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DEFINITION OF THE BEAMS FROM A NONLINEARLY 
DEFORMED MATERIAL BY THE RITZ-TIMOSHENKO 
METHODS AND FINITE DIFFERENCES TAKING INTO 

ACCOUNT THE DEGRADATION RIGIDITY FUNCTIONS 
 

Vladimir P. Selyaev, Sergey Yu. Gryaznov, Delmira R. Babushkina 
National Research Mordovia State University, Saransk, RUSSIA 

 
Abstract. The article solves the problem of determining the deflections of a beam made of a nonlinearly de-
formable material – a polyester composite held in water using the numerical methods of Ritz-Timoshenko 
and finite differences. The influence of an aggressive environment on the material of the structure was taken 
into account by introducing the degradation function of stiffness into the calculation algorithms of the above 
methods. The problem of determining the time and conditions for the onset of the limiting state of the struc-
ture in the second group in accordance with the current norms and rules has been solved. 
 

Keywords: beam, nonlinearity, deflection, Ritz-Timoshenko method, finite difference method, stiffness, 
degradation function, limiting state. 
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INTRODUCTION 
 
Construction materials and structures may be 
subject to the destructive effects of aggressive 
environments at any stage of the life cycle of the 
object. The probability of occurrence of some 
adverse events is taken into account at the 
design stage of structures by the introduction of 
conditional reserve coefficients that guarantee 

the impossibility of the occurrence of limit 
states. However, in practice, emergency 
situations often occur in which the structure can 
go into the limit state in a fairly short period of 
time. For example, numerous studies have 
proved the nonlinearity of the development of 
chemical degradation processes [1-8]. 
Consequently, in the existing mathematical 
models, all unreasonable coefficients should 
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be replaced by functional dependencies that 
take into account the influence of complex 
stochastic and chronological processes [9-11]. 
Among the known approaches to assessing 
durability and reliability [12-20], the most 
accurate, perfect and experimentally 
reasonable is the method of assessing the 
chemical resistance of construction materials 
and structures using degradation functions 
[10, 21-24]. 
The purpose of the work: to determine the 
change in deflections of a polyester composite 
operating under the combined effects of 
mechanical loads and an aggressive 
environment; to determine the conditions for the 
onset of the limit state for group 2, using the 
method of degradation functions. 
 
 
 

MATERIALS AND METHODS 
 
It has been experimentally established [10] that the 
process of destruction of the material within the 
cross-sectional area of the element has an uneven 
character. The aggressive medium begins to 
penetrate deep into the material through weak 
areas, through pores, capillaries, amorphous 
particles. Consequently, the elastic-strength 
characteristics will change non-linearly along the 
cross-section, which can be traced on the 
corresponding graphs – isochrones of degradation 
(Fig. 1, b). The position of the degradation 
isochrones is characterized by three parameters: the 
coordinate of the destruction front – the depth 
index (a), the characteristic of the linearity of the 
degradation mechanism – ( ), and the chemical 
resistance coefficient of the material – ( ). 
 

 
Figure 1. Basic models of deformation modulus change: a – linear, b – nonlinear 

 
It has been experimentally established that the 
numerical values of the modulus of deformation 
and micro-hardness, determined with high 
accuracy by sclerometric methods, have a 
directly proportional relationship. Therefore, the 
degradation function of stiffness ( ), 
characterize by the law of variation of the 
modulus of deformation over the section of the 
element, was determined as the basic one. It is 
important to note that in this work, the process 

of transferring an aggressive medium into the 
sample was studied only along the y axis. 
Let is consider a single-span, pivotally 
supported beam with a length = 10   with a 
constant cross-section × = 0,3 × 0,4  of 
polyester composite (Table. 1), loaded along the 
entire length with a uniformly distributed load 

= 17 /  (Fig. 2). 
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Figure 2. The design scheme of the beam 
 
 

For bendable elements, the degradation 
stiffness function, based on a combined 
power approximation of the isochron of 
degradation, in relative coordinates has the 
following form: 
 

( ) = . . ( . . . . )   , (1) 
 
where is . .1 = 1 = 1/ 0 = 1/ 0  – the 
coefficient of chemical resistance of the 
material, determined by the degradation 
isochrones, using numerical values of the 
change in micro-hardness over time on the 
sample surface [25]; 

. .2 = 2 = 2/ 0 = 2/ 0  – the coefficient 
of chemical resistance of the material, 
determined at the depth  of the damaged 
material layer; 

