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SUBJECTED TO COMBINED LOADING

Vera V. Galishnikova !, Tesfaldet H. Gebre *

'National Research Moscow State University of Civil Engineering, Moscow, RUSSIA
2Peoples’ Friendship University of Russia (RUDN), Moscow, RUSSIA

Abstract. Thin-walled structures are widely used in various structural engineering applications due to their
advantage of high bearing strength when compared to self-weight and used in a complex loading situation where
subjected to combined loadings. When a thin-walled section is subjected to a combined load with restrained
torsion, they are ineffective at resisting, resulting in a reduction in beam capacity due to torsion and additional
warping stresses. A finite element calculation can be used to analyze a 3D bar of thin-walled structural sections.
Different commercial software and studies commonly consider six degrees of freedom at each node of a member
for a space frame without considering the effect of warping restraint at the member's ends. This paper presents a
finite element calculation for thin-walled sections with restrained torsion using the 14x14 member stiffness matrix,
which includes warping as an additional degree of freedom and is commonly used for open thin-walled sections.
In this study, we considered two different methods for including the additional degree of freedom for the stiffness
matrix, which are very close to each other for small values of characteristics number.
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AnHoTauus: TOHKOCTEHHBIE KOHCTPYKLMH LIMPOKO HCIOJIB3YIOTCS B PA3INYHBIX OOJIACTAX MPOSKTHPOBAHMSA
KOHCTPYKIHM# Onaroyapsi CBoeMy IPEHMYIIECTBY BBICOKOI HECYIIEH MPOYHOCTH IO CPABHEHUIO C COOCTBEHHBIM
BECOM U HCIOJIB3YIOTCSl B CJIOXKHOW CHTYallMM Harpy3KH, KOTJa TO/IBEPraloTcsi KOMOMHUPOBAHHBIM HArpy3KaM.
Koryia TOHKOCTEHHBIE CEKIMU IOJBEPraloTcs KOMOWHHPOBAHHOW HArpys3ke cO CIepKaHHBIM TOPCHOHOM, OHH
Hed(P(HEKTHBHBI TIPH CONPOTHBIICHUH, YTO NPHUBOJUT K CHI)KEHHIO NPOITYCKHOW criocoOHOCTH Oanku H3-3a
TOPCHOHHBIX U JIOTIOJHHUTEIBHBIX Ae()OPMAMOHHBIX HANPsHKEHUH. PacdeT KOHEUHBIX JIEMEHTOB MOXKET OBITh
WCIIONIB30BaH JUIsl aHaim3a 3D-CTepikHS TOHKOCTEHHBIX CTPYKTYPHBIX CeKIuid. Pa3znnuHble KOMMepueckne
IPOrpaMMbl M MCCIICIOBaHUsS OOBIYHO PacCMaTPHBAIOT IIECTh CTEMEHEHl CBOOOABI B KaXKIOM y3Jie WiICHA Ui
MIPOCTPAHCTBEHHOI paMKH 6e3 yuera s dekra nedopMaini caepKuBaHus Ha KOHLAX 3JeMeHTa. B nanHoii pabote
MIPEJICTABIICH PAcyeT KOHEYHBIX OJJIEMEHTOB JUII TOHKOCTCHHBIX CEKIHil ¢ OrpaHHYEHHBIM KpPYYEHHEM C
WCTIONBF30BaHUEM MATPHIIBI KECTKOCTH 3JeMeHTOB 14x14, koTopas BkmodaeT nedopMamuio B KadecTBE
JOTIOJTHATEIIBHOI CTereH! CBOOOIBI M OOBIYHO HCIIONB3YETCs ULl OTKPBITBIX TOHKOCTEHHBIX CeKuuil. B maHHOM
HCCIICAOBAHNKU MBI paCCMOTPEIIN ABa Pa3/IMYHBIX METOJAAa BKIIOYCHUA HOHOHHHTCHBHOﬁ CTCIICHHU CBO60}IBI JUIA
MAaTPHIIBI )KECTKOCTH, KOTOPBIE 04eHb OJMM3KH APYT K APYTY AJISA MAJIBIX 3HAYCHUHN YNCIIa XapaKTePUCTHK.

KaroueBble ¢j10Ba: TOHKOCTCHHBIE CTPYKTYPHI, KOHEYHO-3JICMEHTHBII aHaJin3, HEPaBHOMEPHOC z[e(bopMauI/m,
OTKPBLITOC CEYCHUEC, MaTpHlla ) KECTKOCTH, caepmaHHmﬁ KpYy4€HHC
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1. INTRODUCTION

Steel members are now manufactured as thin-wall
sections because of their high strength, highly
flexible, ductility, quick construction, and effective
space partitioning, and they are widely used in
various engineering structures. Thin-walled beams
are those that are primarily prone to bending. When
a thin-walled section is subjected to a combined
load, it is ineffective at resisting, resulting in a
reduction in the beam's capacity. The behavior is
poorly described by elementary formulations that
reduce the mechanical components to stretching,
bending, and uniform torsion (i.e., the simplest case
of a uniform distribution of cross-sectional warping
along the beam axis [1-2]. Warping effects occur
primarily at the points of action of concentrated
torsional moments (except at free end support of
beam) and at sections with free-warping
restrictions, and they are accounted for by an
additional degree of freedom at each nodal point in
the form of the first derivative of the angle of twist
of the beam's cross-section [3-5].

