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ESTIMATION OF THE DEFECT HAZARD CLASS IN BUILDING
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Abstract. Technical condition monitoring of building structures located on hazardous facilities is a necessary
requirement for their sustainable functioning. In this regard, the problem of development intellectual monitoring
systems that allow to detect and classify operating defects by the hazardous level becomes very urgent. The study
presents an approach of building decision support system (DSS) for detecting defects in building structures and
estimation of their hazard class. Proposed approach is based on multi-criteria assessment of consecutive measurements
acquired by acoustic emission method. A distinctive characteristic of the proposed approach is the ability to take into
account the evolution of defects by mapping each AE time-series to diagnostic features matrix and analysing these
matrices in sliding windows with overlay. Each matrix is validated by two criteria that form the necessary and sufficient
conditions of the existence the evolving defects in building structure. They include the criterion for changing the
number of clusters and the criterion for changing the acoustic emission activity. Proposed method was verified on the
experimental data acquired from the technical condition monitoring of the vertical oil tanks. The results obtained from
the experiment confirm the proposal that this approach can be utilized for effectively solving the problem of conditional
monitoring of building structures located on the hazardous facilities allowing to detect and classify defects by their
hazardous level.

Keywords: decision support system, acoustic emission, feature extraction, clustering, defect hazard class estimation,
image processing, distance transform.

CUCTEMA NOJJEPKKHU NPUHATUA PELLEHUHA JJ51
OHEHKHU KJIACCA OITACHOCTH JE®EKTOB
CTPOUTEJIbBHBIX KOHCTPYKIIUU

B.A. Kau, J/I.A. Aoamuesuu

HanmonanpeHelii nccnenoBaTebckuii MOCKOBCKUIN TOCYIapCTBEHHBIN CTPOUTEIbHBIN yHUBEpCcUTET, MockBa, POCCHU S

AHHoTanus. OCyIIecTBICHUE MOHUTOPUHTA TEXHUYECKOT'O COCTOSHUI CTPOUTENBHBIX KOHCTPYKIUH, PacrooKeHHBIX
Ha ONAacCHBIX NPOU3BOJICTBEHHBIX OOBEKTAX, SBJIAETCS HEOOXOAMMBIM TpeOOBaHMEM JUIsi WX YCTOWYHMBOW U
HeTIPephIBHOM paboThl. B 3TOH CBsI3M akTyalbHOH MpOoOJIeMOl CTaHOBUTCS pa3padOTKa MHTEIUICKTYalIbHBIX CHCTEM
MOHHUTOPHUHTA, CIOCOOHBIX OCYIIECTBIIATH JIETEKTUPOBAaHHE U KJIACCH(UKALWIO O3KCIUTyaTallMOHHBIX Je(eKTOB
KOHCTPYKIMH TI0 KJlaccaM OnacHOCTH. B paboTe mpezacraBieH METON MOCTPOCHMSI CHCTEMBI MOJJICPIKKH TPHHSTUS
pemernnii  (CIIIIP), mnozBomsrommii KinaccuumMpoBaTh JAeEKTHl MO CTENEeHH OINACHOCTH, OCHOBAaHHBIM Ha
MHOTOKPUTEPHATIBHOW OIICHKE TII0CIECOBATEIbHBIX W3MEPEHHUH [aHHBIX, IOJYYCHHBIX METOJIOM aKyCTHYeCKON
smuccud. OTINIATETHHON XapaKTepUCTHKOM MPEIOKEHHOTO METOo/a SBJSIETCSI CIIOCOOHOCTh YUUTBHIBATH SBOJIIOINIO
JIe(EeKTOB MMOCPEJCTBOM pacueTa MaTPUIl AUATHOCTHYECKHX MTPU3HAKOB OT UCXOAHBIX BPEMEHHBIX PSAOB aKyCTHIECKON
SMHCCHM B CKOJIB3SIIEM BPEMEHHOM OKHE C TepekpbiTHeM. Kaknas marpuiia AMarHOCTUYECKHX IPU3HAKOB
MIPOBEPSIETCST IBYMSI KPUTEPHUAMH, KOTOpbIE (OPMHUPYIOT HEOOXOIMMBIE M JIOCTaTOYHBIE YCIOBHS CYyIIECTBOBAHMS
9KCIUTYaTallMOHHBIX JIeEKTOB B CTPOMTENIbHBIX KOHCTPYKIHSAX, a WMEHHO, KPUTEPUH M3MEHEHUsI KOJIMUuecTBa
KJIACTEPOB U KPUTCPHUH M3MEHEHHS aKTUBHOCTH AaKyCTHYECKOM sSMuccHH. Bammpmamus yka3aHHOTO TOAXoja
IPOU3BEICHA HA DKCHEPHMEHTAIbHBIX IAaHHBIX, IOJYYCHHBIX B PE3yJbTaTeé MOHUTOPHHIA TEXHUYECKOI'O COCTOSIHUS
BEPTUKAIBHBIX HE(TSIHBIX pe3epByapoB. Pe3ynbTarbl, IOJNydeHHBIE B XOJ€ OSKCIEPHUMEHTA, ITOATBEPIKIAIOT
MIPEATOI0KEHHE O TOM, UTO TPEUIOKEHHBI METO MOKET OBITh UCIIOJIB30BaH JUIs 3P(PEKTHBHOTO PELICHHs TPoOIeMbl
MOHUTOPHHI'A TEXHHUYECKOTO COCTOSIHUSI CTPOMTENBHBIX KOHCTPYKIMH, paclojiOKeHHBIX Ha OMAacHBIX OOBEKTax,
MTO3BOJISTIOIINX OOHAPYKUBAThH U KITACCH(UIIMPOBATh AE(EKTHI MO MX CTEIIEHH OITACHOCTH.

