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Abstract. In the operation practice of overhead power transmission lines (OHL), the phenomenon of "gal-
loping" of conductors is well known – vibrations with frequencies of ~ 1 Hz and with amplitudes of the or-
der of the static sag [1, 2]. This phenomenon is observed, as a rule, when the symmetry of the conductor 
section is violated due to icy deposits, which gives the conductor some aerodynamic efficiency. However, 
this model does not explain all the observed cases of galloping. In this regard, it is advisable to pay atten-
tion to the little-known experience of Academician Abram F. Ioffe, who experimentally discovered the self-
excitation of a current-carrying conductor – a stretched string that heats up when connected to an electrical 
circuit. Solving this issue can significantly expand the understanding of the nature of conductor galloping 
and open up new ways to fend off this phenomenon, which poses a danger to the stability of the functioning 
of energy systems. This requires a mathematical model of the OHL conductor describing the interaction of 
mechanical and thermal processes. The purpose of this work is to construct the simplest version of this 
model, on the basis of which the condition of self-excitation of thermomechanical self-excitation of real 
OHL conductors can be justified. 
 
Keywords: power transmission, sagging conductor, heat generation, heat transfer, thermomechanical processes,  

vibrations, self-excitation, galloping  
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INTRODUCTION 
 
Open mechanical oscillatory systems interacting 
with energy sources and the environment are 
widely known in technology. These include, for 
example, relay thermoregulators that include 
current only in a given range; their mode of op-
eration is relaxation self–oscillation. In thermis-
tor generators, self-oscillations do not occur as a 

result of circuit interruption, but due to the de-
pendence of resistance on temperature. A spe-
cial class of thermomechanical self-oscillations 
was experimentally discovered by A.F. Ioffe, 
who demonstrated, as an illustration for a lec-
ture course in physics, the self-excitation of a 
conductor – a stretched string that heats up 
when it is connected to a DC electric circuit. 

 
 
 
 
 
 
 
 
 
 
 
The works devoted to the construction of a theo-
ry explaining this phenomenon are [3-7]. It is 
shown that self-oscillations in such systems can 
be caused by the interaction of a number of 
thermomechanical factors: Joule heat release, 
thermal and deformation changes in the electri-
cal resistance of the conductor (thermoresistive 
effect), dependence of heat transfer to the medi-
um on the vibration amplitude. In [7] there are 
indications of a repetition of the experience of 
A.F. Ioffe. Of practical interest is the question 
of whether the concept of thermomechanical 
vibrations can serve as an explanation for the 
phenomenon of conductor galloping – low-
frequency vibrations of overhead power line 
(OHL) conductors with frequencies of ~ 1 Hz 
and with amplitudes of the order of static sag. 
The authors of the cited works have made such 
an assumption, but it has not yet received con-
vincing confirmation: there is no transfer of the 
effect, modeled theoretically and observed in a 
laboratory model, to the full-scale OHL conduc-
tors. The purpose of this work is to build, if pos-
sible, an elementary model suitable for as-
sessing the conditions for self-excitation of vi-
brations and transferring them to the actual op-
erating conditions of OHL.  

 
1. MODEL OF CONDUCTOR 
VIBRATION 

 
The conductor is considered as an elastic flexi-
ble heavy thread in a homogeneous field of 
gravity (Figure 1). With a static sag that is small 
compared to the span length Sf l , the cur-

vature and tension of the conductor can be con-
sidered constant, and the conductor configura-
tion in the equilibrium state is a parabola 

2 21 4 /S S Sy f x l f x . 

It is assumed that the shape of vertical oscilla-
tions relative to the static equilibrium position 
coincides with the shape function x : 

, Sy t s y s z t x . The state parameters 

are: the sag variation z t , the angle of devia-

tion of the conductor plane from the vertical 
t , temperature t .  Ambient air tempera-

ture  is at the moment of self-excitation of 

vibrations.  
There are three conductor states:  
- natural: 
 

0 0, 0,f f , 

x
l

0f Sf
z
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Sf z &

Figure 1. Kinematic parameters of three conductor states 
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when there are no deformations ( 0  – installa-

tion temperature before static deformations oc-
cur in it); 
- stationary: 
 

, 0,S Sf f , 

 
when the deformations and temperature corre-
spond to equilibrium with the electric voltage 
switched on and stationary heat release SQ ; 

- perturbed (vibration mode): 
 

, 0,S Sf f z , 

 
when perturbations are imposed on static de-
formations and temperature ,z , due to chang-

es in configuration, heat release VQ t  and heat 

transfer. 
The lengths of the conductor in the natural, stat-
ic and perturbed states are respectively equal to: 
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Static and total deformations are: 
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When describing coupled thermomechanical 
vibrations, the role of the elastic potential W 

passes to the free energy [8]: 

