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LOCAL STABILITY AND NATURAL MOTIONS OF THE
MULTI-FACE DOME ROD STRUCTURE

Alexander A. Zhuravlev, Dmitriy A. Zhuravlev
Don State Technical University, Rostov-on-don, RUSSIA

Abstract: The research object is a cyclically symmetric construction of a two-tier dome in the form of a convex
polyhedron. Load and deflection critical parameters were determined for this construction pyramidal element. The
behavior features of the conservative system in the dome's central assembly vertical displacement critical region
value analysis has been carried out. The elastic rod model fluctuating and construction deviations from its
equilibrium state reaction have been researched. System's behavior at natural motions and nonlinear restoring force
is refined on the base of the findings carried out.
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JOKAJIBHASL YCTOMYUBOCTH U CBOBOJHBIE
KOJIEBAHUSA CTEPKHEBOH KOHCTPYKIIMA
MHOI'OI'PAHHOI'O KYIIOJIA

A.A. /Kypaenes, /I.A. Kypaenes

JloHCKO# TOCYJapCTBEHHBIN TEXHUUECKUI YHUBEPCHTET, T. PoctoB-Ha-/{ony, POCCUA

AHHoTanus: B xauecTBe 0O0BEKTa MCCIEIOBAHUS PACCMATPHBACTCS IUKINYECKH CHUMMETPUYHAsT KOHCTPYKIIHS
JIBYXBSIPYCHOTO Kymoja B (OpMe BBIMYKIOr0O MHOTOTPAHHHUKA, ISl MHAPAMUIAIBHOTO JJIEMCHTa KOTOPOI
OMpEJCIICHbl MapaMeTPhl KPUTUYCCKON HArpy3Kd M NporuOa. BeImoiHeH aHalW3 0COOCHHOCTEW MOBEICHUS
KOHCEPBATHUBHOW CHUCTEMBl B OKPECTHOCTH KPUTHYECKOTO 3HAUEHUS BEPTHKAIBHOIO IepeMelleHUs
LEHTPAILHOTO y3Ja Kymona. VccienoBaH mporece KOJICOaHW# yHpyrol CTEp)KHEBOW MOJCIH WM HU3yucHa
peakuus KOHCTPYKUMH Ha OTKJIOHEHUSI OT €€ PaBHOBECHOro COCTOsiHMs. Ha OCHOBaHMU MOITYYEHHBIX
pe3yJIbTaTOB  YTOYHSICTCS  IOBCACHUEC CHUCTEMBI MHpPU  CBOOOIHBIX  KOJICOAHUSX W HEJIHMHCHHON
BOCCTaHABJIMBAIOIICH CHIIC.

KaroueBble cj10Ba: MHOTOTPaHHBIN KYIIOJ, CTEP)KHEBAs! KOHCTPYKIIMS, IPOIISITKHBaHHE,
BOCCTAHABJIMBAIOIIAS CHJIA, ypPaBHEHHUE JABIDKCHUS, SIUIMITHYECKUI HHTErpall, MOLYJISPHBII yroul,
(hazoBast MIOCKOCTH

The equilibrium stability rigorous definition
considered as a mechanical system motion
particular case was firstly given in the A.M.
Lyapunov's work[1]. Rod structures in the form
of convex polyhedron are trended to the snap-
through according to the sustainability research
majority were carried out on the static criterion
base [2,3,4].The system fluctuation problem of
this type in their possible equilibrium states
region in the case when value nodal load goes
up to the critical level, requires both theoretical

and experimental researches, since the solution
of this actual problem is still far from its
complete solution. The considered problem has
become more acute recently since high
sensitivity of the shell type long span rod
structure to the snap-through of the both
individual and multiply connected assemblies
was identified as a result of major disasters.

Circumscribed according to the 320-hedron
scheme sphere of spatial rod construction in the
form of a two-tier part of a polyhedral dome
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whole surface section is chosen as a research
object (Fig. 1). A vertical force P is placed at
the vertex of the pentagonal pyramidal element.
Force P is placed at the joint 1, in which five
symmetrical inclined rods 1-2 are connected
(Fig. 2).