The analysis for extension, bending and flexure is
rather straight-forward, but the analysis for the
coupled deformations of torsion, warping and
distortion poses a major challenge[6]. Currently,
most design specifications do not provide clear
guidance for combined bending and torsion design
and the need exists for a simple design equation.
The variation of the displacement over a section of
amember is expressed with a common function for
stretching, torsion and bending[7-10]. I-shaped
steel beams are widely used as structural elements
because of their flexural efficiency about the strong
axis. It considers the cross section as completely
rigid in its own plane, and the effect of shearing
deformations is neglected[11]. The solutions for
thin-walled section with nonuniform torsion were
developed as initial works and also there are studies
considered to be as a design aids for simple
cases[12-13]. This is limited for a slender beam and
the shear deformation in middle surface is
negligible but for short-deep beam and closed thin-
walled beams, the shear deformation should be
considered[4,14]. However, in many applications
beams are eccentrically loaded and as a result
experience torsional loads in combination with
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bending. The importance of restrained torsion of
thin-walled section has grown significantly as the
deformations and stresses caused by torsion affects
the behavior of the structures with open as well as
closed section[15-16]. Like all open sections, I-
shaped steel beams are very inefficient at resisting
torsion and the interaction effects due to torsion
acting in combination with bending can
significantly reduce the capacity of the beam.
Many design methods have been developed to deal
with combined bending and torsion, but none have
been universally adopted by design standards. In
the past decades, many relevant researches have
been conducted and different commercial software
commonly consider six degrees of freedom at each
node of a member for a space frame without
considering the effect of warping restraint at the
ends of the member[9][17-18]. A finite element
model is investigated based on a mixed variational
formulation and numerical method of designing
thin-walled bar systems using various theories and
formulated matrices to provide an explicit way to
calculate internal forces and stresses in thin-walled
bar systems [19-22]. The bending and torsion
behavior of cold-formed steel bars was studied
experimentally based on the strengths of unbraced
cold-formed steel channel beams loaded
eccentrically [23-24]. Modern software packages
for structural analysis use finite element types
which consider up to six degrees of freedom at the
structural nodes, which corresponds to the linear
and angular displacements in these nodes as for the
rigid bodies[25]. Moreover, various studies
commonly consider with two degrees of freedom
at each node of a member without considering the
effect of warping restraint at node [26-27]. The
warping part of the first derivative of the twist angle
has been considered as the additional degree of
freedom in each node at the element ends which
can be regarded as part of the twist angle curvature
caused by the warping moment [17][27][30].
Numerous studies developed the 14x14 member
stiffness matrix including warping as an additional
degree of freedom and commonly with open thin-
walled section [18][25][28-29].

In this paper, a 3D frame element stiffness matrix
will be presented which is more convenient for
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advanced structural analysis of 3D beam
structures. The structures are analyzed or
designed by using only the effect of Saint Venant
torsion resistance thus the analysis may ignore
the torsion part in the members and the design
may be underestimated. To overcome this
inaccuracy, several researchers tried to develop
stiffness matrix with seven degrees of freedom at
each node of a member for a space frame. This
additional stiffness matrix considers the warping
degree of freedom at the ends of the member with
thin-walled section. This study deals with the
Space frame finite element method regarding the
first order theory based on the assumption is that
the resulting deformations are small, and that the
equilibrium may be formulated for the
undeformed structure as an approximation. This
is done by considering beam element and
equation which are necessary for the computing
deformations will be derived thus to calculate the
displacements and internal forces and moments
for frame structures.

2. METHOD

2.1. Geometry and concept of 3D thin-walled

Frame

Considering Prismatic thin-walled beams of
straight and of constant cross-section with yi-
axis 1s defined parallel to the longitudinal
direction of the beam, while the y:-axis and ys-
axis describe the transversal plane of the cross-
section as shown in figure 2. The member is
connected to local coordinate system and the
corresponding displacement field adopted for the
axial direction is v;, while vz and v; are used for
the cross-section’s plane. Similarly, £1, f2 and f3
are angles of rotation about the axis y;, y2 and y3
and y is the sectional warping or twist of the
section along y;. Consider a point P with a
member coordinate (y;, y2, y3) in the member
coordinate system. The basic assumption in the
classical beam theory is that a cross-section
orthogonal to the x-axis at the coordinate x
remains plane and keeps its shape during
deformation.
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Due to the assumptions of the classical beam
theory the cross-section orthogonal to the y;-axis
at the coordinate y; remains plane and keeps its
shape during deformation and the general theory
of elasticity for three-dimensional solids reduced
to a special theory for space frames. The
displacement of the point consists of a translation
equal to that of the centroid C of section y;and a
rotation displacement due to the rotation of the
section as a rigid body about an axis through the
centroid and a warping displacement normal to
the section.

X3

Figure 1. The orientation of coordinate systems
for 3D beam section

Let S be a plane section normal to the axis of a
member, which contains a point P and intersects
the axis in point O as shown in figure 1. The
hypothesis for frame behavior [1] states that the
shape of section S in its plane does not change
under load, and that the displacement of point P
is due to:
e The displacement of point O
e A small rotation of section S about an
axis passing through point O
e A warping displacement in the ys
direction, which is the product of a twist
with a warping function

Vip Vi 0 i | =» || B
Vop [= | vy [+ =3 | O 0 |46 |+t 1)
Vip V3 e 0 0 Ji8 n

67



Where: v,,.(y,,7,,y,) the displacement coordinate

v, ()
displacement coordinate of centroid C of section
vi1, B.(y,), coordinate of the rotation vector of the

of point P in the member space,

section,  (y,.y,): warping function of center of

rotation C y (y,) twisting of the section

c/ Y"ze

Figure 2. Beam kinematics, local and global
reference systems for mass matrix

The strain coordinates are determined with the
linear strain-displacement relations of the linear
theory of elasticity. Because the frame
hypothesis states that the shape of a section in its
plane does not change, the strains are neglected.