 
3F W k e ,

 

where 3 1 2k E  is modulus of volume 

elasticity, e  is volume strain, T  is coeffi-

cient of linear thermal expansion. Expressing 
the volume strain in terms of the elongation 
strain by the formula 1 2e , find the free 

energy expression for the entire volume of the 
conductor: 
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Here B ES  is tensile conductor stiffness; 

2S a  – effective conductor cross section 
with section radius a; m – linear mass.  
Kinetic energy is 
 

/ 22
2 20

0

/ 2

4

2 15

l

l

VK m x dx mlV , 

 

where = + ( + )  – the speed of 

the midpoint of the span. 
Let's limit ourselves to taking into account the 
aerodynamic drag. With normal flow, the linear 
aerodynamic force is equal to F C aV V
, where , V  – density and velocity vector of 

incoming air.  The drag coefficient for a circular 
cylinder in the current range of Reynolds num-
bers 3 5Re 10 10  changes slightly and can be 
taken equal to 1,2C .   

Dissipative function [9] is 
 

3 / 2
330

0

/ 2

16

3 105

l

l

V
C a x dx C al V . 

 
We write the vibration equations in the La-
grange form:  
 

8
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( + ) +
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+ 
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+ [ + ( ) ]  

2

3
+

2

3
(1 ) = 0, 

8

15
( + ) + 2 ( + ) + 

+
16

35
( + ) + 

+ ( + ) = 0.    (2) 
 

 
2. CONDUCTOR TEMPERATURE 

 
The conductor heating occurs due to Joule heat 
generation, the power of which is uniform in 
volume. When the conductor oscillates, it ac-
quires a velocity relative to the air, as a result of 
which heat transfer occurs, uneven on the sur-
face. Taking into account the unevenness would 
dramatically complicate the model, so the heat 
transfer is taken into account according to New-
ton's law with an averaged heat transfer coeffi-
cient over the cross section and over the span 
length. In this approximation, the temperature 
distribution is axisymmetric and constant along 
the conductor length, and the first law of ther-
modynamics takes the form [8, 10]: 
 

     
0

0

3

1
,S

S V

dec k
t dt

r Q Q t
r r r

(3) 

 
where  and  c – density and specific heat ca-
pacity of the conductor. 
The stationary component of the temperature 
satisfies the equation and the boundary condi-
tions: 
 

0

0

0

0
0

1
    0;

0,
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S
S

S

S
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r Q
r r r

r

r

    (4) 

Passing, as before, from e  to  and taking into 
account (4), we transform (3) to the form 
 

0

1
.V

dc E
t dt

r Q t
r r r

            (5) 

 
Let us apply to both parts of this equation the 
averaging over the cross-sectional area:  
 

= + 

+ . 

 
On the surface r a , Newton's heat transfer 
condition must be satisfied both for the total 
temperature 0S  and for its stationary 

component; hence it follows that the variable 
component must satisfy the condition 

/ r . Taking this into account and 
introducing the cross-sectional average tempera-
ture = 2 , we arrive at an equation 
for its change: 
 

= .         (6) 

 
Here, omitting for brevity a rather elementary 
justification, the result is used: for the Fourier 
numbers 2Fo ca , characteristic of the 
modes of dancing of the OHL, the amplitude of 
the periodic temperature component is almost 
constant over the conductor cross section, which 
gave reason to replace the surface temperature 

a  in (6) with its average value . 

 
 
3. HEAT RELEASE AND HEAT 
TRANSFER 
 
The power of heat release in the span of a con-
ductor with electrical resistance R is equal to 

2 2/W U R I R . In the general case, a 
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change in resistance changes the current and 
voltage simultaneously, but two limiting cases 
can be distinguished: a circuit with a stabilized 
voltage and a circuit with a stabilized current. 
In the first case, as the resistance increases, the 
heat release decreases, and in the second case, it 
increases. Small fluctuations in resistance can-
not change the current in the OHL conductors, 
which is determined by the large load re-
sistance, so the second option is of practical im-
portance 2 (1 cos2 )eW I R t , where I – effec-

tive current, e  – its frequency. Since the oscil-

lation frequency of the conductor is small com-
pared to e , we can neglect the variable com-

ponent in the expression for W . 
The change in conductor resistance R depends 
on the change in length, cross-sectional area 
(tensoresistive effect [11]), and the temperature 
dependence of resistivity: 
 

1

;

, ,

2 ;

e

e

e
T

e

T

dR d dl dS
R l S

dl d
l

dS
S

 

 

where e  – resistivity, 3 -1
1 4.10 K  – coeffi-

cient of temperature dependence of electrical 

resistivity, 2 1 2  – coefficient characteriz-

ing the tensoresistive effect,  – Poisson's ratio 
of conductor material. As a result, taking into 
account that 1T , we find 