The inclination rod angel ¢ in comparison with

. .o a .
its initial value ~° changes. Two-tier dome
pentagonal circle is assumed inextensible

lysina, =lsina=a

according to the

Figure 1. Spatial rod construction in the form
of two-tier polyhedral dome
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Figure 2. Pentagonal pyramid rod elements
design model

B

Rod structure behavior under the load and

P the forces placed at the joint 1 and 2 have to
be analyzed in general case to determine
possibility to add the upper tier pentagonal
circle non-deformability restriction. The nodal
load uneven distribution influence on the local
stability of the considered rod system effect
must be considered. This distribution is set
according to the load transferring area
calculated for this joint type on the horizontal
domed surface projection for the central joint 1
and five peripheral joints 2. For example, in this
case, the ratio of the joint forces is

Py 1B =134 Thig situation is clearly depicted
on the system  equilibrium diagram (Fig.
3),})1* =h /(SEF); Mo =1, —1, = (Wl _Wz)/llz
is accepted.

Let us denote that central joint snap-through

load level increased by 15% under the force ¥
(curve 1) in comparison with the case when the
circle is inextensible (curve 2).
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Figure 3. Equilibrium states diagram for a two-tier part rod construction in the form of a 320-
hedron

If the coefficient ¥ =52/ is added then the
formula for the critical load changes to [5]:

1+k ] (1)

The expression (1) is written as follows in the
case of non-deformability pentagonal circle:
P = %EF cos’ y,,

lcr.

2)

Equating the right-hand sides of the expressions
(1) and (2) to each other, the result is:

k=2(cosy,, /cosy,) —1 3)

b

k=0,0723

whence 1t follows that and

£, =0,0147 . In other words, tensile forces take
place in the pentagonal circle rod elements only

in the case when 12 <0.0147

The curve 3 shows rod structure behavior in
case when both radial displacement of the nodes
2 in the in the horizontal circle plane and the
vertical displacement of the nodes 1,2 are
considered. In this case the critical load level is
decreased by 11% in comparison with its
pentagonal circle non-deformability value.

The curves' 2 and 3 almost complete

coincidence is clearly observed in the parameter
-3

values interval 712 0 <772 <3-107

In this case, the relationship between the force P
and the vertical displacement w is expressed:

1

—cosa,

P= 5EF(1—Etana0]
a

2
\/tanz a, +(1—Wtanaoj
a

- “4)
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After adding a new variable ¢=1-¢ ,where

w
{ =—tanaq,
a

, the functional relationship
P=P(¢) is:
- 1
tan” o, +&
’ : )
P=P/(SEF) is a nondimensional load
parameter.

Let us use the condition to determine critical
load

and write it in the following manner:

Z—p = (1:21112 a, +& )71/2 —

-3/2

—cosa, —&° (tan2 a, +§2) =0

(6)

2

2 2
tan” o, + =z .
0t¢ , we determine:

Assuming that

z,, =tan’ o, (sine,)

2

z,, =tana, (sing, )" .

(7)

The critical load parameter value £ is equal to

b _ - 2/3 3/2
Pcr—(l—sm ao) '

)
Firstly to determine the value corresponding to

the moment when the joint load reaches its
critical level we must note that:

£ =tan’ a, sin " q, (1 —sin*" ao) )
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On the other hand the equation must be

2
£ =(1-¢) must be.
Equating the right-hand sides of the last two
equations to each other, the result is quadratic
equation for the nondimensional displacement
parameter

¢?—2¢+1-tan’ @, sin*"’ oco(l—sinZ/3 ao): O.
(10)

The solution of the equation (10) is:

.o 1/2
S =1—tana0(s1n Pa, —1)

(1)

for the pyramidal element with 320-hedron

spatial configuration %= g2 .20, According to
this, the numerical values of the trigonometric
functions in the initial position of the rod system
are:

S0 %0 -0,991950; “9%%0=0,126591;
tandy _7 83586.
The wvertical displacement nondimensional

parameter required value can be found using the
values obtained from the expression (11),

c. =1-0,575=0,425=17/40

The rod system equilibrium states diagram,
constructed with the dependence (4), is shown
in Fig. 4.
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Figure 4. Dependency diagram for a pyramidal
element of a rod construction
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As we can see, when the maximum load level is
reached, the system jumps from the equilibrium
state [ to the position II. The circles show the
equilibrium states diagram for the pyramidal
element of a two-tier dome. The stability
analysis of this element was carried out in [5]
by using the energy method.