 – the height of the cross section of the 
element;

= ( )  – coordinate of the leading edge 
of corrosion, characterizing the depth of damage 
to the material (depth indicator); 

( ) = 0,1  – a coefficient that takes into 
account the instrumental accuracy of 
determining the coordinate ; 
 = 0,02 /  – the diffusion coefficient 
of the aggressive medium into the material 
determined experimentally; 

– time of exposure to aggressive solution;
/  – relative characteristics of the corrosion 

front. 
In formula (1), the parameter p characterizes the 
type of isochron degradation, their position and 
shape. It can be determined experimentally from 
the analysis of isochron degradation, or selected 

from a pre-formed statistical database of 
compliance of materials, conditions of physico-
chemical and mechanical effects, as well as the 
duration of the aggressive environment. 
Numerically, the parameter p can be equal to 
any positive rational number, provided the 
inequality is one. 
For the polyester composite exposed in water, 
the values of elastic strength characteristics, as 
well as the values of degradation functions (1), 
were obtained at each time point under 
consideration  (Table 1). 
To solve the problem of bending a beam from 
a non-linearly deformable material, an 
analytical function of the following form 
approximating the deformation diagram «  – 
», was chosen: 

 
=  ,                (2) 

 
where the constants = ( ) 3,16
10  , = ( )/ 5,12
10   are determined from the condition of 
conformity of the approximating function (2) to 
the normalized indicators [26]. 
 
 
RESULTS AND DISCUSSION 
 
To solve the problem of determining the 
deflections of the beam, 2 methods were used: 
the Ritz-Timoshenko method (MRI) and the 
finite difference method (MD). Both options 
were automated in Microsoft Excel 2010. To
verify the software algorithms, additional 
calculations were performed in the Lira-CAD 
2013 software package (Fig. 3). 
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Table 1. Elastic strength characteristics of polyester composite 

Parameter 
Exposure time of samples in water , day 

0 15 30 175 265 400 

1 2 3 4 5 6 7 

,  132.853 122.581 117.153 84.819 74.592 60.477 

 0.0042 0.0047 0.0051 0.005 0.005 0.0049 

,  31631.667 26081.064 22971.176 16963.8 14918.4 12342.245 

,  150 140.572 135.304 99.773 93.466 82.197 

 0.006 0.0065 0.0066 0.0076 0.0083 0.0097 

,  25000 21626.462 20500.606 13128.026 11260.964 8473.918 

. .  1 0.825 0.726 0.536 0.472 0.39 

. .  1 1 1 1 1 1 

,  0 5.5 7.7 18.7 23 28.3 

/  0 0.1375 0.1925 0.4675 0.575 0.7075 

( ) 1 1 0.998 0.962 0.92 0.827 
 

 
 

 
 

Figure 3. Linear calculation of beam deflections in the Lira-CAD 2013 PC 
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Table 2. Comparison of the results of linear calculations of Lira, MRI and MD at ( ) = 1 

Cross-section 
coordinate x, 

m 

Deflections , mm 

Lira MRI  MD  

0 0 0 0 0 0 

0.625 8.680 8.681 0.01 8.707 0.31 

1.25 16.980 16.982 0.01 17.029 0.29 

1.875 24.566 24.570 0.01 24.635 0.28 

2.5 31.158 31.162 0.01 31.241 0.27 

3.125 36.524 36.529 0.01 36.619 0.26 

3.75 40.485 40.491 0.01 40.588 0.26 

4.375 42.913 42.919 0.01 43.021 0.25 

5 43.730 43.737 0.01 43.840 0.25 

| max | 43.730 43.737 0.01 43.840 0.31 
 
 

Table 3. Comparison of the results of linear calculations of Lira, MRI and MD at ( ) = 0,827 

