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Abstract: For some elastic systems with a finite number of degrees of freedom of masses, in which the direc-
tions of mass movement are parallel and lie in the same plane (for example, rods), special methods have been
developed for creating additional constraints, the introduction of each of which purposefully increases the value
of only one natural frequency and does not change any from the natural modes. The method of forming a matrix
of additional stiffness coefficients that characterize such targeted constraint in this problem can also be applied
when solving a similar problem for elastic systems with a finite number of degrees of mass freedom, in which
the directions of mass movement are parallel, but do not lie in the same plane (for example, plates). At the same
time, for such systems, only the requirements for the design schemes of additional targeted constraints are for-
mulated, and not the methods for their creation. The distinctive paper proposes an approach that allows research-
er to create computational schemes for additional targeted constraints for such systems. A variant of the compu-
tational scheme, represented by a rod system with one degree of activity, is considered. Some special properties
of such targeted constraints are revealed. When forming the computational scheme, the material consumption for
creating a constraint is minimized, and design restrictions are taken into account. Particular attention is paid to
the modification of the computational scheme of the constraint, when, during its formation, rods appear that
“pass” through the original system.
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HaTIpaBJICHUS JIBIDKCHUS MacC MapajuieNIbHBI M JIEXKAT B OJHOM IUIOCKOCTH, (HAaIpuUMep, CTEPKHN) pa3paboTaHbI

184 International Journal for Computational Civil and Structural Engineering



Formation of Computational Schemes of Additional Targeted Constraints that Regulate the Frequency Spectrum of
Natural Oscillations of Elastic Systems with a Finite Number of Degrees of Mass Freedom, the Directions
of Movement of Which are Parallel, But do Not Lie in the Same Plane Part 1: Theoretical Foundations

METO/IbI CO3/IaHMs JOTIOJIHUTENBHBIX CBS3EH, BBEJCHUE KaXKA0H M3 KOTOPHIX IPHUIIENBEHO YBEIHMYHBACT 3HAYCHHUE
TOJIBKO OJTHOM COOCTBEHHOW 4acTOTHI M HE U3MEHSET HU OJHY U3 (hopM COOCTBEHHBIX Konebanuii. Meron dop-
MHPOBaHHUS MaTPHLBI TOTOJHUTEIBHBIX KOI(Q(UIMEHTOB KECTKOCTH, XapaKTePH3YIOIINX B 3TOH 3a1ade TaKkyro
NPHULEIBHYIO CBA3b, MOXKET OBITh NPUMEHEH U NPH PEILICHWH aHAIOTMYHON 3a7add Ul YIPYTHX CHCTEM C KO-
HEYHBIM YHCJIOM CTEIIeHeH CBOOOIBI MacC, Y KOTOPHIX HAalpaBJICHHS ABM)KCHUS MacC MapajlIebHbl, HO He JeKaT
B OJTHOH IIOCKOCTH (HAmpuMep, IIACTHHBI). BMecTe ¢ TeM Ui Takux cucTeM c(OpMYIHPOBAHBI JIHIIH TPeOo-
BaHHUS K PACUETHBIM CXeMaM JIONOJIHUTEIbHBIX NPULCIBHBIX CBA3CH, a He METOABI UX co3aHus. B nanHoii cra-
Th€ MPETAraeTCs IIOIX0, MO3BOJIIOIINI CO31aBaTh PACYETHBIC CXEMBI TOIOJHUTEIBHBIX PULCIBHBIX CBS3CH
U 711 TaKUX cucTeM. PaccMOTpeH BapHaHT pacyETHOI CXEMBI CBSI3H, NPEICTaBICHHBIA CTEP’KHEBOH CUCTEMOI ¢
OJTHOM CTEIEeHbIO aKTUBHOCTH. BBISBICHBI HEKOTOpPBIE 0COObIE CBOMCTBA TaKUX NMpPUIEIBbHBIX cBs3ei. [Ipu ¢op-
MHUPOBaHHH PAacYETHON CXEMBI BBIIOJIHSIETCS MUHMMH3ALHUS pacxoja MaTepraia Ha CO3JaHUe CBSI3H, YUUTHIBA-
I0TCSI KOHCTPYKTHBHBIE orpaHnyeHus. Ocoboe BHUMaHKE y/elIeHO MOJU(UKAIIMN PACUETHON CXEMBI CBS3H, KO-
rza npu ee GOpMUPOBAHUH TOSBIISIOTCS CTEPIKHHU, IIPOXOJISIIUE» CKBO3b HCXOJHYIO CUCTEMY.

