current

I, temperature ¢ and sag f; in the heated

state, leaving the design parameters of the mod-
el unchanged.

Under the conditions of a laboratory experi-
ment, the air temperature €, and the conduc-

tor temperature in the natural (installation)
state ¢, are naturally considered to be the

same. Therefore, the entire set of coefficients
in (15) is expressed in terms of current 7,
sag f,,and stationary temperature &, . In this

case, it is advisable to empirically establish
the dependence of the temperature and the
sagging arrow on the current. This will allow,
in the experimental study of self-excitation,
to express all similarity parameters (14), (15)
related to a given physical model, through a
single and easily adjustable quantity — the
current.

CONCLUSION

The resulting system of equations and a set of
dimensionless similarity parameters are in-
tended for the primary analytical analysis of
the conditions for self-excitation of thermo-
mechanical oscillations on a laboratory scale
model and for transferring the results to natu-
ral conductors of overhead lines. In the future,
it is planned to use the results obtained on the
analytical model to build a detailed model that
more fully takes into account the features of
overhead power lines and their operating con-
ditions.
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