€1 = Vipg =Vi1 T Y3Boi— Y2 B3+ oy, )
€ = Vipat+ Vop = —P3 + 0oy + vy —y3Py;
€3 = Vips+t Vip; = Py o3y +viy + Py

The expressions for the shear strains are
rearranged so that the contributions of flexure,
uniform torsion and torsion restraint are shown
explicitly:

g2 = (vo,1=B3) — (y3+2)By1 + @(w+By)) 3)

flexure uniform torsion  torsion restraint

g3 = (v31+P2) + (y2-03)B11 + o030y +Py1)

torsion restraint

“4)

flexure uniform torsion
The constitutive hypothesis states that the strains
due to the Poisson effect can be neglected in the
analysis. For a linearly elastic material with
modulus of elasticity £ and shear modulus G the
stress-strain may be calculated from equation (2)
as follow:
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Egjp =E(vi1+ y3Bo1— y2B3i+ovyy) (5)
Gepp =G(-B3 + 0oy + vy —y3B) (6)
o;=Ge,=G(B, + O3y + V5, ), B)

E modulus of elasticity
G shear modulus

O11

012

(7)

The Virtual work of the inner forces 5w, done
by the stresseso,,,o,, and o, of expressions (5)-
(7), in the volume V of a member with length a,

and area A due to wvirtual strains
6811 , 6812 and 6813 1S given by
W= del o dv (8)
v

Where' € 1s state of strain vector (Voigt notation),

state of stress vector (Voigt notation).
The integrals of the products of the stress
components with the geometric variables with
the geometric quantities y,,y,,y, and o over the

area of the member are called stress resultants in
the member and denoted as follows:

axial force in direction y, n, = L o, dA
transverse force in direction y, n, = L o,,dA
transverse force in direction y, n, = L o, dA
bending moment about axis y, m, = IA 0, y,dA

bending moment about axis y,

m; = J.A_O-nysz (9)
bimoment due to warping m, = L o, o dA
primary torsion

my, = J-(O-lz(yz -

A

;) =0,y + wz)) dA)

secondary torsion

my = _[ (0, 0,+0,0,)dd
4

The stress resultants acting on the positive face
of a section are positive if they act in the positive
direction of the axes of the member coordinate
system. The stress resultants in the member of
expression (9) are substituted into expression (8)
and can be rewritten as follows:
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n ov; + n,(6v,, —B,) +

n,(8vy, +p,) +

I&srodv :T dy, (10)

o | My OP,, + my B, +m, 0y, +
my, 551,1 + my (0w +3B,,)

Figure 3. Local reference system and internal
forces

The loads acting of the volume and the surface of
the member in the theory of elasticity are
replaced by line loads acting at axis y;and by

nodal forces acting at the nodes of the member,
as shown in figure 3. The nodal forces acting at
the end node are equal to the stress resultants
defined based on equation (8). The virtual work
of the nodal forces due to variations &v, of the
displacement coordinates and 8, of the rotation

coordinates is given by:

5VV}1 = My 51813 - My, 5:B1A +

My (OW 5 +f,5,) = My, (Y, + B, ) +
My Oy = My O, + 1y, O —

my Oy + M, Yy,

3

Z (M5 OVig =1 OVy)

k=1

- M,y 5‘///1,1 +

(1)

Where oW, is virtual work of the nodal forces
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Y

Mss,
4

Y, My
n /
A 3B A nZB
A; j

My Ny
/ nZA‘ N3a
m.

2A ym
A,

Figure 4. Positive directions of the member and
nodal force coordinates

The virtual work of the inner forces in the volume
of a member is expressed in terms of the strains
and the virtual strains:

oW, = [(E&,06,+ G e,06,+ Geyo6,)dv (12)
Vv

Expressions (5) to (7) for the strains and the
Prandtl stress function for g, and p;, are

substituted:

a a
Swm=EIJ'h1h2dAdyl +GJIh3dAdyl
0A 0A
hy = 8vy 1 —y28vp 11 -y30v3 11 T®dy

hy = vi1=y2vo 11— ¥3V3,11+ @Yy
2 2
h3 = ((yz—ﬁ),:s) +(y3+wp) )531,1 Bi1

(13)

The integrals of functions of the coordinates and
the warping function in (13) are called the shape
parameters of the section or matrix section
properties. To define the shape functions, we
used a variable F' for designations. They are
defined and denoted as follows:

a a
8Wp = E [8k" Fkdy; + G [J1 8By Bridy
0 0

F | B | B | K (14)
pol B2 P2 | B3 | B

B | By | B3 | By

Fo | Bo | Bo | Foo

Where the section constants are expresses as

given below:
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The virtual work of the nodal forces due to
variations of the displacement coordinates and of
the rotation coordinates is given by:

5Wn = My, éﬂw = My éﬂu +
My (O 5 + 5ﬂ13,1 )=
my, (OW  +6P,,) +

myp éﬂzs —myy 5/82/1 + My 5ﬁ33 - (1 5)
Tu éﬁm + M, 5‘//3,1 - My, 51///1,1 +
Z (nkB 5VkB My o Vi )
57 Wn virtual work of the nodal forces
The virtual work of member loads due to

variations v, of the displacement coordinates
and ¢p, of the rotation coordinates is given by:

a 3
dWq = I(tww + .Z](Qia"i + tiSBi)j dy
0 i=

(16)

q; distributed force load in the direction of axis i
t; distributed moment load in the direction of axis i
t, distributed bimoment load

2.2. Governing equations for 3D thin-walled
frames

The governing equations for a member and
frame are derived by applying the principle of
virtual work to the frame. The sum over the
members of the virtual work 6%, of the inner

forces in (14) equals the sum over the members
of the virtual work 5%, , of the member loads.