KiroueBble ci1oBa: cucreMa TIOAACPKKU TIPUHATHUSA peHleHPIﬁ, AKYCTHUYCCKast DMUCCHA,
METOABI U3BJICUCHUSA TUATrHOCTHUYICCKUX ITPU3HAKOB, OIICHKA KJIacCa OIMMaCHOCTH, 06pa60TKa H306pa)KCHI/II>'I.
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Estimation of the Defect Hazard Class in Building Structures: a Decision Support System

INTRODUCTION

Continuous evaluation of the technical condition
of building structures located on hazardous
facilities is critically important for providing
their smooth and trouble-free operation. One of
the perspective method of conducting periodic
conditional monitoring is an acoustic emission
method (AE) [1]. It is a common knowledge that
the acoustic emission signal emits in the
material under the process of its deformation or
destruction.  Meanwhile, the AE signal
parameters correlate with evolution dynamics of
the defects that are developing during the
operation of the facility [2]. In this regard, the
problem of developing a decision support
system (DSS) based on AE data, which allows
identifying the appearance of operating defects
in the structure of the construction material in
real time and classifying defects by hazard
classes, seems urgent. According to the
regulatory document [3], the condition of the
defect can be described by one of the four
hazard classes:

1)The 1 class source corresponds to non-
hazardous defect

2)The 1l class source is an evolving defect,
moderately hazardous.

3) The 111 class source corresponds to critically
hazardous evolving defect
4)The IV class source
hazardous defect.
Common systems of AE data processing are
primarily based on the analysis of integral
parameters of AE flow such as mean or peak

is catastrophically

amplitude, the oscillation number, signal
duration, MARSE (the area under the AE signal
envelope  higher than  the  amplitude

discrimination threshold) and are suitable in the
conditions of threshold data acquisition. Such
approaches also include the wavelet-analysis of
AE data [4]. These methods have weak noise
immunity and which leads to their low efficiency
under the signal-to-noise ratio (SNR) < 1.

Authors of paper [5] propose to estimate the
hazard class of the defect by utilizing k-means
algorithm. One of the main disadvantage of this
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method is the requirement of determining the
number of clusters before the calculation.
Furthermore, this approach based on the
estimation of the data of current measurement
and as a result, it does not consider the evolution
of the defect.

The authors of the approach described in the
article [6] propose to calculate periodic statistics
on a set of integral time and frequency diagnostic
parameters, such as amplitude, duration, energy,
signal rise time, average frequency, peak power,
etc. By the calculated statistics they determine and
measure the distances between two classes, one of
which is a reference (its characteristics obtained
during pilot operation), and the other corresponds
to monitoring data [6]. This approach is the most
promising of presented, as it allows detecting
defect in the controlled facility. Nevertheless, the
main drawback of the method proposed in paper is
that the comparison between the two classes by
calculating distance metrics does not allow to
determine the hazard class of the defect.

