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Abstract. Thin-walled structures are widely used in various structural engineering applications due to their 
advantage of high bearing strength when compared to self-weight and used in a complex loading situation where 
subjected to combined loadings. When a thin-walled section is subjected to a combined load with restrained 
torsion, they are ineffective at resisting, resulting in a reduction in beam capacity due to torsion and additional 
warping stresses. A finite element calculation can be used to analyze a 3D bar of thin-walled structural sections. 
Different commercial software and studies commonly consider six degrees of freedom at each node of a member 
for a space frame without considering the effect of warping restraint at the member's ends. This paper presents a 
finite element calculation for thin-walled sections with restrained torsion using the 14x14 member stiffness matrix, 
which includes warping as an additional degree of freedom and is commonly used for open thin-walled sections. 
In this study, we considered two different methods for including the additional degree of freedom for the stiffness 
matrix, which are very close to each other for small values of characteristics number. 

 
Keywords: Thin-walled structures, Finite element analysis, non-uniform warping, open section, 
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1. INTRODUCTION 
Steel members are now manufactured as thin-wall 
sections because of their high strength, highly 
flexible, ductility, quick construction, and effective 
space partitioning, and they are widely used in 
various engineering structures. Thin-walled beams 
are those that are primarily prone to bending. When 
a thin-walled section is subjected to a combined 
load, it is ineffective at resisting, resulting in a 
reduction in the beam's capacity. The behavior is 
poorly described by elementary formulations that 
reduce the mechanical components to stretching, 
bending, and uniform torsion (i.e., the simplest case 
of a uniform distribution of cross-sectional warping 
along the beam axis [1-2]. Warping effects occur 
primarily at the points of action of concentrated 
torsional moments (except at free end support of 
beam) and at sections with free-warping 
restrictions, and they are accounted for by an 
additional degree of freedom at each nodal point in 
the form of the first derivative of the angle of twist 
of the beam's cross-section [3-5]. 
The analysis for extension, bending and flexure is 
rather straight-forward, but the analysis for the 
coupled deformations of torsion, warping and 
distortion poses a major challenge[6]. Currently, 
most design specifications do not provide clear 
guidance for combined bending and torsion design 
and the need exists for a simple design equation. 
The variation of the displacement over a section of 
a member is expressed with a common function for 
stretching, torsion and bending[7-10]. I-shaped 
steel beams are widely used as structural elements 
because of their flexural efficiency about the strong 
axis. It considers the cross section as completely 
rigid in its own plane, and the effect of shearing 
deformations is neglected[11]. The solutions for 
thin-walled section with nonuniform torsion were 
developed as initial works and also there are studies 
considered to be as  a design aids for simple 
cases[12-13]. This is limited for a slender beam and 
the shear deformation in middle surface is 
negligible but for short-deep beam and closed thin-
walled beams, the shear deformation should be 
considered[4,14]. However, in many applications 
beams are eccentrically loaded and as a result 
experience torsional loads in combination with 

bending. The importance of restrained torsion of 
thin-walled section has grown significantly as the 
deformations and stresses caused by torsion affects 
the behavior of the structures with open as well as 
closed section[15-16]. Like all open sections, I-
shaped steel beams are very inefficient at resisting 
torsion and the interaction effects due to torsion 
acting in combination with bending can 
significantly reduce the capacity of the beam.  
Many design methods have been developed to deal 
with combined bending and torsion, but none have 
been universally adopted by design standards. In 
the past decades, many relevant researches have 
been conducted and different commercial software  
commonly consider six degrees of freedom at each 
node of a member for a space frame without 
considering the effect of warping restraint at the 
ends of the member[9][17-18]. A finite element 
model is investigated based on a mixed variational 
formulation and numerical method of designing 
thin-walled bar systems using various theories and 
formulated matrices to provide an explicit way to 
calculate internal forces and stresses in thin-walled 
bar systems [19-22]. The bending and torsion 
behavior of cold-formed steel bars was studied 
experimentally based on the strengths of unbraced 
cold-formed steel channel beams loaded 
eccentrically [23-24]. Modern software packages 
for structural analysis use finite element types 
which consider up to six degrees of freedom at the 
structural nodes, which corresponds to the linear 
and angular displacements in these nodes as for the 
rigid bodies[25]. Moreover, various studies 
commonly consider with two degrees of freedom 
at each node of a member without considering the 
effect of warping restraint at node [26-27]. The 
warping part of the first derivative of the twist angle 
has been considered as the additional degree of 
freedom in each node at the element ends which 
can be regarded as part of the twist angle curvature 
caused by the warping moment [17][27][30]. 
Numerous studies developed the 14x14 member 
stiffness matrix including warping as an additional 
degree of freedom and commonly with open thin-
walled section [18][25][28-29]. 
In this paper, a 3D frame element stiffness matrix 
will be presented which is more convenient for 
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advanced structural analysis of 3D beam 
structures. The structures are analyzed or 
designed by using only the effect of Saint Venant 
torsion resistance thus the analysis may ignore 
the torsion part in the members and the design 
may be underestimated. To overcome this 
inaccuracy, several researchers tried to develop 
stiffness matrix with seven degrees of freedom at 
each node of a member for a space frame. This 
additional stiffness matrix considers the warping 
degree of freedom at the ends of the member with 
thin-walled section. This study deals with the 
Space frame finite element method regarding the 
first order theory based on the assumption is that 
the resulting deformations are small, and that the 
equilibrium may be formulated for the 
undeformed structure as an approximation. This 
is done by considering beam element and 
equation which are necessary for the computing 
deformations will be derived thus to calculate the 
displacements and internal forces and moments 
for frame structures. 
 