Vera V. Galishnikova, Tesfaldet H. Gebre

The differential governing equations for the
generalized member displacements are
satisfied for arbitrary virtual displacements and
expressed as follows:

EAv,+q, =0

EJ3V2,1111 —q, t my = (17)
EJvsin—¢q;— my, =0
EJmﬂl,ll]] - G‘]Tﬁl,ll -m-m,, = 0

Similarly for frames, The sum over the members
of the virtual work sw,, of the inner forces in

(14) equals the sum over the members of the
virtual work sw, , of the member loads and the

virtual work 6w, of the nodal loads:

zrzlng = z::lé‘w/md + 5Wn (18)

3. RESULT AND DISCUSSION

3.1. Element stiffness matrix for a combined
load:

Stiffness matrix as it is known, the relationship
between the generalized force vector gm and the
generalized displacement vector vm s
established by the stiffness matrix K» of the
element.

Adm=Km Vm (19)
The displacement variation over the length of
a member is related to the nodal displacements
by solving the differential equations the
differential governing equations for the
generalized member displacements such that
the values of the displacement functions at the
nodes equal the unknown nodal displacement
values. For non-uniform torsion, a
trigonometric interpolation of rotation f; is
used as an initial parameter and finally
compared with the approximation solution.
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v, = hlv, 0<z<1
1—
h, = z v, = Vig
z Vig
v, = hlv,
1-32° +22° v, ,
1_ 2
S ECECE
z2(3-22) Vap
_azz(l_z) Pss
V; = h3TV3
1-3z2+22° Vs
—az(l-z)° B
h, = 2 vy =
z-(3-22) Vig
azz(l—z) Bas

To consider the warping of the restrained member,
additional degrees of freedoms are introduced at the
nodes and added to member displacement vector.
An interpolation function containing hyperbolic
functions of y;, which satisfies the governing
differential equation (16) for torsion considered:

By = gy)'b

gl = | g1(y1) |g2(Y1) | g3(y1) |g4(Y1)| (20)
b’ = | Bia | l31,1A| BiB | BB |
By = hyC
sinh 6z
hg; _ cosh 0z C:|C1 |C2 |C3 |C4|

z

1

The derivatives in the integrand on the left-hand
side of equation (20) are formed:

Vil =gTV1 V2,11=g£V2 0<z<l
12z-6
1 =1 1| a(6z-4)
U 82 T 2 (12z-6)
a(6z-2)
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V}ll g§V3
12z-6
1 | —a(6z—4)
&7 2 [Z(122-6)
—a(6z-2)

The interpolation functions are substituted into
the left-hand side of (18) and the integration over
the length of the member is performed for axial
and bending loads but separately considered for
torsion as it developed based on the two different
methods.

EA fg 5V1 Vl,l dyl = 5V1F K1V1
EJ3[§8vovy11dyr =

T T
6V2 K2V2 EJZ jg 8V3V3’11 dyl = 8V3 K3V3

EA| 1 |-l ki | ko
Kl = — =
a -1 1 k2 kl
12 6a -12 6a k3 k4 k6 k4
k. ED| 62 4a% | -6a | 2a2 | [ k4 | ks | k7 | kg
9= =
a3 |12 |6a | 12 |—6a| | K6 |K7|ks|Kky
k k k k
6a 2a2 —6a 4a2 4 8 7 S
12 —6a -12 —6a k9 klO k12 klO
K EJ3 —6a 432 6a 2a2 k10 kll k13 k14
3= 7> =
& |-12 |6 |12 | 6a kip [ ki3 | ko | ki3
k k k k
_6a 2a2 6a 432 10 14 13 11

The contribution of torsion to the internal virtual
work of the governing differential equation (16)
is given as the following expressions:

G (EC,8B111B1,11 + GIT3Py,1B1,1) dA=
3bT (Kgyy +K o) b

K1 warping stiffness matrix
Ky stiffness matrix for torsion with out warping restraint

Stiffness matrices K, and K, are added to the

member stiffness matrix K,,, in the usual
manner.
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kry | kt2 | k13 | k74

EC, | kr2 | krg | k17 | kT8 Considering the above series expressions, the
Kt = - - .
3 kt3 | k17 | k711 | k1o alternative matrices can express as shown below:
kT4 | krg | k712 | KTI6
KTI ZKT“ = S*0sinh 6, 12 —6a | —-12 6a
KT6 = KT16 = S*(COShe— Slnhe)*a2 K EC(D 6a 43-2 6a 232 +
T =
Ky = Krg = S*(cosh8-1)a, @2 e |12 |6
inh O
K1g = S*(Sme —1j=l<a2 6a | 2a% | 6a 4a”
02 36 | -3a |36 |-3a
S=|—|, Q=2(1—cosh6)+9sinh9, > 2
Q GJ|-3a |4a” |3a | -a
Kr3=-Ktp, K7 =K712 =-K12 30al 3, 132 |36 |3a
_ 2 2
The above element stiffness matrix for torsion 2 |8 38 | da

with restrain warping can be used by divided into
two matrices. The parameters K71, K2, Krs and ~ Comparing both methods, we can conclude that
Krs can be replace by approximation as shown both are similar for small value of 6 and which is

below:

KTla:12+§*92 KTza:6+%*92

commonly considered for open thin-walled
section as their value of 6 is small as shown in
figure 5.