This study presents an innovative approach of
building an effective decision support system
that provides reliable detection of evolving
defects. Within the framework of the approach,
we describe a method that allows detecting the
moments of transition of operational defects
arising in the construction facility to the stage of
a hazardous developing defect and a critically
hazardous developing defect.

It is further noted that proposed method is an
integral part of a comprehensive methodology for
developing a decision support system for detecting
operational defects in construction structures and
assessing their hazard class. Other aspects of the
implementation of the methodology related to
algorithms for preprocessing measurement data,
methods for extracting diagnostic features and
reducing the dimension of the feature space, as
well as training DSS, are described in [7, 8].

1. METHODS

The proposed method of the defect’s hazard
class determination is based on a multi-criteria
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assessment of diagnostic features extracted from
acoustic emission time series, which are
acquired during the non-destructive testing. This
assessment is a combination of necessary and
sufficient ~ conditions, the  simultaneous
satisfaction of which allows to detect a defect in
the structure and to determine its hazard class. A
distinctive characteristic of the proposed method
is the ability to take into account the evolution
of defects over time by analyzing their
diagnostic features, which are calculated in the
sliding time-domain windows [8]. Meanwhile,
the analysis of multiple consecutive
measurements data collected within different
intervals of time provides trends identification in
diagnostic feature values changes.

In order to improve the accuracy of detecting
developing defects in conditions of random non-
stationary noise, we also propose an original
algorithm based on processing a series of
measurements by means of a multi-criteria
assessment of the defect hazard class.
Figures/Tables should be centred within the
page width and numbered sequentially.
Figures/Tables should be numbered separately.
Multiple figures should be referred

using letters (e.g. Fig. 1a or 1b).

A set of k consecutive measurements of a given
length forms a series of measurements. The
measurements are grouped in series by applying
a sliding window with overlap. Accordingly, the
series is formed from k - 1 measurements related
to the previous series, and one new
measurement. Each series consists of a set of
diagnostic feature matrices, which represent
statistical parameters of acoustic emission time
series obtained during preprocessing [9] and the
feature extraction procedure [7]. This approach
allows to ensure resistance to possible prolonged
non-stationary  interference and  thereby
protecting against false alarms of the DSS.

The proposed method for identifying the
evolution of the hazard class of a defect in the
object of control is based on two criteria:

1) Necessary - a criterion of clusters number
changing that corresponds to defects with
different hazard classes.
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2) Sufficient - a criterion for the activity of
acoustic emission, determined by the results of
detecting anomalies in the diagnostic feature
space.

Let & - diagnostic feature matrix of i-th
measurement, while k - the number of
measurements forming a series. Then S; =
{&_k -.&} is a diagnostic feature series per
time interval (i-k;i). Consider two cases.

1)The defect is initially absent or is not in
evolving condition (I-class).

Then the necessary condition of existence of the
hazardous evolving defect in the inspecting
structure is:

V¢ €S; (Nclust(§;) > 1) A (Nclust(§;) >
Nclust(&;_y) ... Nclust(&;_1)) 1)
where Nclust(é;) — the number of clusters
calculated from diagnostic feature matrix &; of |
-th measurement. This condition should fulfil for
any matrices of diagnostic features, collected
during measurements i — k ...i. The method of
cluster number estimation will be considered
further in this paper.

We formulate the sufficient condition as
follows:

v ‘Ei € Sj Amin < A(Ei) < Amax (2)

where A(§;) - activity coefficient of
measurement i, A,,;, — the threshold value of
activity coefficient for moderately hazardous
defect, A,,4, — the threshold of the activity
coefficient for the critically hazardous defect.
2) The defect initially exists and corresponds to
moderately hazardous evolving defect (I1-class).
Then the necessary condition of the defect
transition to a critically hazardous class is:

V¢ €S; (Nclust($;) > 2) A (Nclust(E;) >
Nclust(&;_y) ... Nclust(é;_1)) 3)

while the sufficient condition is formulated as
follows:
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v S;i € Sj A(fi) > Amax (4)
Now we consider the methods of criteria values
calculation Nclust(&;), A(&;) and in detail.