Cross-section 
coordinate x, 

m 

Deflections , mm 

Lira MRI  MD  

0 0 0 0 0 0 

0.625 10.495 10.497 0.02 10.527 0.30 

1.25 20.531 20.535 0.02 20.590 0.29 

1.875 29.704 29.710 0.02 29.785 0.27 

2.5 37.674 37.681 0.02 37.774 0.26 

3.125 44.163 44.171 0.02 44.275 0.26 

3.75 48.952 48.961 0.02 49.075 0.25 

4.375 51.888 51.897 0.02 52.0160 0.25 

5 52.876 52.886 0.02 53.007 0.25 

| max | 52.876 52.886 0.02 53.007 0.30 
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Note to Tables 2 and 3: the beam is symmetrical 
relative to the middle of the span, so the results 
are presented in abbreviated form. 
The introduction of the degradation stiffness 
function into the algorithm for solving the 
problem by the Ritz-Timoshenko method (MRI) 
was implemented as follows. 
This method is based on the Lagrange-Dirichlet 
theorem on the minimum of the total potential 
energy of a body in equilibrium. Taking into 
account formula (2), the expression for the total 
potential energy of the beam will be written as 
follows: 

 

=
1
2  

1
6  ,                 (3) 

 
where is = 3/12   = 7/448  – the 
moments of inertia of the beam section (axial 
and higher order, respectively). 
In equation (3), the multipliers  and  
represent nothing else than the stiffness of the 
beam, linear and higher order, respectively. 
Multiplying them by the value ( )  obtain 
formulas for recording the stiffness of the beam 
taking into account the degradation function: 

 
= ( ) ;  = ( ) .        (4) 

 
The operation of an external distributed load 

( ) is determined by the formula: 
 

= ( )  .               (5) 

 
Adding (5) and (3) taking into account (4), 
obtain a formula for determining the total 
bending energy of the beam 

 

( ) =
1
2

( )
1
6

( )

( )  .                               (6) 

 
The deflection of a beam can be represented as a 
series with a finite number of terms: 

 

( ) = ( ),    ( = 1, 2, … ),    (7) 

 
where is  – the desired constants (generalize 
coordinates); 

( )  – approximating functions (constructed 
by the method of initial parameters), each of 
which must satisfy geometric boundary 
conditions.  
Formula (6) from the generalize coordinates 
[27] will be written as: 

 
( ) =  .            (8) 

 
From the condition of the minimum of 

the total potential energy of the beam, obtain the 
following nonlinear algebraic equation with 
respect to the deflection amplitude : 

 
= 2 6 = 0 .          (9) 

 
Here the coefficients 1, 2, 3  are determined 
by the formulas: 

 

=
1
2

( )  ;  =
1
6

( )  ;  

= ( )  .                             (10) 

 
The final resolving equation will be written as: 

 
+ + = 0 .                  (11) 
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It follows from formula (7) that in order to 
determine the deflections of the beam, it is 
necessary to find at least one real root of equation 
(11), at which the identical equality of this 
equation is fulfilled. However, this equation is not 
solved in radicals, i.e. there are no formulas that 
would make it possible to calculate the roots by 
coefficients. This was first proved by the 
Norwegian mathematician Nils Abel. However, 
the roots of the 5th degree equation can be found 
with any predetermined accuracy using numerical 
methods. In this case, the actual roots were 
calculated with 1 10  precision. Thus, the 
maximum deflection of the beam, determined by 
the above method (MRI), taking into account the 
degradation function ( ) = 0,827 was =
52,888 . At the same time, the root of 
equation (11) was 1,69 10 . 
To solve this problem by the finite difference 
method (MD), the following algorithm for 

introducing the degradation function of stiffness 
into the calculation is proposed. 
The basic differential equation of bending of a 
beam made of a nonlinear elastic material has 
the form: 

 

( ) + 2
( )

+
( )

= ( ) .                                          (12) 
 

Equation (12) includes both the stiffness 
variable along the length of the beam and its 
derivatives. In this case, they can be calculated 
only numerically using finite-difference 
approximation formulas [28]. 
After a series of transformations, equation (12), 
written in finite-difference form, can be 
transformed relative to the deflection value  
by the following formula: 

 
=  ,                             (13) 

 
where the variable coefficients depending 
on the stiffness will be recalculated at each 

new iteration stage according to the 
formulas: 

 

=  ; = 4 + 2 +  ; = 6 2  ; 

= 4 2 + ; = +  .                                 (14) 
 

Consequently, the smaller the step of dividing 
the beam lengthwise into finite elements , the 
smaller the error value of the finite-difference 
approximation. Thus, to take into account the 

stiffness degradation process, it is proposed to 
multiply formulas (14) by the value of the 
degradation function ( ). 
Then the main equation (13) will be written as: 

 
=

( ) ( )
( )  .                       (15) 