2 1
Krga =4+-—*0° Krga =2——*0°

15

40) T

30

Kr6(8) 59|
KiTgaﬁa)
Krg(8)
ETsa(B)zn—
K(®)
Kr12(®)
-If-i;['-ztﬂ)

K124(8)

Figure 5. Evaluation of exact and approximate methods for various values of 0

If the member is free to warp, Cw = 0 and the Considering Expression 21, only the second part
torsional moment is carried by St Venant’s of the matrix or the uniform torsion stiffness
torsion which is considered as uniform torsion. matrix can be used as given below.
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GJ 1 |-1
K,= —1* or

a -1 1

36 | -3a |-36 | -3a

GJ|-3a | 4a* | 3a -a’

K,=—
30a| -3a |3a 36 3a
—3a | -d* 3a 4q°

Element load vector: Consider loads which vary
linearly from start node A to end node B:

9 4 m,

93 Mg

These loads and the interpolation functions are
substituted into the right-hand side of equation
(17). The integration over the length of the
member is shown for g, and q,.

.‘-o q,0v, dy, = J.o 5V1Th|hqu|dy1 = 5V1TB1q1

.[o q;0v,dy, = J‘o svih;hiq,dy, = 5viB.q,

a2]1 b; | by
B, — =
612 by | by
21 9 by | by
—3a —2a b5 b6
B3 = —_— =
60| 9 | 21 by | b3
2a 3a b7 b8

The results are compared with different studies
in both methods to include the aadditional
degrees of freedom and are introduced at the
nodes and added to member displacement
vector[29][30][31]. The member variables are
collected in member displacement vector Vm and
member load vector qm and the matrices are
arranged correspondingly in member stiffness
matrix Km.

b,Gia + 0,G4e
ks k, Ke ks D,q,a + by0zs e
kg Kio Kz Ko b;0 2 + Dels et
Vaa
Koy Ko, Krs Kty DyGsp + D40 Bor
Ky Ky Kig Kig P5Gsn + DsGse Boa
ks s Ky Ks | DMon + DM | Ban
K < kTs k-re kT7 kTs q. - b;m,, + bgmyg v = Ya
m k, k, " D, + 05 ° Vig
Kg k; ks k, b;q,4 + bglog Vg
K, Kis [ Kis b;0,a + belos Vse
Ko K110 K141 K11 D305, + D05 Peo
Ko Ko Kis Ky DsGsa + Dess EZB
K, s K, K, | DMon + DMy | e
Kyis K Ko K | DMy + DMy | :
4. CONCLUSION According to this study the following

The frequently used finite element method for
thin-walled sections only considers six degrees
of freedom (DOFs) in each node of a beam, but
it has been demonstrated that including warping
of the section as an additional DOF in structural
analysis can result in a safe and optimal design.
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conclusions are drawn. The simple geometric
properties of the section are used to generate the
stiffness matrix for thin-walled beam sections
with retrained torsion. By considering an
additional degree of freedom at each node, the
trigonometric and approximation solutions of an
interpolation function are used to express the

73



stiffness matrix for non-uniform torsion. The
stiffness matrix for 3D thin-walled sections
subjected to combined loading is presented,
making advanced structural analysis bar
elements more convenient. This stiffness matrix
is more applicable for open thin-walled sections
because the value of characteristics number for
open section is very small comparing to the
closed thin-walled sections. To include the

REFERENCES

1. Saadé K., Warzée G., Espion B. Modeling
distortional shear in thin-walled elastic
beams. Thin-Walled Structures. 2006. 44(7).
Pp. 808-821..

2. Murin J., Aminbaghai M., Kuti§, V.,
Kralovi¢ V., Sedlar T., Goga V., Mang H.
A new 3D Timoshenko finite beam element
including non-uniform torsion of open and
closed cross sections. Engineering
Structures. 2014. 59. Pp. 153-160..

3. Saadé K., Espion B., Warzée G. Non-
uniform torsional behavior and stability of
thin-walled elastic beams with arbitrary
cross sections. Thin-Walled Structures.
2004. 42(6). Pp. 857-881.
DOI:10.1016/j.tws.2003.12.003.

4. Sapountzakis E.J. Bars under Torsional
Loading: A Generalized Beam Theory
Approach. ISRN Civil Engineering. 2013.
Pp. 1-39. DOI:10.1155/2013/916581.

5. Kim J.H., Kim Y.Y. One-dimensional
analysis of thin-walled closed beams having
general cross-sections. International Journal
for Numerical Methods in Engineering.
2000. 49(5). Pp. 653—-668. .