1.1. The method calculation the cluster
number Nclust(&;).

Determining the hazard class of a defect requires
studying the data on the evolution of AE
diagnostic features. AE events obtained from a
defect of the same hazard class form a cluster.
Meanwhile, the number of clusters increases
when the defect hazard class changes [7]. Based
on this statement, in formulas (1), (3), we
formualte a criterion of changing the number of
clusters by comparing the number of clusters in
diagnostic feature matrices of a sequential set of
measurements (series). There are several ways
to determine the number of clusters Nclust(¢;).
Most of them are related to the calculation of
metrics based on intracluster and intercluster
distances in the space of diagnostic features, in
particular the criterion of Calinski-Harabasz,
Davies-Bouldin and Silhouette [10]. However,
these criteria often lead to erroneous results,
especially for convex clusters. Recently, there
has been a growing interest in approaches based
on visual assessment of clusters [11]. By
translating the unmarked data into an image of n
X n size, where the objects are ordered in such a
way as to simplify the identification of a
potential cluster structure in the data.
Meanwhile, each pixel in the image corresponds
to the degree of difference between pairs of
objects [11]. This image highlights potential
clusters as "dark blocks™ along the diagonal axis
of the image, corresponding to sets of objects
with a low degree of difference.

As part of this paper, we propose a modified
algorithm for determining the number of clusters
based on the clustering visual representation
algorithm (VAT) [11]. The VAT algorithm
maps the difference matrix D as a grayscale
image, each element of which corresponds to the
value of the difference metricd;; between

objects oj and. At the same time, if the object o;
belongs to a certain cluster, then it is a part of a
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submatrix with small values of the difference
metric, i.e. it belongs to one of the "dark blocks"
on the diagonal of the corresponding image. We
propose to determine the number of "dark
blocks" as follows:

1) Segmentation of the matrix image D

Due to the fact that information about the cluster
data structure is displayed in the dark blocks of
the difference matrix image, an important step of
the algorithm is threshold image processing. The
histogram of the matrix D has multiple modes,
meanwhile the first mode corresponds to the
average value of intracluster distances.

In order to identify the binarization threshold we
utilize a combination of Otsu algorithms. The
Otsu algorithm maximizes the intercluster
variance. It is based on the assumption that all
pixels on the image belong to two classes.
However, the image of the difference matrix D
contains blurred boundaries of dark blocks. In
such case the algorithm cannot correctly identify
the threshold value. To identify and suppress
noise objects in the image, we propose to use the
multi-threshold Otsu method [12]. After noise
objects are suppressed, the standard image
binarization method is used, which converts the
original image to a binary one, where the pixel
value on the image is equal to 1, if it is greater
than the threshold in grayscale, otherwise it is
equal to 0.

2) Projecting the image onto the main diagonal
In order to obtain a more informative image that
allows to clearly distinguish the structure of the
"dark blocks", it is necessary to consider the pixel
values along the main diagonal of the image. As
part of this work, it is proposed to project an image
onto the main diagonal by summing the pixel
intensity values along the diagonal of the image.
However, the original binary image may have
residual noise. In order to minimize the effect of
residual noise on the result of counting the number
of clusters, it is necessary to convert the binary
image obtained in the previous step into such a
representation that the value of each pixel of the
resulting image is the distance from this pixel to
the nearest non-zero pixels in the binary image.
This representation is called Distance Transform
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[13]. The conversion of distances together with the
projection on the main diagonal gives a more
visual representation of the VAT image and allows
to translate it into a one-dimensional signal. Thus,
it is possible to define the number of clusters as the
number of peaks on a one-dimensional signal.

3) Determination of the number of peaks on a
one-dimensional diagonal projection signal

In this paper, we propose to utilize a first-order
derivative to detect peaks in the signal. However,
this approach should be used in combination with
smoothing methods in order to reduce the
likelihood of false positives. There are several
ways to smooth the original signal. One of the
most frequently used is the moving average [13].
Its main disadvantage is that averaging can lead
to significant losses in the informative component
of the original signal, which in turn will not allow
to identify the appearance of a new cluster that
corresponds to an evolving defect. In this paper,
we propose to utilize a linear interpolation
between the local maxima of the original signal.
This method allows reaching required level of
smoothing without losses in the informative
component of original signal.