 
Solving the system of finite-difference 
equations (15) with respect to deflections  in 
each section of the beam under consideration 
(we take  = 0,625 ), we determine the 
deflections along the entire length, taking into 
account the degradation function. 
The boundary conditions in the finite-difference 
form when the beam length is split (hinted along 

the edges, Fig. 4) into n = 16 parts will be 
determined by the formulas [28]: 

 
= = 0 ;  + = 0 ;  
+ = 0 ; + = 0 ;  

+ = 0 .                (16) 
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Figure 4. Accounting for boundary conditions in a finite difference scheme 

 
The solution of a system of linear algebraic 
equations involves an iterative calculation 
process. This task was solved using the built-in 
iterative processor in Microsoft Excel 2010. The 
maximum number of iterations was 32767 with 
the accuracy of the calculation 1 10 . Thus, 
the maximum deflection of the beam, 
determined by the above method (MKR), taking 
into account the degradation function ( ) =
0,827 was = 53,013 . 
The discrepancies in the values with the previous 
calculations turned out to be insignificant, 
however, it is important to note that the beam was 
loaded by  of the destructive load, as 
evidenced by the magnitude of the relative 
deformations in the middle of the span =
0,00101,  while the limit deformations for this 
material = 0,006. That is, the beam material 
under such a load works linearly elastic. 
According to clause 15.1.1 of SP 
20.13330.2016, when calculating building 
structures for the second group of limit states, 
the condition must be met: 

 
 ,                          (17) 

 
where is  – the deflection and displacement of 
the structural element (or the structure as a 
whole), determined taking into account the 
factors affecting their values; 

 – the maximum deflection or displacement 
established by the norms. For a beam with a span 
of 10 m, the maximum deflection is 0,0478 m. 
In order to predict the moment of the onset of the 
limit state for the 2 group of limit states, as a result 

of the influence of an aggressive environment, 
taken into account with the help of the degradation 
function, the formula can be used: 

 
( ) = ( ) ,                        (18) 

 
where is 0 – the initial deflection (before the 
start of the aggressive environment). 
Therefore, solving the inverse problem, it is possible 
to determine the critical value of the degradation 
function at which the limiting state occurs: 

 
( ) = =

0,0437
0,0478 = 0,914 .        (19) 

 
The graph of the change in the degradation 
function ( )  over time (Fig. 5) can be 
approximated with a high degree of accuracy by 
higher-order polynomial dependencies, 
however, for this particular case, the accuracy of 
the approximation turns out to be high already 
when using the quadratic equation. 
Substituting the limiting value of the 
degradation function (19) into the quadratic 
equation shown in the graph (Fig. 5) instead of 
the value y, obtain an expression for 
determining the approximate moment of time x 
of the onset of the limiting state: 
 

= 9,5712 10 5,0601 10
+ 8,6421 10 = 0 .                 (20) 

 
Solving the quadratic equation (20) obtain 
275  (Fig. 5). 
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Figure 5. Dependence of the degradation function ( ) on the duration of the medium t, day  

for the conditions according to Table 1 
 

CONCLUSIONS 
 
Thus, based on the above, the following 
conclusions can be made: 
1. In the work, numerical methods of Ritz-
Timoshenko and finite differences were used to 
determine the deflections of a polyester 
composite beam. The control calculation of the 
design in question was performed in the Lira-
CAD 2013 PC, thereby confirming the 
correctness of the proposed automation 
algorithms for MRI and MD in the Microsoft 
Excel 2010 program. 
2. In the calculation formulas of the methods 
under consideration, an additional mathematical 
dependence was introduced, which is a 
degradation function of the stiffness of the bent 
element. Thanks to this, it was possible to 
determine the deflections of the beam taking 
into account the aggressive effects of the 
environment, in this particular case – water. 

3. It was found that the limit state for the 
second group, for a polyester composite beam, 
taking into account a given uniformly 
distributed load, occurs already at the linear 
elastic stage of the material. Thus, it can be 
concluded that the geometric parameters of the 
bent element under consideration are not 
optimal, therefore, the solution of the 
optimization problem is required. 
4. In the work, the value of the limiting 
degradation function of stiffness was 
determined, at which the limit state for the 
structure occurs in the second group. 
5. The construction of a graphical interpretation 
of the dependence of the degradation function of 
stiffness on the duration of the aggressive 
medium, followed by approximation by 
polynomial dependencies, allowed us to 
determine with a sufficient degree of accuracy 
the moment of the onset of the limiting state of 
the structure for the second group. 
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