6. Jonsson J. Distortional theory of thin-
walled beams. Thin-Walled Structures.
1999. 33(4). Pp. 269-303.

7. Khairuzzaman M.Q. Finite Element
Analysis of Thin-Walled Structures.
4(1)2016. 64-75 p. ISBN:1851661360.

8. Pi, Y., Trahair, N.S. Bending and Torsion
of Cold-Formed Channel Beams. 1999.
9445.

Vera V. Galishnikova, Tesfaldet H. Gebre

additional degree of freedom both trigonometric
and approximate methods are considered and for
characteristics number (0) =1 and 2 the errors
range between 6.7 % to — 9.7 % which is
considered reasonable and both methods are
acceptable for open thin-walled sections. The
length of the member is limited based on the
section type and with maximum value of
characteristics number (0) less than 2.

9. Galishnikova V.V. A Theory for Space
Frames with Warping Restraint at Nodes. 1%
IAA/AAS SciTech Forum on Space Flight
Mechanics and Space Structures and
Materials. 2020. 170. Pp. 763-784.

10. Floros M. W. Smith E. C. Finite element
modeling of open-section composite beams
with warping restraint effects. AIAA
Journal. vol. 35(8). pp. 1341-1347.

11. Vatin N., Havula J., Martikainen L.,
Sinelnikov A. Thin-Walled Cross-Sections
and their Joints : Tests and FEM-Modelling
Thin-walled cross-sections and their joints :
tests and FEM-modelling.
2014.DOI:10.4028/www.scientific.net/ AM
R.945-949.1211.

12. Paul A. S., Charles J. C. AISC Design
Guide : Torsional Analysis of Structural
Steel Members Revision. Steel Design
Guide Series. 2003. Pp. 116.

13. Vlasov V. Z., Thin-walled Elastic Beams.
Springfield, Va.: National Technical
Information Service. Virginia,1984. 493p.

14. Alwis W.A.M., Wang, C.M. Wagner term in
flexural-torsional buckling of thin-walled
open-profile columns. Engineering
Structures. 1996. 18(2). Pp. 125-132.

15. Gebre T.H., Galishnikova V. V. The
impact of section properties on thin walled
beam sections with restrained torsion.
Journal of Physics: Conference Series. 2020.
1687. Pp. 012020. DOI:10.1088/1742-
6596/1687/1/012020.

16. Bani¢ D., Turkalj G., Brni¢ J. Finite
element stress analysis of elastic beams

74 International Journal for Computational Civil and Structural Engineering



Finite Element Analysis for Thin-Walled Member Subjected to Combined Loading

17.

18.

19.

20.

21.

22.

23.

under non-uniform torsion. Transactions of
Famena. 2016. 40(2). Pp. 71-82.

Murin J., Kuti§ V. 3D-beam clement with
continuous variation of the cross-sectional
area. Computers and Structures. 2002. 80(3—
4). Pp. 329-338.

Jonsson J. Determination of shear stresses,
warping functions and section properties of
thin-walled beams using finite elements.
Computers and Structures. 1998. 68(4). Pp.
393-410.

Lalin, V. V., Rybakov, V.A., Ivanov, S.S.,
Azarov, A.A. Mixed finite-element method
in  semi-shear thin-walled bar theory.
Magazine of Civil Engineering, 2019. 89(5).
Pages 79-93. DOI: 10.18720/MCE.89.7
Dyakov S.F., Lalin V.V. Postroyeniye i
analiz konechnykh elementov sterzhnya
otkrytogo profilya s uchetom deformatsiy
sdviga 1 krucheniya [Construction and
investigation of open cross-section bar finite
element with account of shear and torsion].

Vestnik  Permskogo  gosudarstvennogo
tekhnicheskogo  universiteta. ~ Okhrana
okruzhayushchey sredy, transport,

bezopasnost zhiznedeyatelnosti. 2011. No.
2. Pp. 130-140. (Rus)

Lalin V.V., Rybakov V.A. Konechnye
elementy dlya rascheta ograzhdayushchikh
konstruktsiy iz tonkostennykh profiley [The
finite elements for desing of building
walling made of thin-walled beams].
Magazine of Civil Engineering. 2011. No. 8.
Pp. 69-80. (rus)

Lalin V.V., Rybakov V.A., Morozov S.A.
Issledovaniye konechnykh elementov dlya
rascheta tonkostennykh sterzhnevykh sistem
[The finite elements research forcalculation
of thin-walled bar systems]. Magazine of
Civil Engineering, 2012. No. 1 (27). Pp. 53—
73. (Rus)

Tusnin AR, Tusnina 0.A.
Vychislitelnaya Sistema «Stalkon» dlya
rascheta 1 proyektirovaniya sterzhnevykh
konstruktsiy 1z tonkostennykh sterzhney
otkrytogo profilya [Software complex
“Stalkon” for analysis and design of thin-

Volume 18, Issue 3, 2022

24.

25.

26.

27.

28.

29.

30.

walled opened cross-section bar structures].
Promyshlennoye i grazhdanskoye
stroitelstvo. 2012. No. 8. Pp. 62—64. (rus)
Tusnin A.R. Nekotoryye voprosy rascheta
tonkostennykh stalnykh konstruktsiy [Some
approaches of thin-walled steel structure’s
analysis]. Nauchnoye obozreniye. 2015. No.
11. Pp. 79-82. (rus)

Perelmuter A., Yurchenko, V. on the Issue
of Structural Analysis of Spatial Systems
From Thin-Walled Bars With Open Profiles.
Metal Constructions. 2014. 20. Pp. 179-190.
Wang Z..Q., Zhao J.C., Zhang D.X., Gong
J.H. Restrained torsion of open thin-walled
beams including shear deformation effects.
Journal of Zhejiang University: Science A.
2012. 13(4). Pp. 260-273.
DOI:10.1631/jzus.A1100149.