Snap-through of the rod construction is not
allowed. Let us analyze the stability of its
equilibrium state when it is near critical value of
the pentagonal pyramidal 320-hedron element
top vertical displacement. In other words, let us
choose a point on the system equilibrium states

curve where the inequation §=2/5 < Su
is valid. The nondimensional displacement
parameter value corresponding to  this

a _ -3
displacement is equal to’ (2/ 5)_0’393 107,
As for the initial forces of axial compression in
the rods, they are determined by the equation

S, = 2 EFcosia
? (12)

The rod structure of two-tier dome in the form
of the 320-hedron fluctuating problem solution
is considered only taking account of the
fluctuations along the mass m vertical axis held
by five meridional direction rods in the regular
pentagonal pyramid central joint.
Fluctuating at the initial displacement

(xo )f=0 =% and without initial speed (x‘) )f=0 =0

at dome  pyramidal element central joint
deviation from the equilibrium by slight
displacement x in the upward vertical mass m
motion equation has the following form [6]:

i+p’flx)=0 (13)
Here / (x ) means
2
f(x)=2x+27 tana x*+9 tan2 2y
a a (14)
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In its turn, 7 f (x ) is nothing other than the
restoring force related to the unit mass in the x
function displacement.

cota =(3/5)cotar, = 0,076571

tana =13,0598

In this case it

follows that, and

cosx 209076348. The calculation for the
p? . p’ =0,8216g/a

Mass the extreme

position (x - xO) to the position (x - O), when
the system goes back to its initial state is
determined by the following formula[7]:

T:_j]- dx :T dx
B ’2p2ff(x)dx ’ ’2p2ff(x)dx
¥ * . (15)

Integral radicand according to (14) is:

motion time from

X

Xo 2
If(x)dx: J.(2x+27 tanax2 +9tan2ax3jdx

a a

X X

(16)

As a result of integration and substitution in
(15), we have

Tzﬁj- dz
27941

1—22)+67/(1—Z3)+}/2(1—Z4). 17)

3 x,
y=——-Ttana
Yo 2 a

dz

Further differential VR must be transformed to
obtain polynomial under the radical that doesn't
contain the variable z uneven degree. Assuming

2 . . .
that #=V1=2" and making a substitution, we

dz=——2 du
obtain

Here is:

1—u?
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_\/5' du
2-_2_."\/ 2 2 2
PoN1-u? 1497 +2y% = y(3+y)u
(18)
In this case we have [8]:
( dt 1 (a J
:—F _3§0
.([\/az_tz\/cz_tz c c ' (19)

2o
Here ¢ is the first kind elliptic integral.
According to the collating (18) with the
standard integral (19) we conclude that

, 149y +2y°
=1, 3+7)
sing0=£=1 (0=£
a - 2

9

To find the numerical value of 7 quantity, let us

use the equation X, tana, /a = 1/40. As

tana, =3tana /5 I
, we determine:

X, 1 3 x, 1
—tanag=— y=——tana=—
a 24 . 2 a 16

2

The calculations results:

¢ 1 r0+27) g hng0
y3+7)
I

—=0,3491
c .

. c=2,8643.