KuroueBbie cjioBa: 4acToTa COOCTBEHHBIX KoJeOaHwMiA, opMa COOCTBEHHBIX KOJICOaHHI,
000011eHHasI IPULIETbHAS TOMOIHUTEIbHAS CBA3b, KOA(P(UIIHEHTBI HKECTKOCTH

As is known [1, 2, 3, 4, 5, 6], introduction of
generalized targeted constraints is one of the
methods for freeing a given interval of the natu-
ral frequency spectrum from one or more of
natural frequencies.

Original solutions of problems of forming a ma-
trix of additional stiffness and creating on the
basis of this matrix of the computational scheme
of the corresponding targeted constraints are
presented in [1, 2, 3, 4]. These solutions are
based on the displacement method for systems
with a finite number of degrees of freedom of
masses, in which the directions of mass move-
ment are parallel and lie in the same plane.

It was shown in [5, 6] that the method of form-
ing a matrix of additional stiffness coefficients
can also be applied in solving a similar problem
for elastic systems with a finite number of mass
degrees of freedom, in which the directions of
mass movement are parallel, but do not lie in
the same plane. Besides, the requirements for
the computational schemes of additional target-
ed constraints were formulated in [5, 6] in rela-
tion to this problem.

Let us give the order of formation of the matrix
of additional stiffness in relation to the consider-
ing systems.

In the papers mentioned above, the main system
of the displacement method [7] was chosen,
which was obtained by introducing linear rela-
tions in the direction of mass movement. For
example, for the plate [8, 9] shown in Figure 1a,
the main system is shown in Figure 1b.
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Figure 1. Sample of structure.

The displacement method equations were writ-
ten in the conventional form for systems with a
finite number of degrees of freedom:

(r[L,1] + m[Je® VL, j1+ r[L2V[2, j]1+
+...+r[Lgl*v[q, j]+...+ r[L,n]*Vv[n, j]=0

r[21V[L j1+ (r[2,2] + m[2]0®)V[2, j]+
+...+r[2,q]*Vv[q, j]+...+r[2,n]*V[n, j]=0

rin1v[L, j]+r[n,2Jv[2, j]1+
+...+r[n,qv[q, j]+
+...+ (r[n,n]+ m[n]*®*) *v[n, j]=0

1)
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In (1) the values r[i,k] form a matrix of stiff-
ness coefficients A= |r[i,k]|; m[i] are the mass
values, forming a diagonal matrix M = |m[i]|;

w is the frequency of natural oscillations of the
system; V[k, j] are displacements in the direc-
tion of mass movement in the j-th natural
mode (j=12,..,q,,..,n) (forms of natural oscil-
lations). Equation roots

A-’M|=0 )

determine the frequency spectrum of natural os-
cillations of the system

oll], &f2], .., [q-1], 0], &fq +1]. ..., @[N] (3)

It is shown that the creation of generalized tar-
geted constraint that increases only one fre-
quency of natural oscillations (for example,
@[q]) to a predetermined value and does not

change any of the natural modes and the values
of the remaining frequencies of the spectrum is
based on the formation of a matrix of additional
stiffness coefficients:

A= Aoh =Agla LK, (@

where we have
A =l [i. K], - (5)

The matrix A, must have special properties. If

the introduced constraint is “targeted” at the
(g) -th frequency of natural oscillations, then the

stiffness coefficients |ja, [i,k]||i”k:l should be or-

thogonal to the coordinates of the natural modes
of the remaining (n—1) frequencies of the spec-

trum, that is

> agli, kMK 11=0, ©
=120, j=12,..(9-D,(q+1),..,n).

186

Leonid S. Lyakhovich, Pavel A. Akimov

With respect to the (q)-th natural frequency, at

which the introduced constraints is “targeted”,
the coefficients are not orthogonal, that is,

Zn:ao[i, klv,[k,q]#0, (i=12..,n). (7)

It can be shown that conditions (6) and (7) will
be satisfied by the coefficients

a,[i,k] = mfilmlk}v,[i,qlv,[k,a].  (8)

The value of the multiplier is defined as the root
of the equation

(A-oIM)+Ap A =0. 9)

Since the (qg)-th natural mode of the original
system remains its natural mode after the intro-
duction of the targeted constraint and at a fre-
quency ay, the factor A, can be found as

Aso =
=22 (@i, kI~ o¢mli,k])v, [i, qlv,, [k, q]
i=1 k=1
222l kIv, [i,alv, [k, a]
i=1 k=1
(10)
The result of solving the equation
(A+ ApA) - 0*M|=0. (11)

must confirm that the natural modes have not
changed, and the “targeted” frequency has in-
creased to @ .