 
2

1 24R l d , 

 
and the variable component of the heat release 
power per unit volume of the conductor is (here-
inafter, the tilde sign above the variable  is 
omitted): 
 

2

1 22 4
16V

IQ t
d

.         (7) 

Heat transfer depends on the speed of blowing 
with ambient air and on the presence of icy de-
posits on the surface of the wire. Let's look at 
the first of these factors. Heat transfer from the 
wire surface is taken into account according to 
Newton's law. The heat transfer coefficient is 
determined by the Nusselt number 

Nu d , depending on the Reynolds and 

Grashof numbers 
 

3 2

Re ,

Gr .B S B B

Vd
g d

 

 
Here: , ,  are coefficient of thermal con-

ductivity, kinematic viscosity and the coeffi-
cient of volumetric thermal expansion of air, d – 
conductor diameter. Approximation of the data 
contained in [12, 13] leads to the following rela-
tionship (at a constant flow rate): 
 

0,47 Re Gr / 2B

d
.          (8) 

 
We assume that this dependence is also true for 
the instantaneous values of the Reynolds num-
ber with its periodic change (quasi-stationary 
model), and the conductor speed during vibra-
tions will be replaced by its average value over 
the span = 2 /3. At low velocities , which 
are characteristic of the initial stage of soft self-
excitation of oscillations ( Re Gr / 2 ), the 
determining factor is the free convection effect 

and 40.39 Gr B d .  

The reason for the dance is traditionally associ-
ated with the icing of the wire [1, 2], as a result 
of which its cross section becomes similar to a 
wing profile, and the excitation of the dance is 
likened to a flutter. However, practice shows [1] 
that dancing can also occur with a uniform dep-
osition of a thin layer of ice, in which the sec-
tion does not acquire an aerodynamic quality. 
From the standpoint of the thermomechanical 
model, the role of the ice sheath may be to 
change the thermal regime of the wire. In this 
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regard, it is necessary to assess the degree of 
this influence.  
Taking into account the significant uncertainty 
in the shape of ice deposits, for evaluation we 
consider a simplified auxiliary problem, replac-
ing the axisymmetric model with a flat one: an 
infinite plate with a thickness of 2a (analogous 
to a wire) contacts with plates with a thickness 

 (analogous to an ice shell). Considering, due 
to symmetry, half of the region and placing the 
origin of coordinates on the contact surface, we 
write down the equations of heat conduction: 
 

= +  ( 0); 

=    (0 < < ). 
 
Assuming 1 1 2 2( ),   ( )i t i tT e x T e x , we ar-

rive at the equations for the amplitudes 
 

1 1 1 2 2 20, 0i q i ; 
 

1,2 1,2 1,2 1,2/ c  – coefficients of thermal conduc-

tivity of the conductor and ice, 1 1/q Q c . The 

solutions of the equations have the form of heat 

waves 1,2 1,2exp x , where 1,2 1,2i . 

The characteristic values of the thermal parame-
ters of ice are [14, 16]: 
 

3
2 200 kg m: , 2 2 kJ kg: , 

2 :  (granular frost), 
3

2 900 kg m: , 2 2 kJ kg: , 

2 :  (ice). 

 

At vibration frequencies ~1 Hz the value 
3 4

2 110 10 1 m,    250 . It follows that 

the variable temperature component does not 
penetrate deeply into the ice shell and attenuates 
at a distance of less than 1 mm from the wire 
surface. This allows us to represent the tempera-
ture amplitudes in the form: 

 

1 1 2
1 1 2 2,   x x xiq A e A e B e ,  

 
under boundary conditions: 
 

1 1 2 2

1 2

( ) 0, (0) (0),

(0) 0 .

a
 

 
Determining the constants, we find 
 

1 1 (2 )
1 1

1 1
x a xq e e . 

 
Taking into account that 2 2 1 1 0.01 0.1 , 

as well as the estimate 1 2 5a , we will make 

up for the interface 0x  the ratio of the type of 
heat transfer condition from the conductor to the 
icy shell 1 1 1ecv , from which follows an 

approximate estimate of the equivalent heat transfer 
coefficient: 
 

1
1 1 1 2 2

1

0 .       (9) 

 
Therefore, for an iced wire, the variable tempera-
ture can be calculated in the same way as for a 
bare conductor when using the value ecv  as the 

heat transfer coefficient in equation (6). Note that 
for 2 2 , which is already achieved at 

1 mm , the heat transfer with respect to the 
variable temperature does not depend on the speed 
of blowing the conductor with the air flow.  
 
