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Abstract: Angle bars in compression are quite common in building and transport structures. However, the 
peculiarities of their behavior during the loss of stability and in supercritical equilibrium have not been 
sufficiently studied even within the limits of elastic deformations. The paper shows solutions for the stability of 
symmetric and asymmetric rods with an angle profile. The development of post-critical deformations is shown. 
The features of the behavior of the rods, obeying the hypotheses of V.Z. Vlasov. 
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Angle bars in compression are quite common in 
building and transport structures [1-3]. 
However, the peculiarities of their behavior 
during the loss of stability and in supercritical 
equilibrium have not been sufficiently studied 
even within the limits of elastic deformations. In 
this case, the choice of the examined model of 
the beam turns out to be essential [4-8]. There 
are two options here: 
1) The beam is considered as thin-walled, 
complying with the hypotheses of V.Z. Vlasov [8]; 
2) The beam is examined without the stiffening 
hypotheses of Vlasov. 
The analysis of its equilibrium states is carried 
out numerically, using the FEM, taking into 
account the effects of geometric nonlinearity [9]. 

Examining the model of a thin-walled Vlasov 
rod by M. Pignataro and his collaborators [10, 
11] using the expansion of the total potential 
energy up to cubic terms, and investigating the 
possibility of making the slope angle of the 
bifurcation curve vanish at the bifurcation point, 
obtained the necessary conditions for the 
stability of the supercritical equilibrium of the 
thin-walled beams in general and of the angle 
bars, in particular. The authors of this work 
numerically investigated the angle bars from the 
M. Pignataro’s work (and those close to them in 
geometry). However, slightly different results 
were obtained. 
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Figure 1. Branching of bifurcation curve 

 
First, let us briefly outline the results of 
M. Pignataro and his co-workers concerning the 
stability of the thin-walled Vlasov beams 
supercritical equilibrium. 
We assume that the curve of the “new” post-
bifurcation equilibrium ( ) branches off from 

bifurcation point ( = ) (Fig. 1). The 

( ) gives the expansions 
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The dots above denote derivatives with respect 
to ; the subscripts correspond to the derivatives 
with respect to the coordinate. Here, the proper 
form = , the potential energy in critical 
equilibrium is 
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The slope of the tangent to the curve of the 
"new" equilibria at the bifurcation point is  
[10, 11] (Fig. 1) 
 

=  = /2  
 
If =  0, then the bifurcation diagram 
is asymmetric and the supercritical equilibrium 
is unstable. The system will be sensitive to 
initial imperfections. 
On the contrary, the necessary condition for the 
stability of the initial post-bifurcation 

equilibrium is the equality to zero . This is 
possible if the cubic term is zero. 
 

 
Figure 2. Symmetrical stable bifurcation 

diagram 
 

= 0 
 
Then the bifurcation diagram is symmetric. It 
will determine a stable initial post-bifurcation 
equilibrium if the curvature of the curve of the 
“new” equilibrium is positive ( > 0), where 
[10, 11] (Fig. 2) 
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The expression for the cubic term   

according to M. Pignataro is
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Where , ,  are known integral geometric 
characteristics of a thin-walled beam section. 
Under hinged boundary conditions at the ends 
of the beam, the eigenform is determined by a 
sinusoid with amplitudes ,    
 

= = [ , , ] sin  

 
The expression for the cubic term in the 
expansion of the potential energy in terms of 
these amplitudes of its own form is 
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This expression is valid for any asymmetrical 
section. Therefore, for such a section, the cubic 
term is not equal to zero 
 

1

3
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If 0, or 0, or 0, 
or 0. It turns out that a 
thin-walled hinged Vlasov beam with an 
asymmetric section has an unstable initial post-
bifurcation equilibrium and will be sensitive to 
initial imperfections. 
If the beam has one axis of symmetry and  is 
the critical buckling load in this plane, and  
and   are the critical loads of flexural-
torsional loss of stability from the symmetry 
plane, then for simple (not multiple) critical 
loads ( ), or if =  the 
cubic term of the expansions is equal to zero 
( = 0). Therefore, the bifurcation diagram 
is symmetric (and, most likely, stable). This is 
explained by the fact that in this case the 
amplitudes of the eigenmodes are  
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Since due to the symmetry  

= = 0; 0 
 
then  
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This expression equals to zero because there is 
no eigenform with all non-zero components. 
If =  or = , then there is an 
eigenform  in the form of a linear combination 
of  and  or  and , which can have all 
components that are not equal to zero 
 

= 0 

 

Then 0, and the supercritical 

equilibrium of a beam with one symmetry plane 
will be unstable. The bifurcation diagram is 
asymmetric, and such a beam will be sensitive 
to initial imperfections. 
Finally, if the beam section has two symmetry 
axes, then 
 