The support device, to which the matrix of addi-
tional stiffness coefficients A, will correspond,
must provide the ratio between the nodal dis-
placements the same as between the coordinates
of the (q)-th natural mode of the original sys-

tem. It is shown that such a ratio will be realized
if the additional support system transfers forces
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to the nodes of the main rod system, the ratios
between which are proportional to the values
Ro[i1=mlilvi, (a)]. (12)
In [5, 6], the requirements for the computational
schemes of additional targeted constraints were
formulated in relation to systems with a finite
number of degrees of freedom of masses, in
which the directions of mass movement are par-
allel, but do not lie in the same plane.
For such systems, the generalized targeted con-
straint should correspond to the matrix of addi-
tional stiffness coefficients A, (4). If the com-

putational scheme of constraint is represented
by a variant of the hinged-rod system, then it
should be once statically indeterminate, in the
nodes of the system where the masses are locat-
ed, vertical members are installed in the direc-
tion of movement of the masses, and the pre-
stress of any one constraint member causes
forces Nst[i](i =1..,n) in these vertical mem-
bers, the relationship between which are propor-
tional to the ratios between the forces R[i]

(11). In this case, the constraint structure should
not have any connections with the original sys-
tem, except for vertical members installed in the
nodes where the masses are located.

It was noted in [5, 6] that the computational
schemes of generalized targeted constraint that
meet the above requirements are multivariant
and depend on the geometry of the original sys-
tem, the location of the masses, and some other
characteristics of the considering object.

In particular, it is possible to accept the compu-
tational scheme of the targeted constraint in the
form of a once statically indeterminate hinge-
rod system, the geometry of which is deter-
mined both by the lengths of the main vertical
members installed in the nodes in the direction
of mass movement Ist[i] (i =1,2,..,n) and by the
given lengths of additional rods
Id[k] (k =1,2,..,n,), that have no connections

with the original system.
Then, after forming the matrix of additional
stiffnesses A, (4), computing the values A,
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(10) and R,[i] (12), the problem is reduced to
finding the lengths Ist[i] (i =12,..,n) from the
conditions for the occurrence in the main verti-
cal members of forces Nst[i](i =1,..,n), the ra-

tios between which will be proportional to the
ratios between the forces R,[i] (i =1,.., n).

Below, one of the options for finding the lengths
of the rods will be presented, which determine
the geometry of the targeted constraint, in which
the necessary ratios between the forces in the
main vertical members are provided.

The considering variant is based on methods for
minimizing the square of the difference between
the forces arising in the main vertical members
Nst[i](i =1,..,n) in the process of forming the
targeted constraint and the values R;[i] (i =1..., n).

Thus, we have the problem of minimization of
the function

fo = i(Nst[i] —Ry[i])%. (13)

in the parameter space Ist[i] (i =12,..,n).

In accordance with the above requirements, a
computational scheme of the targeted constraint
is created in the form of a once statically inde-
terminate hinge-rod system, in which the length
of one of the main racks (for example, g -th) is

specified. Let's call this vertical member the
base one Ist[g] = IstO[g]. According to the de-
sign conditions, the lengths of additional rods
ld[k] (k =1,2,..,n1) are selected, which do not
vary during the formation of the scheme of the

targeted constraint. The initial values of the re-
maining variable lengths

Ist[i] ( =12...,(g —1),(g +1)...,n)

are also set. These actions determine the initial
geometry of the computational scheme of the
targeted constraint. Since the computational
scheme of the targeted constraint is once stati-
cally indeterminate, the force in one of the main
vertical members (for example, in g -th) is set. .
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The method of searching for the minimum of
the objective (target) function (13) in the space
of variable lengths (the steepest descent, random
search, etc.) is selected.
Let us consider an algorithm for implementing
actions to form a computational scheme for tar-
geted constraint.
We recommend application of special algo-
rithm, presented below.
1. In accordance with the chosen method of
searching for the minimum of the objective
function, increments to variable lengths

Ist[i] =Ist[i]+ Al(i =1,2,.., (9 —=1),(g +1),..,n)
are set and the geometry of the computational
scheme of the targeted constraint is updated.
2. A system of equilibrium equations is con-
structed in order to determine the forces in the
rods of targeted constraint. Since it was as-
sumed that Nst[q] = R,[q], now the number of
unknown forces in the rods of the targeted con-
straint is equal to the number of equilibrium
equations.
3. Unknown forces in the rods of the targeted
constraint are determined from the equations of
equilibrium with allowance for Nst[q] = R,[d].

