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Abstract: For some elastic systems with a finite number of degrees of freedom of masses, in which the direc-

tions of mass movement are parallel and lie in the same plane (for example, rods), special methods have been 

developed for creating additional constraints, the introduction of each of which purposefully increases the value 

of only one natural frequency and does not change any from the natural modes. The method of forming a matrix 

of additional stiffness coefficients that characterize such targeted constraint in this problem can also be applied 

when solving a similar problem for elastic systems with a finite number of degrees of mass freedom, in which 

the directions of mass movement are parallel, but do not lie in the same plane (for example, plates). At the same 

time, for such systems, only the requirements for the design schemes of additional targeted constraints are for-

mulated, and not the methods for their creation. The distinctive paper proposes an approach that allows research-

er to create computational schemes for additional targeted constraints for such systems. A variant of the compu-

tational scheme, represented by a rod system with one degree of activity, is considered. Some special properties 

of such targeted constraints are revealed. When forming the computational scheme, the material consumption for 

creating a constraint is minimized, and design restrictions are taken into account. Particular attention is paid to 

the modification of the computational scheme of the constraint, when, during its formation, rods appear that 

“pass” through the original system. 
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Аннотация: Для некоторых упругих систем с конечным числом степеней свободы масс, у которых 

направления движения масс параллельны и лежат в одной плоскости, (например, стержни) разработаны 
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Formation of Computational Schemes of Additional Targeted Constraints that Regulate the Frequency Spectrum of 
Natural Oscillations of Elastic Systems with a Finite Number of Degrees of Mass Freedom, the Directions
of Movement of Which are Parallel, But do Not Lie in the Same Plane Part 1: Theoretical Foundations 

методы создания дополнительных связей, введение каждой из которых прицельно увеличивает значение 

только одной собственной частоты и не изменяет ни одну из форм собственных колебаний. Метод фор-

мирования матрицы дополнительных коэффициентов жесткости, характеризующих в этой задаче такую 

прицельную связь, может быть применен и при решении аналогичной задачи для упругих систем с ко-

нечным числом степеней свободы масс, у которых направления движения масс параллельны, но не лежат 

в одной плоскости (например, пластины). Вместе с тем для таких систем сформулированы лишь требо-

вания к расчетным схемам дополнительных прицельных связей, а не методы их создания. В данной ста-

тье предлагается подход, позволяющий создавать расчётные схемы дополнительных прицельных связей 

и для таких систем. Рассмотрен вариант расчётной схемы связи, представленный стержневой системой с 

одной степенью активности. Выявлены некоторые особые свойства таких прицельных связей. При фор-

мировании расчётной схемы выполняется минимизация расхода материала на создание связи, учитыва-

ются конструктивные ограничения. Особое внимание уделено модификации расчётной схемы связи, ко-

гда при ее формировании появляются стержни, «проходящие» сквозь исходную систему. 

 

Ключевые слова: частота собственных колебаний, форма собственных колебаний,  

обобщенная прицельная дополнительная связь, коэффициенты жесткости 

 

 

As is known [1, 2, 3, 4, 5, 6], introduction of 

generalized targeted constraints is one of the 

methods for freeing a given interval of the natu-

ral frequency spectrum from one or more of 

natural frequencies.  

Original solutions of problems of forming a ma-

trix of additional stiffness and creating on the 

basis of this matrix of the computational scheme 

of the corresponding targeted constraints are 

presented in [1, 2, 3, 4]. These solutions are 

based on the displacement method for systems 

with a finite number of degrees of freedom of 

masses, in which the directions of mass move-

ment are parallel and lie in the same plane. 

It was shown in [5, 6] that the method of form-

ing a matrix of additional stiffness coefficients 

can also be applied in solving a similar problem 

for elastic systems with a finite number of mass 

degrees of freedom, in which the directions of 

mass movement are parallel, but do not lie in 

the same plane. Besides, the requirements for 

the computational schemes of additional target-

ed constraints were formulated in [5, 6] in rela-

tion to this problem. 

Let us give the order of formation of the matrix 

of additional stiffness in relation to the consider-

ing systems. 

In the papers mentioned above, the main system 

of the displacement method [7] was chosen, 

which was obtained by introducing linear rela-

tions in the direction of mass movement. For 

example, for the plate [8, 9] shown in Figure 1a, 

the main system is shown in Figure 1b.  