Wang Z.-Q., Zhao J.-C. Restrained Torsion
of Thin-Walled Beams. Journal of Structural
Engineering. 2014. 140(11). Pp. 04014089..
Tusnin A. Finite Element for Calculation of
Structures Made of Thin-Walled Open
Profile Rods. Procedia Engineering. 2016.
150. Pp. 1673-1679.

Xiao-Feng W., Qi-Lin Z., Qing-Shan Y. A
new finite element of spatial thin-walled
beams.  Applied  Mathematics  and
Mechanics (English Edition). 2010. 31(9).
Pp. 1141-1152.

Murin J., Kuti§ V., Kralovic¢ V., Sedlar T.
3D beam finite element including
nonuniform torsion. Procedia Engineering.
2012. 48. Pp. 436-444.

31. Sapountzakis E.J., Mokos V.G. 3-D beam
element of variable composite cross section
including warping effect. Acta Mechanica.
2004. 171(3-4). Pp. 151-169.

CIIUCOK JIMTEPATYPbI

1. Saadé K., Warzée G., Espion B. Modeling

distortional shear in thin-walled -elastic
beams. Thin-Walled Structures. 2006. 44(7).
Pp. 808—821.

75



10.

11.

76

Murin J., Aminbaghai M., Kuti§, V.,
Kralovi¢ V., Sedlar T., Goga V., Mang H.
A new 3D Timoshenko finite beam element
including non-uniform torsion of open and
closed cross sections. Engineering
Structures. 2014. 59. Pp. 153-160..

Saadé K., Espion B., Warzée G. Non-
uniform torsional behavior and stability of
thin-walled elastic beams with arbitrary
cross sections. Thin-Walled Structures.
2004. 42(6). Pp. 857-881..

Sapountzakis E.J. Bars under Torsional
Loading: A Generalized Beam Theory
Approach. ISRN Civil Engineering. 2013.
Pp. 1-39.

Kim J.H., Kim Y.Y. One-dimensional
analysis of thin-walled closed beams having
general cross-sections. International Journal
for Numerical Methods in Engineering.
2000. 49(5). Pp. 653—668.

Jonsson J. Distortional theory of thin-
walled beams. Thin-Walled Structures.
1999. 33(4). Pp. 269-303.
DOI:10.1016/S0263-8231(98)00050-0.
Khairuzzaman M.Q. Finite Element
Analysis of Thin-Walled Structures.
4(1)2016. 6475 p. ISBN:1851661360.

Pi, Y., Trahair, N.S. Bending and Torsion
of Cold-Formed Channel Beams. 1999.
9445..

Galishnikova V.V. A Theory for Space
Frames with Warping Restraint at Nodes. 1%
IAA/AAS SciTech Forum on Space Flight
Mechanics and Space Structures and
Materials. 2020. 170. Pp. 763-784.

Floros M. W. Smith E. C. Finite element
modeling of open-section composite beams
with warping restraint effects. AIAA
Journal. vol. 35(8). pp. 1341-1347.

Vatin N., Havula J., Martikainen L.,
Sinelnikov A. Thin-Walled Cross-Sections
and their Joints : Tests and FEM-Modelling
Thin-walled cross-sections and their joints :
tests and FEM-modelling.
2014.DOI:10.4028/www.scientific.net/ AM
R.945-949.1211.

12.

13.

15.

16.

17.

18.

19.

20.

21.

Vera V. Galishnikova, Tesfaldet H. Gebre

Paul A. S., Charles J. C. AISC Design
Guide : Torsional Analysis of Structural
Steel Members Revision. Steel Design
Guide Series. 2003. Pp. 116.

Vlasov V. Z., Thin-walled Elastic Beams.
Springfield, Va.: National Technical
Information Service. Virginia,1984. 493p.
Alwis W.A.M., Wang, C.M. Wagner term in
flexural-torsional buckling of thin-walled
open-profile columns. Engineering
Structures. 1996. 18(2). Pp. 125-132.
Gebre T.H., Galishnikova V. V. The
impact of section properties on thin walled
beam sections with restrained torsion.
Journal of Physics: Conference Series. 2020.
1687. Pp. 012020.

Bani¢ D., Turkalj G., Brni¢ J. Finite
element stress analysis of elastic beams
under non-uniform torsion. Transactions of
Famena. 2016. 40(2). Pp. 71-82.

Murin J., Kuti§ V. 3D-beam element with
continuous variation of the cross-sectional
area. Computers and Structures. 2002. 80(3—
4). Pp. 329-338.

Jonsson J. Determination of shear stresses,
warping functions and section properties of
thin-walled beams using finite elements.
Computers and Structures. 1998. 68(4). Pp.
393-410.

Jlaimun B.B., PnioakoB B.A., UBaHoB
C.C., AzapoB A.A. CMelIaHHBII METON
KOHEYHBIX JJIEMEHTOB B TIOJTYCIBUTOBOM
TEOPUU TOHKOCTEHHBIX cTepxkHerd B.U.
CnuBkepa // VIHXEHEPHO-CTPOUTEIIbHBIN
xypHai. 2019. Ne 5(89). C. 79-93. DOLI:
10.18720/MCE.89.7

AbsikoB C.®@., Jlasmmu B.B. Iloctpoenue u
aHaJIM3 KOHEYHBIX DJIEMEHTOB  CTEPKHS
OTKPBITOTO Mpoduiisi ¢ ydeTom aedopmanmit
cneura u kpyuenus / BectHuk Ilepmckoro
TOCY/IapCTBEHHOTO TEXHUYECKOTO YHHBEp-
cureta. OxpaHa OKpyXarolled cpensl,
TPaHCIIOPT, OE30MaCHOCTh JKU3HEICATEIh-
Hoctu. 2011. Ne 2. C. 130-140.