4. The value of the objective function is computed
fo=> (Nstfi]— Ry[i])’.
i=1

5. If we have f, >00O, then in accordance
with the chosen method of searching for the
minimum of the objective function (12), the in-
crements Al[i] are corrected (values Al[i] and

ratios between them are changed). We have
Ist[i] = Ist[i](i

=12.,(g-1,(g+1,.,n).

Then the transition to the third step (item 3) is
made. and the process continues.

6. If the value f, is less than a preselected
small value OOO, then the process ends, and
the computational scheme of the targeted con-
straint is formed with a given error (OOQ ) pro-
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vided that the length of the base rack is accepted
Ist[g] = IstO[g].

The cross-sectional areas of the rods of targeted
constraint are found from the condition that its
stiffness coincides with the stiffness determined

by matrix Ay = Asg - As = Ao | 8l K[y (4)-
Targeted constraint is constructed on the basis
of forces R,[i], which correspond to the forces

in the main vertical members
Nst[i] = R,[i](i =1,2,..,n), in additional vertical
members Nd[k] (k =12,..,n1) and in the rods
of the belt of constraint N,[j](j =12,..,n2).
The derivation of the dependency that deter-
mines the area of the cross-sections of the rods
of targeted constraint for the systems, in which
the directions of mass movement are parallel
and lie in the same plane, is given in [4]. This
dependence with allowance for some modifica-
tions, can also be applied to the system under
consideration

Aso(z st[I] |lst[I]|
i=1 [I] (14)

”2N[J]|[J] o, N2[K] -1 [k]
LERG X ERK T

where
Flil=F-alil; F[il=F- ALl
Fs[kl=F k] (15)
are respectively, the cross-sectional area of the
vertical members, belts and additional rods of
the targeted constraint; E is the modulus of
elasticity of the material of the rods. The coeffi-
cients ofi], A[j] and y[k] determine the ratios
between the cross-sectional areas in the rods of
targeted constraint.
The value F is determined by dependence

NIl [Istli] |
- a3 e o
+"ZZ: oLi1- 1141 iN a[K1- 15 [k])
= E-pli] 7 E-yK]
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The length of the base vertical member

Ist[g] = IstO[g]

and the values «fi], A[j] and y[k] depending
on the design conditions, can either be set or
found by minimizing the volume of material of
the targeted constraint.

If the volume of material of the targeted con-
straint is minimized, then the objective function
(volume of material of the targeted constraint
V, ) has the form:

Vg, = F £ ali]-stli] +
E (17)

+ nz_:ﬂ[j] e[+ nZV[k] ld[k]}:

When constructing the computational scheme of
the targeted constraint, the values of some vari-
able lengths may turn out to be negative. There-

fore, absolute values of variable lengths |Ist[i]]

are introduced into (14), (16) and (17).

When constructing the computational scheme of
the targeted constraint and minimizing the func-
tion (17), the limitations of the variable values
can be taken into account. Restrictions on the
values of ¢fi], B[ j] and y[k] are related to the
conditions of strength, stiffness, and stability of
the rods. These restrictions are not considered in
the distinctive paper. The restrictions on the
lengths of the main vertical members can be
written in the following form:

Imax > Ist[i] > Imin, (1=12,..,n), (18)

where Ist[i] are the lengths of the main vertical

members; Imin and Imax are respectively
their allowable minimum and maximum values.
Since the ratios between the forces

Nst[i] = R [i](i =1.2..,n)
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do not change during the construction of the
targeted constraint at f, <OOO, the ratios be-

tween the lengths of the variable values do not
change when the length of the base vertical
member changes. This circumstance allows us
to attribute restrictions (18) to one variable
length — the length of the base vertical member
Ist[g] =IstO[g]. If for f, <OOO among the

main vertical members the largest length is
equal to Ist[kl], and the smallest is equal to

Ist[k2], then, denoting y1=Ist[g]/Ist[k1] and
x2 =Ist[g]/Ist[k2], expression (18) can be re-
written as:

Imax 0> IstO[g] > 1min O, (19)

where we have
Imax 0 =1max* y1; Imin 0 =Imin* »2.

Now, when searching for the minimum of func-
tion (13), the range of acceptable values Ist0[g]

is determined by dependence (19).

Constraints in the form (18), (19) are used pro-
vided that the signs of the lengths of all main
vertical members are positive. If the signs of the
lengths of all main vertical members are nega-
tive, then the sign of the coordinate in the direc-
tion of the vertical members is reversed.