 
Figure 1. Sample of structure. 

 

The displacement method equations were writ-

ten in the conventional form for systems with a 

finite number of degrees of freedom: 
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In (1) the values ],[ kir  form a matrix of stiff-

ness coefficients ],[ kirA  ; ][im  are the mass 

values, forming a diagonal matrix ][imM  ; 

  is the frequency of natural oscillations of the 

system; ],[ jkv  are displacements in the direc-

tion of mass movement in the j -th natural 

mode ),..,,,..,2,1( nqj   (forms of natural oscil-

lations). Equation roots 

 

02  MA                        (2) 

 

determine the frequency spectrum of natural os-

cillations of the system 

 

 ][ ..., ],1[ ],[ ],1[ ..., ],2[ ],1[ nqqq   . (3) 

 

It is shown that the creation of generalized tar-

geted constraint that increases only one fre-

quency of natural oscillations (for example, 

][q ) to a predetermined value and does not 

change any of the natural modes and the values 

of the remaining frequencies of the spectrum is 

based on the formation of a matrix of additional 

stiffness coefficients: 
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where we have 
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The matrix 0A  must have special properties. If 

the introduced constraint is “targeted” at the 

)(q -th frequency of natural oscillations, then the 

stiffness coefficients 
n

ki
kia

1,0 ],[


 should be or-

thogonal to the coordinates of the natural modes 

of the remaining )1( n  frequencies of the spec-

trum, that is 
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With respect to the )(q -th natural frequency, at 

which the introduced constraints is “targeted”, 

the coefficients are not orthogonal, that is, 
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It can be shown that conditions (6) and (7) will 

be satisfied by the coefficients 

 
],[],[][][],[0 qkvqivkmimkia  .         (8) 

 

The value of the multiplier is defined as the root 

of the equation 

 

0)( 2  SSOS AAMA  .                (9) 

 

Since the )(q -th natural mode of the original 

system remains its natural mode after the intro-

duction of the targeted constraint and at a fre-

quency S , the factor SOA  can be found as 
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(10) 

 

The result of solving the equation 

 

0)( 2  MAAA SSO  .            (11) 

                                                                        

must confirm that the natural modes have not 

changed, and the “targeted” frequency has in-

creased to S . 

The support device, to which the matrix of addi-

tional stiffness coefficients 0A  will correspond, 

must provide the ratio between the nodal dis-

placements the same as between the coordinates 

of the )(q -th natural mode of the original sys-

tem. It is shown that such a ratio will be realized 

if the additional support system transfers forces 
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to the nodes of the main rod system, the ratios 

between which are proportional to the values 

 

)](,[][][0 qivimiR  .                  (12) 

 

In [5, 6], the requirements for the computational 

schemes of additional targeted constraints were 

formulated in relation to systems with a finite 

number of degrees of freedom of masses, in 

which the directions of mass movement are par-

allel, but do not lie in the same plane. 

For such systems, the generalized targeted con-

straint should correspond to the matrix of addi-

tional stiffness coefficients 0A  (4). If the com-

putational scheme of constraint is represented 

by a variant of the hinged-rod system, then it 

should be once statically indeterminate, in the 

nodes of the system where the masses are locat-

ed, vertical members are installed in the direc-

tion of movement of the masses, and the pre-

stress of any one constraint member causes 

forces ),..,1(][ niiNst   in these vertical mem-

bers, the relationship between which are propor-

tional to the ratios between the forces ][0 iR  

(11). In this case, the constraint structure should 

not have any connections with the original sys-

tem, except for vertical members installed in the 

nodes where the masses are located. 

It was noted in [5, 6] that the computational 

schemes of generalized targeted constraint that 

meet the above requirements are multivariant 

and depend on the geometry of the original sys-

tem, the location of the masses, and some other 

characteristics of the considering object. 

In particular, it is possible to accept the compu-

tational scheme of the targeted constraint in the 

form of a once statically indeterminate hinge-

rod system, the geometry of which is deter-

mined both by the lengths of the main vertical 

members installed in the nodes in the direction 

of mass movement ),..,2,1(][ niilst   and by the 

given lengths of additional rods 

),..,2,1(][ 1nkkld  , that have no connections 

with the original system. 