Jlanun B.B., PnioakoB B.A. Konecunnie
AMIEMEHTHI ISl pacdera OTrpaKIaroIINX
KOHCTPYKIIUNA M3 TOHKOCTEHHBIX MPOQuiIeit

International Journal for Computational Civil and Structural Engineering



Finite Element Analysis for Thin-Walled Member Subjected to Combined Loading

// VIHXeHEepHO-CTPOUTETbHBIN
2011. Ne 8. C. 69-80.

22. Jlammun B.B., PridakoB B.A., Mopo3oB
C.A. HccnenoBanne KOHEYHBIX DJIEMEHTOB
JUIsL pacdyeTa TOHKOCTEHHBIX CTEpPKHEBBIX
cucreM //  VHXeHEepHO-CTPOUTEIbHBIN
xKypHai 2012. Ne 1. C. 53-73.

23. TycHun A.P., TycHuna O.A.
BeruucnurensHas cuctema «CTanbKOH» IS
pacdera U TMPOCKTHPOBAHUS CTEPIKHEBBIX
KOHCTPYKIHUA M3 TOHKOCTEHHBIX CTEpP>KHEH
oTKpeITOro npoduns // IIpomblieHHOE U
rpaxkaaHckoe cTpouTenbcTBo. 2012, No 8. C.
62—-64.

24. Tycunun A.P. HexoTopsie Bonmpockl pacyeTa

TOHKOCTCHHBIX CTaJbHBIX KOHCTPYKIHMH //

Hayunoe o603penne. 2015. Ne 11. C. 79-82

Perelmuter A., Yurchenko, V. on the Issue

of Structural Analysis of Spatial Systems

From Thin-Walled Bars With Open Profiles.

Metal Constructions. 2014. 20. Pp. 179-190.

26. Wang Z.Q., Zhao J.C., Zhang D.X., Gong
J.H. Restrained torsion of open thin-walled
beams including shear deformation effects.

KypHAJL.

25.

Journal of Zhejiang University: Science A.
2012. 13(4). Pp. 260-273.
DOI:10.1631/jzus.A1100149.

27. Wang Z..-Q., Zhao J.-C. Restrained Torsion
of Thin-Walled Beams. Journal of Structural
Engineering. 2014. 140(11). Pp. 04014089.
DOI:10.1061/(asce)st.1943-541x.0001010.

28. Tusnin A. Finite Element for Calculation of
Structures Made of Thin-Walled Open
Profile Rods. Procedia Engineering. 2016.
150. Pp. 1673-1679.

29. Xiao-Feng W., Qi-Lin Z., Qing-Shan Y. A
new finite element of spatial thin-walled
beams. Applied Mathematics and Mechanics
(English Edition). 2010. 31(9). Pp. 1141-
1152.

30. Murin J., Kuti§ V., Kralovi¢ V., Sedlar T.
3D beam finite element including
nonuniform torsion. Procedia Engineering.
2012. 48. Pp. 436-444.

31. Sapountzakis E.J., Mokos V.G. 3-D beam
element of variable composite cross section
including warping effect. Acta Mechanica.
2004. 171(3-4). Pp. 151-169.

Vera V. Galishnikova, Professor, Dr.Sc.; Vice-Rector,
Professor, Moscow State University of Civil Engineering
(National Research University), Professor, Department of
Civil Engineering, Peoples’ Friendship University of
Russia (RUDN University), 129337, Russia, Moscow,
Yaroslavskoe Sh 26, Tel. 7 (495)025-29-38. e-mail:
galishni@yandex.ru

Tesfaldet H. Gebre, PhD candidate, Assistant, Department
of Civil engineering, Engineering Academy, Peoples’
Friendship University of Russia (RUDN University),
Moscow, Russian Federation, 117198, Russia, Moscow,
Ulitsa Miklukho-Maklaya, 6, Tel +7(495) 434-53-00, e-
mail: tesfaldethg@gmail.com

Volume 18, Issue 3, 2022

Tanuwmnuxosa Bepa Braoumuposna, TOKTOp TEXHUYECKUX
HayK, nipodeccop, IIPOPEKTOP, HanuonanbsHsrit
uccaenoBaTesbckuii - MOCKOBCKUME — roCyAapCTBEHHbIM
crpoutenbHblii yHuBepcurer (HUY MI'CY), npodeccop
JIeTapTaMeHTa CTPOUTENbCTBA, Poccuiickuii yHHBEpCHTET
Ipyx0sl HapomoB, Poccuiickas ®enepamms; 129337,
Poccusi, Mocksa, fpocnasckoe mocce, 26, Ten. +7
(495)025-29-38., e-mail: galishni@yandex.ru

Tebpe Tecghanoem Xaoeembec, acrupaHT, acCHCTEHT,
JierapTaMeHTa CTPOMTENbCTBa, VHXeHepHas akaieMus,
Poccuiickuit  yHuBepcuter apyx6sl HapomoB (PY/IH),
Poccuiickas ®enepanus, 117198, Mocksa, yn. Mukityxo-

Maxmass, a. 6, Tem +7(495) 434-53-00, e-mail:
tesfaldethg@gmail.com
77