 
2. METHOD 

 
2.1. Geometry and concept of 3D thin-walled 
Frame 
Considering Prismatic thin-walled beams of 
straight and of constant cross-section with y1-
axis is defined parallel to the longitudinal 
direction of the beam, while the y2-axis and y3-
axis describe the transversal plane of the cross-
section as shown in figure 2. The member is 
connected to local coordinate system and the 
corresponding displacement field adopted for the 
axial direction is v1, while v2 and v3 are used for 
the cross-section’s plane. Similarly, 1 2 and 3 
are angles of rotation about the axis y1, y2 and y3 
and  is the sectional warping or twist of the 
section along y1. Consider a point P with a 
member coordinate (y1, y2, y3) in the member 
coordinate system. The basic assumption in the 
classical beam theory is that a cross-section 
orthogonal to the x-axis at the coordinate x 
remains plane and keeps its shape during 
deformation. 

Due to the assumptions of the classical beam 
theory the cross-section orthogonal to the y1-axis 
at the coordinate y1 remains plane and keeps its 
shape during deformation and the general theory 
of elasticity for three-dimensional solids reduced 
to a special theory for space frames. The 
displacement of the point consists of a translation 
equal to that of the centroid C of section y1 and a 
rotation displacement due to the rotation of the 
section as a rigid body about an axis through the 
centroid and a warping displacement normal to 
the section.  
 

 

 

Figure 1. he orientation of coordinate systems 
for 3D beam section 

 
Let S be a plane section normal to the axis of a 
member, which contains a point P and intersects 
the axis in point Q as shown in figure 1. The 
hypothesis for frame behavior [1] states that the 
shape of section S in its plane does not change 
under load, and that the displacement of point P 
is due to:  

 The displacement of point Q  
 A small rotation of section S about an 

axis passing through point Q 
 A warping displacement in the y1 

direction, which is the product of a twist 
with a warping function  
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Where: 1 2 3( , , )kPv y y y the displacement coordinate 
of point P in the member space, 1v ( )k y  
displacement coordinate of centroid C of section 
y1, 1( ),k y  coordinate of the rotation vector of the 
section, 2 3(y ,y ):   warping function of center of 
rotation C 1(y ) twisting of the section 
 

 

 

Figure 2. Beam kinematics, local and global 
reference systems for mass matrix 

 
The strain coordinates are determined with the 
linear strain-displacement relations of the linear 
theory of elasticity. Because the frame 
hypothesis states that the shape of a section in its 
plane does not change, the strains are neglected. 
 

11 1P,1 1,1 3 2,1 2 3,1 ,1

12 1P,2 2P,1 3 ,2 2,1 3 1,1

13 1P,3 3P,1 2 ,3 3,1 2 1,1

v v y y
v v v y
v v v y

 (2) 

  
The expressions for the shear strains are 
rearranged so that the contributions of flexure, 
uniform torsion and torsion restraint are shown 
explicitly: 
 

12 2,1 3 3 ,2 1,1 ,2 1,1(v ) (y ) ( )
flexure uniform torsion torsion restraint

  (3) 

13 3,1 2 2 ,3 1,1 ,3 1,1(v ) (y ) ( )
flexure uniform torsion torsion restraint

  (4) 

 
The constitutive hypothesis states that the strains 
due to the Poisson effect can be neglected in the 
analysis. For a linearly elastic material with 
modulus of elasticity E and shear modulus G the 
stress-strain may be calculated from equation (2) 
as follow: 

11 11 1,1 3 2,1 2 3,1 ,1E E(v y y )   (5) 
12 12 3 ,2 2,1 3 1,1G G( v y )   (6) 