= = = 0 
 
and the expression for the cubic term is greatly 
simplified 
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The eigenforms’ aplitudes 
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For simple critical loads, it is obvious that 

= 0 and the bifurcation diagram is 
symmetric. If = = , then an 
eigenform with all nonzero components is 
possible in the form of a linear combination. 
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Then the product 0. However, 
multiple critical loads are possible only when 

= 0. Because of this, = 0, and the 
bifurcation diagram of a beam with 2 planes of 
symmetry is always symmetric. Intuitively, it 
seems that this diagram also always determines a 
stable initial supercritical equilibrium. However, a 
rigorous proof requires considering an explicit 

expression for the quartic term . M. 

Pignataro and his collaborators gave [10, 11] 

several examples of imperfection sensitivity 
curves for beams with a section in the form of an 
equal- and unequal-angle bar, as well as with a 
section in the form of a T-beam. The dimensions 
of the one-axis symmetry beams were selected so 
that the corresponding critical loads were twofold. 
Initial imperfections are sinusoidal bends with 
amplitudes , , . These imperfections were 
specified in various combinations (Fig. 3, 4). For a 
bar with a cross-section in the form of an equal-
angle bar, the largest drop in critical loads caused 
imperfection with the same amplitudes in all 
directions (Fig. 4). 

 

 
Figure 3. Dependence of critical loads on the values of combinations of initial imperfections for an 

asymmetric angle bar 
 

 
Figure 4. Dependence of critical loads on the values of combinations of initial imperfections for a 

symmetric angle bar 
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Figure 5. Cross-section of the beam 

 
The authors of this work investigated the post-
critical equilibrium of a hinged beam 355 cm 
long with a cross-section in the form of an 
equal-angle bar 10 × 10 × 0.3 cm. Such a beam 
was also studied by M. Pignataro and his 
collaborators, but as one by Vlasov. 
There were rigid plates at the ends of the beam, 
which did not interfere with the rotation of the 
end sections. The compressive force was 
applied along the axis of the section symmetry 
(at the center of gravity or with an eccentricity 

. 5). 
Linear calculation of critical loads showed that 
the first two of them are quite close to each 
other (torsional  = 39,3 , bending Euler 

= 39,34 ). It would seem that the 
mutual influence of the corresponding closely 
related forms should significantly affect the 
beam’s post-critical behavior. 
However, similar beams of a different length 
(250 cm, 405 cm) with simple first critical loads 
showed equilibrium diagrams similar in 
character to the equilibrium diagram of a beam 
355 cm long (Fig. 6). According to this figure, 
when the compressive load is displaced from the 
gravity center along the symmetry axis towards 
the edge (i.e., 1, 2, 3, and 4), the transverse 
displacements develop smoothly until the limit 
points are reached. After that, the deformation 
of "flattening" of the corner section begins to 
develop on the unstable branch. In this case, the 
flanges of the corner do not experience 
additional compression. 
When the load shifts towards the center of the 
geometric contour 10×10 cm (points -1, -2, -3, -
4, Fig. 5, 6), then there is a catastrophic drop in 
the maximum values of the compressive load 
due to the local loss of stability development of 
the corner flanges as compressed plates with 
free edges (Fig. 7). 

 

 
Figure 6. Deformation curves of symmetric angle bar (355 cm) under compression 

 

 
Figure 7. Local loss of stability of flanges 
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The obtained result testifies to the extreme 
sensitivity of angle bars to the location of the 
concentrated compressive load application point. 
When displaced diagonally from the center of 
gravity by 3.48 cm, the maximum load decreased 
by 3 times in comparison with the bifurcation 
one (Fig. 8). This is an unpleasant result of the 
buckling shapes interaction for engineers. If a 
concentrated compressive force must be applied 
at the point of the angle symmetry axis, then this 
point can only be between the edge and the angle 
section gravity center. 

250 cm, Fig. 9), the nature of the equilibrium 
diagrams will not change.  
 

 
Figure 8. Influence of the location of 

compressive load application point for a 
symmetric angle bar on the critical loads 

Only the maximum loads at the limiting points 
increased significantly when the force P was 
shifted towards the edge. But for such a beam, 
the critical forces are simple, and they differ 
significantly from each other. 
For a lon
cross-section, the first critical force  =

31,55  determines the bending form of 
buckling, and only the tenth one (  =

37,85 ) corresponds to the torsional loss of 
stability form. The maximum loads at the 
limiting points decreased slightly. However, the 
nature of the maximum loads fall at the moment 
of wave formation did not change 

(max
max

=
12,5

32
= 0,39). 