Then, after forming the matrix of additional 

stiffnesses 0A  (4), computing the values SOA  

(10) and ][0 iR  (12), the problem is reduced to 

finding the lengths ),..,2,1(][ niilst   from the 

conditions for the occurrence in the main verti-

cal members of forces ),..,1(][ niiNst  , the ra-

tios between which will be proportional to the 

ratios between the forces ),..,1(][0 niiR  . 

Below, one of the options for finding the lengths 

of the rods will be presented, which determine 

the geometry of the targeted constraint, in which 

the necessary ratios between the forces in the 

main vertical members are provided. 

The considering variant is based on methods for 

minimizing the square of the difference between 

the forces arising in the main vertical members 

),..,1(][ niiNst   in the process of forming the 

targeted constraint and the values  ),..,1(][0 niiR  .  

Thus, we have the problem of minimization of 

the function 
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in the parameter space ),..,2,1(][ niilst  . 

In accordance with the above requirements, a 

computational scheme of the targeted constraint 

is created in the form of a once statically inde-

terminate hinge-rod system, in which the length 

of one of the main racks (for example, g  -th) is 

specified. Let's call this vertical member the 

base one ][0][ glstglst  . According to the de-

sign conditions, the lengths of additional rods 

)1,..,2,1(][ nkkdl   are selected, which do not 

vary during the formation of the scheme of the 

targeted constraint. The initial values of the re-

maining variable lengths 

 

)),..,1(),1(,..,2,1(][ nggiistl   

 

are also set. These actions determine the initial 

geometry of the computational scheme of the 

targeted constraint. Since the computational 

scheme of the targeted constraint is once stati-

cally indeterminate, the force in one of the main 

vertical members (for example, in q  -th) is set. . 



188 International Journal for Computational Civil and Structural Engineering

Leonid S. Lyakhovich, Pavel A. Akimov 

The method of searching for the minimum of 

the objective (target) function (13) in the space 

of variable lengths (the steepest descent, random 

search, etc.) is selected. 

Let us consider an algorithm for implementing 

actions to form a computational scheme for tar-

geted constraint. 

We recommend application of special algo-

rithm, presented below. 

1. In accordance with the chosen method of 

searching for the minimum of the objective 

function, increments to variable lengths  

 

)),..,1(),1(,..,2,1(][][ nggilistlilst   

 

are set and the geometry of the computational 

scheme of the targeted constraint is updated. 

2. A system of equilibrium equations is con-

structed in order to determine the forces in the 

rods of targeted constraint. Since it was as-

sumed that ][][ 0 qRqNst  , now the number of 

unknown forces in the rods of the targeted con-

straint is equal to the number of equilibrium 

equations. 

3. Unknown forces in the rods of the targeted 

constraint are determined from the equations of 

equilibrium with allowance for ][][ 0 qRqNst  . 

4. The value of the objective function is computed 
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5. If we have OOOfO  , then in accordance 

with the chosen method of searching for the 

minimum of the objective function (12), the in-

crements ][il  are corrected (values ][il  and 

ratios between them are changed). We have 
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Then the transition to the third step (item 3) is 

made. and the process continues. 

6. If the value Of  is less than a preselected 

small value OOO , then the process ends, and 

the computational scheme of the targeted con-

straint is formed with a given error (OOO ) pro-

vided that the length of the base rack is accepted 

][0][ glstglst  . 

The cross-sectional areas of the rods of targeted 

constraint are found from the condition that its 

stiffness coincides with the stiffness determined 

by matrix n

kiSSS kiaAAAA 1,0000 ||],[||   (4). 

Targeted constraint is constructed on the basis 

of forces ][0 iR , which correspond to the forces 

in the main vertical members 

),..,2,1(][][ 0 niiRiNst  , in additional vertical 

members )1,..,2,1(][ nkkNd   and in the rods 

of the belt of constraint )2,..,2,1(][ njjNP  . 

The derivation of the dependency that deter-

mines the area of the cross-sections of the rods 

of targeted constraint for the systems, in which 

the directions of mass movement are parallel 

and lie in the same plane, is given in [4]. This 

dependence with allowance for some modifica-

tions, can also be applied to the system under 

consideration 
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are respectively, the cross-sectional area of the 

vertical members, belts and additional rods of 

the targeted constraint; E  is the modulus of 

elasticity of the material of the rods. The coeffi-

cients ][i , ][ j  and ][k  determine the ratios 

between the cross-sectional areas in the rods of 

targeted constraint. 