There are cases in construction of computational
scheme of the targeted constraint, when the val-
ues of the lengths of some main vertical mem-
bers turn out to be positive, while others are
negative. Structurally, such a scheme requires
an ideally free “passage” of a part of the rods of
targeted constraint “through” the original sys-
tem, which is almost unrealizable. In these cas-
es, the targeted constraint should be shifted in
the direction of movement of the masses in a
positive or negative direction by an amount at
which the values of all the lengths of the main
vertical members will be of the same sign.

Let us designate by Ist[ijmax the largest length

among the “positive vertical members” at
fo <000, and by Ist[k]min the largest abso-

lute value among the “negative lengths”.

189



If the targeted constraint is moved in a positive
direction, then the shift value must be greater
than

Z,, =Ist[k]min +1min .

Obviously, in this case, the lengths of all verti-
cal members will be “positive”. In this case, the
vertical member of the smallest length will be in
the node where the vertical member was with
Ist[k]min . Now the length of the vertical mem-
ber in this node will be equal to Imin. The
longest length of vertical member will be at the
node where the vertical member was with
Ist[ijmax . Now the length of the vertical mem-
ber in this node will be equal to

Ist[i]max+ Ist[k]min + 1 min .

If the targeted constraint is moved in a negative
direction, then the shift value must be greater
than

Z,, =Ist[iJmax+Imin .

Obviously, in this case, the lengths of all verti-
cal members will be “negative”. In this case, the
vertical member with the smallest absolute val-
ue of the length will be in the node where the
vertical member was with Ist[ijmax. Now the
absolute value of the length of the vertical
member in this node will be equal to I min . The
largest absolute length of the vertical member
will be at the node where the vertical member
was with Ist[k]min . Now the absolute value of
the vertical member length in this node will be
equal to

Ist[i]max+ Ist[k]min + 1 min .

In these cases, the restrictions on the lengths of
the vertical members take the form

I max > (Ist[i]Jmax+ Ist[k]min+Imin) . (20)
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As noted above, at f, <OOO, the ratios be-

tween the lengths of the variable quantities do
not change. This circumstance allows us to at-
tribute restrictions (20) to one variable length —
the length of the base vertical member
Ist[g] = IstO[g]. Using (20) we get

| max—Imin > Ist[i]Jmax+ Ist[k]min

or
I max—Imin > Ist[i]max +Ist[k]m|n (1)
IstO[g] IstO[g] IstO[g]
Since the ratios
Ist[i]max Ist[k]min
IstO[g] IstO[g]

remain constant when the length IstO[g] chang-
es, then we have

Ist[ifmax Ist[k]min Ist[i]max+Istmin 1

Isto[g]  IstO[g] Isto[g] %!
(22)
where
_ IstO[[g] . (23)
Ist[i]max+ Ist[k]min
remains constant when changing IstO[g].
Thus, constraint (20) can be represented as:
(I'max—1Imin) * »3>1st0[g]. (24)

Now, when searching for the minimum of func-
tion (17), the range of acceptable values Ist0[g]
for cases where the lengths of the main vertical
member turn out to be of different signs is de-
termined by dependence (24).

The choice of , and does not af-
fect the computational scheme of the targeted
constraint, but only affects the values of the
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cross-sectional areas of its rods. The value of
the length of the base vertical member affects
both the geometry of the computational scheme
of the targeted constraint and the cross-sectional
areas of its rods.
Let's consider the procedure for implementing
actions to minimize the volume of material of
targeted constraint.
If the values , and are set ac-
cording to the design conditions, then, after de-
termining the initial values of the cross-
sectional areas of the rods of targeted constraint,
we can determine the length of the base vertical
member, at which the objective function (17)
takes minimum value in the range of permissi-
ble values of this length ((19) or (24)). It can be
done by the above algorithm and one of the var-
iants of the one-dimensional search method.
If the values : and are also de-
termined from the conditions of the minimum
material of the targeted constraint, then in this
case one of the variants of the method of suc-
cessive approximations can be used. The initial
values : and are preliminarily
selected, and the initial values of the cross-
sectional areas of the rods of targeted constraint
are determined. Each approximation of the
method consists of two successive steps:
1. On the basis of the algorithm given above and
the one-dimensional search method, with known
: and the length of the base ver-

tical member is determined, at which the objec-
tive function Vg, (17) takes the minimum value

in the range of allowable length values IstO[g]
((29) or (24)).

2. One of the methods for finding the minimum
of the objective function (17) (the steepest de-
scent, random search, and others) in the space of
variable values , and continues
the process of minimizing the function (17).
Approximations of the method (the first and the
second steps) are repeated until the difference
between the weight functions (17) of two neigh-
boring approximations becomes less than a suf-
ficiently small preselected value.
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