1.2. The method of calculation the activity
coefficient A(§;)

The acoustic emission activity coefficient [14]
allows to determine the presence of long-term
trends in acoustic emission data. Therefore, it can
serve as a criterion for detecting defects. The
activity coefficient is calculated based on the
results of the anomaly detection method proposed
in [8], which consists in determining the optimal
position of the separating hyperplane between
"normal” events and "anomalies”. In the context
of this work, abnormal events include AE signals
emitted by defects of hazard classes Il and IlI
during monitoring. Normal events include hazard
class | events, as well as various types of
interference detected during pilot operation. In
current paper, we propose to define the activity
coefficient as the ratio of the number of abnormal
events to the total number of AE events received
per unit of time.
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Comparison of the activity coefficient with the
reference threshold values allows us to determine
the moment of transition of the object to hazard
classes Il and 111 (2), (4). The threshold values for
defects of class Il and Ill are specific for each
construction facility and require clarification at
the stage of pilot operation.

2. RESULTS AND DISCUSSION

Fig. 1 demonstrates the fragments of
experimental AE time series obtained during the
non-destructive testing of oil reservoir located in
Norilsk. We can see from the fig. 1 that the
amplitude of AE signals increase with the
growth of the hazard class. The data acquisition
was conducted by the means of non-threshold
AE collection method and the AE sensors with
the sampling frequency of 2.5MHz. The
preliminary processing was carried out by
extracting diagnostic features utilizing method
proposed in [7]. A set of calculated diagnostic
feature matrices applied further for this research
and was a source data for the verification of the
methods proposed in current paper.

Fig. 2(a, b) contain the comparison of proposed
criterion of cluster number determination with the
known criterion Davies-Bouldin, based on
intracluster  distances calculation. Fig. 2b
demonstrates computation graphs of optimal
cluster number via Davies-Bouldin criterion
utilizing three methods of cluster analysis: k-
means, hierarchical clustering and Gaussian
mixture distribution. The figure shows that the
quality of the results of the proposed method does
not depend on the type of clustering algorithm, it
is based on image analysis of the cluster data
structure, while the Davis-Boldin index changes
significantly when using various methods of
cluster analysis. The effectiveness of the
proposed criterion for evaluating cluster changes
was confirmed by the presence of peaks on the
first-order derivative of the one-dimensional
image projection of cluster structure in Fig. 2a.
Thus, the proposed criterion has the high
sensitivity to detecting the moments of
occurrence of evolving defects.
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Fig. 3 shows the results of calculating the
proposed criterion for changing the activity
coefficient of acoustic emission. It follows from
the figure that at the moment of defect state
transition to a higher hazard class, the activity of
acoustic emission increases significantly. In the
intervals between the transition moments, the
activity coefficient fluctuates around the average

Vladislav A. Kats, Lyubov A. Adamtsevich

value with a small variance. The level of
threshold values was chosen based on the
median value of the activity coefficient for
defects of the second and third hazard classes
identified during pilot operation. For the second
hazard class, the threshold value was 0.01, for
the third — 0.27

o o
= © N
()] N [9)]

e
i

Activity coefficient, arb.u.

0.05

20 40 60

80 100 120 140

Measurement number

Figure 3. Comparison of the proposed modification of VAT method with Davies-Bouldin index

CONCLUSION

1) The paper presented an approach for
developing a DSS that identifies the defect and
determines its hazard class based on a multi-
criteria  assessment of diagnostic features
extracted from the acoustic emission time series
that are obtained during the diagnostics of
construction structures.

2) We propose to utilize a set of two criteria that
form the necessary and sufficient conditions
under which it is possible to detect moderately
hazardous and critically hazardous evolving
defects in the construction facilities. They
include a criterion for changing the number of
clusters and a criterion for changing the acoustic
emission activity.

3) We described the original method of applying
the proposed criteria, which is based on the
process of grouping single consecutive
measurements in a series by using a sliding
window with overlaps. The proposed approach
provides protection against false positives in the
presence of stationary long-term noise of
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various nature occurring during the condition
monitoring.

4) The verification of the proposed method was
conducted on real construction of oil and gas
facilities — vertical steel tank containing a
defective weld.

5) Based on a numerical comparison of the
results with prior known defects hazard classes
it was verified that the proposed method allows
to effectively determine the hazard class of
evolving defects in construction facilities and
detect the processes of their evolution.
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