The value F  is determined by dependence 
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are set and the geometry of the computational 
scheme of the targeted constraint is updated. 
2. A system of equilibrium equations is construct-
ed in order to determine the forces in the rods of 
targeted constraint. Since it was assumed that 

][][ 0 qRqNst , now the number of unknown 
forces in the rods of the targeted constraint is 
equal to the number of equilibrium equations. 
3. Unknown forces in the rods of the targeted 
constraint are determined from the equations of 
equilibrium with allowance for ][][ 0 qRqNst . 
4. The value of the objective function is computed 
 

ni

i
iRiNstfo

1

2
0 ])[][( . 

 
5. If we have OOOfO , then in accordance 
with the chosen method of searching for the 
minimum of the objective function (12), the in-
crements ][il  are corrected (values ][il  and 
ratios between them are changed). We have 
 

)),..,1(),1(,..,2,1(][][ nggiilstistl . 
 
Then the transition to the third step (item 3) is 
made. and the process continues. 
6. If the value Of  is less than a preselected 
small value OOO , then the process ends, and 
the computational scheme of the targeted con-
straint is formed with a given error (OOO ) pro-

vided that the length of the base rack is accepted 
][0][ glstglst . 

The cross-sectional areas of the rods of targeted 
constraint are found from the condition that its 
stiffness coincides with the stiffness determined 
by matrix n

kiSSS kiaAAAA 1,0000 ||],[||  (4). 
Targeted constraint is constructed on the basis 
of forces ][0 iR , which correspond to the forces 
in the main vertical members 

),..,2,1(][][ 0 niiRiNst , in additional vertical 
members )1,..,2,1(][ nkkNd  and in the rods 
of the belt of constraint )2,..,2,1(][ njjNP . 
The derivation of the dependency that determines 
the area of the cross-sections of the rods of target-
ed constraint for the systems, in which the direc-
tions of mass movement are parallel and lie in the 
same plane, is given in [4]. This dependence with 
allowance for some modifications, can also be 
applied to the system under consideration 
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where 
 

][][ iFiFst ;   ][][ jFjFP ; 
][][ kFkFd    (15) 

 
are respectively, the cross-sectional area of the 
vertical members, belts and additional rods of 
the targeted constraint; E  is the modulus of 
elasticity of the material of the rods. The coeffi-
cients ][i , ][ j  and ][k  determine the ratios 
between the cross-sectional areas in the rods of 
targeted constraint. 
The value F  is determined by dependence 
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The length of the base vertical member  

 

][0][ glstglst   

 

and the values ][i , ][ j  and ][k  depending 

on the design conditions, can either be set or 

found by minimizing the volume of material of 

the targeted constraint. 

If the volume of material of the targeted con-

straint is minimized, then the objective function 

(volume of material of the targeted constraint 

SVV ) has the form: 
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k
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     (17) 

 

When constructing the computational scheme of 

the targeted constraint, the values of some vari-

able lengths may turn out to be negative. There-

fore, absolute values of variable lengths ][ilst  

are introduced into (14), (16) and (17). 

When constructing the computational scheme of 

the targeted constraint and minimizing the func-

tion (17), the limitations of the variable values 

can be taken into account. Restrictions on the 

values of ][i , ][ j  and ][k  are related to the 

conditions of strength, stiffness, and stability of 

the rods. These restrictions are not considered in 

the distinctive paper. The restrictions on the 

lengths of the main vertical members can be 

written in the following form: 

 

),..,2,1(min,][max nililstl  ,    (18) 

 

where ][ilst  are the lengths of the main vertical 

members; minl  and maxl  are respectively 

their allowable minimum and maximum values. 

Since the ratios between the forces  

 

),..,2,1(][][ 0 niiRiNst   

 

do not change during the construction of the 

targeted constraint at OOOfO  , the ratios be-

tween the lengths of the variable values do not 

change when the length of the base vertical 

member changes. This circumstance allows us 

to attribute restrictions (18) to one variable 

length – the length of the base vertical member 

][0][ glstglst  . If for OOOfO   among the 

main vertical members the largest length is 

equal to ]1[klst , and the smallest is equal to 

]2[klst , then, denoting ]1[/][1 klstglst  and 

]2[/][2 klstglst , expression (18) can be re-

written as: 

 

0min][00max lglstl  ,            (19) 

 

where we have 

 

1max*0max ll  ;   2min*0min ll  . 