Let us find the integral F (9) in the case when
the amplitude is equal to =7 /2 and the

modulus is equal to k=03491 e modular

0=20,43, will be determined from the
sin@ =0,3491 _

angle

equation
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F(20°)=1,62003
and 21° angel corresponds to F(21°)=1,62523
according to the table [9] the

amplitude? =7 /2 Assuming that the F(0)
integral increment is proportional to the angle

The 20° angel corresponds to

and

0, the result is:

F(20,43°)— F(20°)

=0,43
F(21°)-F(20°)

Whence it follows that 1 (20’43 0)21’6275 )

7=0918/p
(18).

When deriving the solution numerically, we
note that the expression (14) contains the
summand x in the first degree and further the
motion differential equation (13) is to be written
in a slightly modified form:

is to be found with the expression

77+l_72(77+5i):0.

(20)
n= al tan o
—2 _~_ 2 =—
Here is: 7 = 2p ; a and ' means
that:
9
S, = _(3772 + 773)
2 :
Further let us imagine that the entire time

interval 7 is divided into a number of small

intervalsA!  during which the value 5 is
considered constant and equal to its value at the

beginning of each of such intervals. The iy
the

displacement and speed at £ =0 The equation
solution (20) is to be written in the following
form:

i are consider as parameters of

n= (77,~ + 5l.)cosg7t1 +77—_isin pt, =90,
p (21)
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As aresult of time differentiation (21), we got:

= —(77[ + 0, )sin pt, + 77—_icos pt,
p . (22)

aSTHESS

(21) and (22) are to be squared and summed up.
The result is:

(77"'51‘)2 = (771‘ +5i)2 +(77__1j
P (23)

Thus, we make sure that the equation solution

(20) is performed on the (77’77/ p ) phase plane
of the other circle with the center on the 7 axis
and o coordinate.

Firstly, the value o is calculated and then the
M and approximate values are determined

from [10] at the initial conditions T=" and
1=0 for 1 =0,

Mo + 10,
1 =1, +7,At : =1 2

Substituting 7t to the equation (20) instead of
1, ™ can be found . The most accurate 7 and

'l approximations could be derived with this
value from the expressions:

. . 1, +7

m=n, +%At. m=n,+

9

Mo +1,
2

The values 72, 1, and 1, for the moment

t=2A1 is to be calculated by repeating in
order this procedure which was described
above.

This values for the moments
t, =nAt

t3=3At’ f, =4Ar

. are calculated analogical.
The numerical integration results are performed
on the phase plane (Fig. 5).

Alexander A. Zhuravlev, Dmitriy A. Zhuravlev

Time of the first fluctuation mass cycle m is

T= 0,939i

equal to P with the 2,3% error
according to the phase curve shown in the
graph. The restoring force grows faster than the
deflection in the case when the initial
displacement values are increased in this phase
curve section. The mass m will take the position
indicated by the letter G which corresponds to
the central joint vertical displacement critical
value at the fluctuation second cycle.

A, A 4y

o=

G
Figure 5. speed-displacement curve on the
phase plane for the system fluctuation full cycle

The sign in front of the second summand
expression in parentheses is reversed at the
phase curve construction for the second
fluctuation cycle in the motion equation (20).
Due to this operation at increasing its initial
displacement value the restoring force growth
slows down.

The phase trajectory will have a spiral form
instead of a closed curve at the damped
fluctuation process. The phase speed will not be
equal 0 anywhere in this case, despite it will be
continuously  decreased as the  point
approximating to the origin of coordinates.
Comparing the derived data, we come to the
conclusion that the two-tier dome part structure
snap-through phenomenon can be caused by the
rod system fluctuations excitation with a
nonlinear restoring force as a result of its central
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joint deviation from the equilibrium state in the
vertical displacement parameter critical value
surroundings.

The fact that fluctuations period is inversely

related to the amplitude o in the considered
case has to be denoted.

Thus, it could be argued that the danger of its
snap-through increases significantly in the case
when the rod structure fluctuates with initial
speed. Such result in the structure operation is
practically inevitable in the case when its
carrying capacity is completely exhausted due
to the critical load close level. From this it
follows that the mass disturbed motion total
energy will exceed the difference between the
initial potential energy and the potential energy
of the system at the considered moment.
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