13 13 2 ,3 3,1 2 1,1( )

modulus of elasticity
modulus

G G v y

E
G shear

    (7) 

 
The Virtual work of the inner forces mW done 
by the stresses 11 12 13, and of expressions (5)-
(7), in the volume V of a member with length a, 
and area A due to virtual strains

11 12 13, and is given by: 
 

T
m

V
W (8)

 
W  

 state of stress vector (Voigt notation).  
The integrals of the products of the stress 
components with the geometric variables with 
the geometric quantities 1 2 3, ,y y y and over the 
area of the member are called stress resultants in 
the member and denoted as follows:  
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n dA
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13 ,3 12 ,2

bimoment due to warping m
primary torsion
m ( ) ( ) )

secondary torsion
m ( )

A

A

Tp
A

Ts
A

dA

y y dA

dA

  (9) 

 
The stress resultants acting on the positive face 
of a section are positive if they act in the positive 
direction of the axes of the member coordinate 
system. The stress resultants in the member of 
expression (9) are substituted into expression (8) 
and can be rewritten as follows: 
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Figure 3. Local reference system and internal 

forces  
 
The loads acting of the volume and the surface of 
the member in the theory of elasticity are 
replaced by line loads acting at axis 1y and by 
nodal forces acting at the nodes of the member, 
as shown in figure 3. The nodal forces acting at 
the end node are equal to the stress resultants 
defined based on equation (8). The virtual work 
of the nodal forces due to variations kv of the 
displacement coordinates and k of the rotation 
coordinates is given by:
 

1 1

1 ,1 1 ,1

2 2 2 2 3 3

3 3 ,1 ,1

3

1
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 is virtual work of the nodal forces
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Figure 4. Positive directions of the member and 

nodal force coordinates 
 
The virtual work of the inner forces in the volume 
of a member is expressed in terms of the strains 
and the virtual strains: 
 

11 11 12 12 13 13( )m
V

W E G G dV   (12) 

 
Expressions (5) to (7) for the strains and the 
Prandtl stress function for 2,1 3,1and are 
substituted: 
 

a a
m 1 2 1 3 1

0 A 0 A
1 1,1 2 2,11 3 3,11 1,1
2 1,1 2 2,11 3 3,11 1,1

2 2
3 2 ,3 3 ,2 1,1 1,1

W E h h dA dy G h dA dy

h v y v y v
h v y v y v
h (y ) (y )

 (13) 

 
The integrals of functions of the coordinates and 
the warping function in (13) are called the shape 
parameters of the section or matrix section 
properties. To define the shape functions, we 
used a variable F for designations. They are 
defined and denoted as follows: 
 

a aT
m 1 T 1,1 1,1 1

0 0
1 2 3
2 22 23 2
3 32 33 3

2 3

W E k F k dy G J dy

F F F F
F F F F

F
F F F F
F F F F

 (14) 

 
Where the section constants are expresses as 
given below: 
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The virtual work of the nodal forces due to 
variations of the displacement coordinates and of 
the rotation coordinates is given by: 
 

 

1 1
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3
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m
m
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   (15) 

 
The virtual work of member loads due to 
variations kv of the displacement coordinates 
and k of the rotation coordinates is given by: 
 

a 3
q i i i i 1

i 10

i
i

W t ( q v t ) dy

q  distributed force load in the direction of axis i 
t  distributed moment load in the direction of axis i
t  distributed bimoment load

(16) 

 
2.2. Governing equations for 3D thin-walled 
frames 
The governing equations for a member and 
frame are derived by applying the principle of 
virtual work to the frame. The sum over the 
members of the virtual work mW  of the inner 
forces in (14) equals the sum over the members 
of the virtual work m dW of the member loads.  
 

The differential governing equations for the 
generalized member displacements are 
satisfied for arbitrary virtual displacements and 
expressed as follows: 
 

 
Similarly for frames, The sum over the members 
of the virtual work mW of the inner forces in 
(14) equals the sum over the members of the 
virtual work m dW of the member loads and the 
virtual work nW of the nodal loads: 
 

 
 

3. RESULT AND DISCUSSION 
 
3.1. Element stiffness matrix for a combined 
load: 
Stiffness matrix as it is known, the relationship 
between the generalized force vector qm and the 
generalized displacement vector vm is 
established by the stiffness matrix Km of the 
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The virtual work of the nodal forces due to 
variations of the displacement coordinates and of 
the rotation coordinates is given by: 
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The virtual work of member loads due to 
variations kv of the displacement coordinates 
and k of the rotation coordinates is given by: 
 

a 3
q i i i i 1

i 10

i
i

W t ( q v t ) dy

q  distributed force load in the direction of axis i 
t  distributed moment load in the direction of axis i
t  distributed bimoment load