Finally, let us consider the effect of transverse 
diaphragms (from 1 to 15) on the character of 
the hinged angle bar 355 cm long equilibrium 
curves (Fig. 10). This was an attempt to 
successively transform the FE-model of a 
“usual” beam into a Vlasov beam model with 
an invariable contour. With three or more 
diaphragms (Fig. 10), the maximum critical 
load of the central beam slightly increased (up 
to ~ 41.5 kN). 
 

 

 
Figure 9. Deformation curves of symmetric angle bar (250 cm) under compression 
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Figure 10. Deformation curves of symmetric angle bar (355 cm) with diaphragms under 

compression 
 

However, with all the quantitative variants of 
the diaphragms (3, 5, 7, 15), the supercritical 
equilibrium was unstable and rather sharply 
decreasing in terms of the load. A small 
torque at the end of the beam was used as a 
disturbance. Under flexural disturbance by a 
small transverse force  (Fig. 10, edge in 
the compressed bending zone), the deflections 
developed up to the limiting point along the 
same curve, regardless of the diaphragms 
number. In general, the examined angle bar 
with diaphragms has an asymmetric 
bifurcation diagram.  
In contrast, cantilever angle bars have a 
symmetrical stable post-bifurcation pattern up to 
the secondary bifurcation load (wave formation) 
in the flanges.  
The Vlasov model of a thin-walled bar does not 
allow taking into account the actually observed 
contour deformation and secondary local wave 
formation in the profile flanges bifurcation 
effects. 
We begin to study the features of equilibrium 
curves for cantilever beams by considering 
the stability problem for a steel cantilever 
beam 200 cm long with a cross-section in the 
form of a non-equilateral corner 3×2×0.3 cm 
(Fig. 11). 
This rod has the first 5 bending eigenforms. 

 
Figure 11. Cross-section of the cantilever beam 

 
The compression load on the beam was applied 
as uniformly distributed over the end section of 
the free end. Solutions using the FEM 
(NASTRAN) showed that the bifurcation 
diagram of this cantilever rod is symmetric (the 
red and blue curves are the same and growing 
up to the moment of wave formation). 
Consequently, the post-critical equilibrium of 
such a beam is stable (Fig. 12) up to the moment 
of local wave formation near the bottom edge 
from the side of compressed fibers (Fig. 13). 
This wave formation is provoked by the 
interaction of two loss of stability forms: 
general and local. As soon as local wave 
formation occurs, the load reaches its maximum 
at the limiting point and then drops sharply (Fig. 
12). It is clear that within the Vlasov model 
framework, the described forms interaction 
effect cannot be captured. 



116 International Journal for Computational Civil and Structural Engineering

 
Figure 12. Deformation curves of fixed asymmetric angle bar (200 cm) under compression 

 
 

 
Figure 13. Local wave formation 

 

Interesting results were obtained by the authors 
when calculating a compressed cantilever angle 
bar with a symmetric section of 10 ×10 ×0.3 
cm and a length of 450 cm. The initial post-
bifurcation equilibrium was stable up to the 
moment of wave formation in compressed 
flanges (point 1 in Fig. 14). At this point, a 
wave-like stress distribution is observed. 
Further, the equilibrium of the corner becomes 
unstable and the load drops sharply. If the 
transverse perturbation acts in the opposite 
direction (the flanges are stretched), then the 
equilibrium curve reaches the limiting point 
(point 1') along the same curve as in the first 
case.  
 

 
Figure 14. Deformation curves of fixed asymmetric angle bar (450 cm) under compression 
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Here, as in the previous example, before the 
waveform load, the bifurcation diagram of such 
a cantilever beam is symmetrical and stable (as 
opposed to hinged supported bars with an angle 
section). 
Where does the limit point on the equilibrium 
curve come from? The authors believe that this 
is due to the deformation of the contour by the 
type of "flattening" of the angle bar near the 
bottom edge, where the greatest supercritical 
bending moment develops. Flattening reduces 
the bending stiffness of the corner section. 
 
 
CONCLUSION 
 
1. Compressed elastic thin-walled angle bars 
hinged at the ends have an asymmetric 
bifurcation diagram. Therefore they are 
extremely sensitive to bending imperfections, 
which cause additional compression of the 
zones located near the free edges of the flanges. 
2. Compressed elastic cantilever beams of the 
angle bar have an initial post-bifurcation 
equilibria diagram that is symmetric and stable 
up to the load of wave formation in the flanges 
(secondary bifurcation, which is the result of the 
interaction of natural forms). 
3. The energy theory of post-bifurcation 
behavior of the Vlasov thin-walled beam, 
constructed by M. Penyatoro and his 
collaborators, unfortunately, cannot capture all 
the important features (local wave formation, 
“flattening” of sections, etc.) of the 
development of supercritical stress-strain state 
of a real thin-walled beam. 
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