                                                                                

Now, when searching for the minimum of func-

tion (13), the range of acceptable values ][0 glst  

is determined by dependence (19). 

Constraints in the form (18), (19) are used pro-

vided that the signs of the lengths of all main 

vertical members are positive. If the signs of the 

lengths of all main vertical members are nega-

tive, then the sign of the coordinate in the direc-

tion of the vertical members is reversed. 

There are cases in construction of computational 

scheme of the targeted constraint, when the val-

ues of the lengths of some main vertical mem-

bers turn out to be positive, while others are 

negative. Structurally, such a scheme requires 

an ideally free “passage” of a part of the rods of 

targeted constraint “through” the original sys-

tem, which is almost unrealizable. In these cas-

es, the targeted constraint should be shifted in 

the direction of movement of the masses in a 

positive or negative direction by an amount at 

which the values of all the lengths of the main 

vertical members will be of the same sign. 

Let us designate by max][ilst  the largest length 

among the “positive vertical members” at 

OOOfO  , and by min][klst  the largest abso-

lute value among the “negative lengths”. 
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If the targeted constraint is moved in a positive 

direction, then the shift value must be greater 

than  

 

minmin][ lklstZV  . 

 

Obviously, in this case, the lengths of all verti-

cal members will be “positive”. In this case, the 

vertical member of the smallest length will be in 

the node where the vertical member was with 

min][klst . Now the length of the vertical mem-

ber in this node will be equal to minl . The 

longest length of vertical member will be at the 

node where the vertical member was with 

max][ilst . Now the length of the vertical mem-

ber in this node will be equal to  

 

minmin][max][ lklstilst  . 

 

If the targeted constraint is moved in a negative 

direction, then the shift value must be greater 

than  

 

minmax][ lilstZN  . 

 

Obviously, in this case, the lengths of all verti-

cal members will be “negative”. In this case, the 

vertical member with the smallest absolute val-

ue of the length will be in the node where the 

vertical member was with max][ilst . Now the 

absolute value of the length of the vertical 

member in this node will be equal to minl . The 

largest absolute length of the vertical member 

will be at the node where the vertical member 

was with min][klst . Now the absolute value of 

the vertical member length in this node will be 

equal to 

 

minmin][max][ lklstilst  . 

 

In these cases, the restrictions on the lengths of 

the vertical members take the form 

 

min)min][max][(max lklstilstl  .   (20) 

 

As noted above, at OOOfO  , the ratios be-

tween the lengths of the variable quantities do 

not change. This circumstance allows us to at-

tribute restrictions (20) to one variable length – 

the length of the base vertical member 

][0][ glstglst  . Using (20) we get 

 

min][max][minmax klstilstll   
 

or 

 

][0

min][
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Since the ratios  

 

][0

max][

glst

ilst
 and 

][0

min][

glst

klst
 

 

remain constant when the length ][0 glst  chang-

es, then we have 
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1
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(22) 

 

where 

 

min][max][

][[0
3

klstilst

glst


 .               (23) 

 

                                                                                         

remains constant when changing ][0 glst . 

Thus, constraint (20) can be represented as: 

 

][03*min)max( glstll   .          (24) 

                                                                                           

Now, when searching for the minimum of func-

tion (17), the range of acceptable values ][0 glst  

for cases where the lengths of the main vertical 

member turn out to be of different signs is de-

termined by dependence (24). 

The choice of ,  and  does not af-

fect the computational scheme of the targeted 

constraint, but only affects the values of the 
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If the targeted constraint is moved in a positive 
direction, then the shift value must be greater 
than minmin][ lklst . Obviously, in this case, 
the lengths of all vertical members will be “pos-
itive”. In this case, the vertical member of the 
smallest length will be in the node where the 
vertical member was with min][klst . Now the 
length of the vertical member in this node will 
be equal to minl . The longest length of vertical 
member will be at the node where the vertical 
member was with max][ilst . Now the length of 
the vertical member in this node will be equal to  
 

minmin][max][ lklstilst . 
 