(16) 
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frames 
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To consider the warping of the restrained member, 
additional degrees of freedoms are introduced at the 
nodes and added to member displacement vector. 
An interpolation function containing hyperbolic 
functions of y1, which satisfies the governing 
differential equation (16) for torsion considered:  
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The derivatives in the integrand on the left-hand 
side of equation (20) are formed:  
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The interpolation functions are substituted into 
the left-hand side of (18) and the integration over 
the length of the member is performed for axial 
and bending loads but separately considered for 
torsion as it developed based on the two different 
methods. 
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The contribution of torsion to the internal virtual 
work of the governing differential equation (16) 
is given as the following expressions: 
 

a
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T
1 2

1
2

( E C G J ) dA

b ( K K ) b
K warping stiffness matrix 
K stiffness matrix for torsion with out warping restraint

 

 
Stiffness matrices 1 2K and K are added to the 
member stiffness matrix mK in the usual 
manner.   

T
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T1 T2 T3 T4
T2 T6 T7 T8

T 3 T3 T7 T11 T12
T4 T8 T12 T16

T1 T11
2

T6 T16

T2 T4
2

T8

2

T3 T1 T7 T12

k k k k
k k k kECK
k k k ka
k k k k

K K S sinh ,
sinhK K S (cosh ) a

K K S*(cosh 1) a,
sinhK S 1 a

S , Q 2 1 cosh sinh ,
Q

K K , K K T2K

 

 
The above element stiffness matrix for torsion 
with restrain warping can be used by divided into 
two matrices. The parameters KT1, KT2, KT6 and 
KT8 can be replace by approximation as shown 
below: 
 

2 2
T1a T2a

2 2
T6a T8a

6 1K 12 * K 6 *
5 10
2 1K 4 * K 2 *

15 30

 

 
Considering the above series expressions, the 
alternative matrices can express as shown below: 
 

2 2
Ta 3

2 2

2 2

2 2

12 6a 12 6a

6a 4a 6a 2aE CK
a 12 6a 12 6a

6a 2a 6a 4a

36 3a 36 3a

3a 4a 3a aG J
30a 3a 3a 36 3a

3a a 3a 4a

 

 
Comparing both methods, we can conclude that 
both are similar for small value of  and which is 
commonly considered for open thin-walled 
section as their value of is small as shown in 
figure 5. 
 
 

Figure 5. Evaluation of exact and approximate methods for various values of  
 
 

If the member is free to warp, Cw = 0 and the 
torsional moment is carried by St Venant’s 
torsion which is considered as uniform torsion. 

Considering Expression 21, only the second part 
of the matrix or the uniform torsion stiffness 
matrix can be used as given below. 
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Element load vector: Consider loads which vary 
linearly from start node A to end node B: 
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These loads and the interpolation functions are 
substituted into the right-hand side of equation 
(17). The integration over the length of the 
member is shown for 1 3 .q and q   
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The results are compared with different studies  
in both methods to include the aadditional 
degrees of freedom and are introduced at the 
nodes and added to member displacement 
vector[29][30][31]. The member variables are 
collected in member displacement vector Vm and 
member load vector qm and the matrices are 
arranged correspondingly in member stiffness 
matrix km. 
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4. CONCLUSION  
 

The frequently used finite element method for 
thin-walled sections only considers six degrees 
of freedom (DOFs) in each node of a beam, but 
it has been demonstrated that including warping 
of the section as an additional DOF in structural 
analysis can result in a safe and optimal design. 

According to this study the following 
conclusions are drawn. The simple geometric 
properties of the section are used to generate the 
stiffness matrix for thin-walled beam sections 
with retrained torsion. By considering an 
additional degree of freedom at each node, the 
trigonometric and approximation solutions of an 
interpolation function are used to express the 
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stiffness matrix for non-uniform torsion. The 
stiffness matrix for 3D thin-walled sections 
subjected to combined loading is presented, 
making advanced structural analysis bar 
elements more convenient. This stiffness matrix 
is more applicable for open thin-walled sections 
because the value of characteristics number for 
open section is very small comparing to the 
closed thin-walled sections. To include the 

additional degree of freedom both trigonometric 
and approximate methods are considered and for 
characteristics number ( ) =1 and 2 the errors 
range between 6.7 % to – 9.7 % which is 
considered reasonable and both methods are 
acceptable for open thin-walled sections. The 
length of the member is limited based on the 
section type and with maximum value of 
characteristics number ( ) less than 2. 
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