 
4. RESOLUTION SYSTEM OF 
EQUATIONS AND SIMILARITY 
PARAMETERS 
 
Let's move on to compiling a resolving system 
of equations. Let us transform (2), substituting 
expressions for deformations (1) into them and 
passing to dimensionless variables: 
 

Model of Thermomechanical Vibrations of Current-Carrying Conductors



45Volume 18, Issue 4, 2022

4
, / , ,

5
S

S S

z fq t t
f g

. (10) 

 
Note that the accepted time scale differs by only 
10% from the oscillation period of a mathemati-
cal pendulum with length Sf . Let us represent 

the heat transfer coefficient (8) as 
 

,B q d ,  , =

, + , 

, = + (1 + ) , ,   

2
1 20.44 , 0.15S Bf a Gr . 

 
Considering that in static equilibrium the ten-
sion in the conductor S TT B , where 

0T T S , is related to the sag by the 

ratio 28 STf mgl , we finally obtain 
 

+ , (1 + ) + 

+(1 + 2 ) + (3 + ) + 1  
(1 + ) = 0,          (11)  

(1 + ) + , (1 + ) + 

+2 + = 0,               (12) 
 
Substituting (7), (8) or (9) into equation (6), tak-
ing into account expression (1) for strains and 
passing to the previously accepted dimension-
less values, we finally obtain:  
 

= + ( + 2 )  
(1 + ) , .          (13) 

 
The parameters , , , 1 , 2 ,  are deter-

mined by the formulas (14) below. 
The first and second terms in the right part deter-
mine the change in the heat output power due to the 
dependence of the electrical resistance on tempera-
ture and on the conductor deformation (strain-
resistive effect); the third term describes thermoe-
lastic connectivity – cooling by increasing the de-
formation (downward movement) and heating by 
decreasing it (upward movement); the last term 

determines the heat transfer due to the conductor 
movement relative to the air during vibrations. 
Thus, the system is described by equations 
(11)–(13) and a set of dimensionless similarity 
parameters: 
 

2
1 2

3 2

4 2 4

2

1 1 2 22

2
0

2 2

2

0.22 , 0.15 ,

64
, 16 ,

3

8
, ,

3

16
4 , ,

3

8
,

3
.

7

S

B

S

S

S
S

B S T

S

S T S T

S T

f d Gr

Bf I
mgl c d

f
l
f E

d c l c
f B
mgl

f dc
m

         (14) 

 
In the presence of icy deposits with the parame-
ters indicated above 2 2 2, , c  heat transfer to 

air is replaced by heat transfer to ice and param-
eter  in (14) is taken as 

4
2 2 24 1 2 c cd  and the parameter 

 in (13) is assumed to be 1. 
It is advisable to express the similarity parame-
ters (14) in terms of operational and easily 
measured values in the experiment, fixing the 
design parameters and characteristics of alumi-
num as the predominant conductor material: 
 

4 34
1 2

23
4 15

4 4

2
18

1 4

2 5
15

2 4 2

2
8 0

2 2

2

5.5 10 , 44 ,

1.09 10 , 5.33 10 ,

21.3 10 , (15)

22.7 10 ,

1.6 10 , 3.69 ,

490 , 0.67 ;

S S B

SS

S

S

S
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S S
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S S S

d f d

I ff
l d

I f
d

I f
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f f
d l
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in the presence of ice 
 

4 3
0 0, 10 10Sf

d
. 

 
In an experimental study of the excitation of 
vibrations on a laboratory model, it is most con-
venient to vary the measurable operational pa-
rameters of the model: the conductor tempera-
ture before turning on the current 0 , current 

I , temperature  S  and sag Sf  in the heated 

state, leaving the design parameters of the mod-
el unchanged. 
Under the conditions of a laboratory experi-
ment, the air temperature  and the conduc-

tor temperature in the natural (installation) 
state 0  are naturally considered to be the 

same. Therefore, the entire set of coefficients 
in (15) is expressed in terms of current I , 
sag Sf , and stationary temperature S . In this 

case, it is advisable to empirically establish 
the dependence of the temperature and the 
sagging arrow on the current. This will allow, 
in the experimental study of self-excitation, 
to express all similarity parameters (14), (15) 
related to a given physical model, through a 
single and easily adjustable quantity – the 
current. 
 
 
CONCLUSION 
 
The resulting system of equations and a set of 
dimensionless similarity parameters are in-
tended for the primary analytical analysis of 
the conditions for self-excitation of thermo-
mechanical oscillations on a laboratory scale 
model and for transferring the results to natu-
ral conductors of overhead lines. In the future, 
it is planned to use the results obtained on the 
analytical model to build a detailed model that 
more fully takes into account the features of 
overhead power lines and their operating con-
ditions. 
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