If the targeted constraint is moved in a negative 
direction, then the shift value must be greater than 

minmax][ lilst . Obviously, in this case, the 
lengths of all vertical members will be “negative”. 
In this case, the vertical member with the smallest 
absolute value of the length will be in the node 
where the vertical member was with max][ilst . 
Now the absolute value of the length of the vertical 
member in this node will be equal to minl . The 
largest absolute length of the vertical member will 
be at the node where the vertical member was with 

min][klst . Now the absolute value of the vertical 
member length in this node will be equal to 
 

minmin][max][ lklstilst . 
 
In these cases, the restrictions on the lengths of 
the vertical members take the form 
 

min)min][max][(max lklstilstl .   (20) 
 
As noted above, at OOOfO , the ratios be-
tween the lengths of the variable quantities do 
not change. This circumstance allows us to at-
tribute restrictions (20) to one variable length – 
the length of the base vertical member 

][0][ glstglst . If we denote  
 

min)min][max][/(][3 lklstilstglst  
 

and  
 

3max*00max ll ,  
 
then constraint (20) can be represented as: 
 

][000max glstl .                 (21) 
                                                                                           
Now, when searching for the minimum of func-
tion (13), the range of acceptable values ][0 glst  
for cases where the lengths of the main vertical 
member turn out to be of different signs is de-
termined by dependence (21). 
The choice of ][i , ][ j  and ][k  does not af-
fect the computational scheme of the targeted 
constraint, but only affects the values of the 
cross-sectional areas of its rods. The value of 
the length of the base vertical member affects 
both the geometry of the computational scheme 
of the targeted constraint and the cross-sectional 
areas of its rods. 
Let's consider the procedure for implementing 
actions to minimize the volume of material of 
targeted constraint. 
If the values ][i , ][ j  and ][k  are set ac-
cording to the design conditions, then, after de-
termining the initial values of the cross-
sectional areas of the rods of targeted constraint, 
we can determine the length of the base vertical 
member, at which the objective function (17) 
takes minimum value in the range of permissi-
ble values of this length ((19) or (21)). It can be 
done by the above algorithm and one of the var-
iants of the one-dimensional search method. 
If the values ][i , ][ j  and ][k  are also de-
termined from the conditions of the minimum 
material of the targeted constraint, then in this 
case one of the variants of the method of suc-
cessive approximations can be used. The initial 
values ][i , ][ j  and ][k  are preliminarily 
selected, and the initial values of the cross-
sectional areas of the rods of targeted constraint 
are determined. Each approximation of the 
method consists of two successive steps: 
1. On the basis of the algorithm given above and 
the one-dimensional search method, with known 
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cross-sectional areas of its rods. The value of 

the length of the base vertical member affects 

both the geometry of the computational scheme 

of the targeted constraint and the cross-sectional 

areas of its rods. 

Let's consider the procedure for implementing 

actions to minimize the volume of material of 

targeted constraint. 

If the values ,  and  are set ac-

cording to the design conditions, then, after de-

termining the initial values of the cross-

sectional areas of the rods of targeted constraint, 

we can determine the length of the base vertical 

member, at which the objective function (17) 

takes minimum value in the range of permissi-

ble values of this length ((19) or (24)). It can be 

done by the above algorithm and one of the var-

iants of the one-dimensional search method. 

If the values ,  and  are also de-

termined from the conditions of the minimum 

material of the targeted constraint, then in this 

case one of the variants of the method of suc-

cessive approximations can be used. The initial 

values ,  and  are preliminarily 

selected, and the initial values of the cross-

sectional areas of the rods of targeted constraint 

are determined. Each approximation of the 

method consists of two successive steps: 

1. On the basis of the algorithm given above and 

the one-dimensional search method, with known 

,  and  the length of the base ver-

tical member is determined, at which the objec-

tive function SVV  (17) takes the minimum value 

in the range of allowable length values ][0 glst  

((19) or (24)). 

2. One of the methods for finding the minimum 

of the objective function (17) (the steepest de-

scent, random search, and others) in the space of 

variable values ,  and  continues 

the process of minimizing the function (17). 

Approximations of the method (the first and the 

second steps) are repeated until the difference 

between the weight functions (17) of two neigh-

boring approximations becomes less than a suf-

ficiently small preselected value. 
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