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FORCE DRIVEN VIBRATIONS OF NONLINEAR PLATES ON A 
VISCOELASTIC WINKLER FOUNDATION UNDER THE 

HARMONIC MOVING LOAD  
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Abstract: In the present paper, the forced driven nonlinear vibrations of an elastic plate in a viscoelastic medium 
and resting on a viscoelastic Winkler-type foundation are studied. The damping features of the surrounding medium 
and foundation are described by the Kelvin-Voigt model and standard linear solid model with fractional derivatives, 
respectively. The dynamic response of the plate is described by the set of nonlinear differential equations with due 
account for the fact that the plate is being under the conditions of the internal resonance accompanied by the 
external resonance. The expressions for the stress function and nonlinear coefficients for different types of boundary 
conditions are presented.  
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1. INTRODUCTION 
 
Nonlinear dynamic response of elastic plates on 
the viscoelastic foundation is of great interest 
among researchers in the recent years. The 
analysis of free and force driven vibrations of 
nonlinear systems is of great importance for 
defining the dynamic parameters dependent on 
the amplitude-phase relationships and modes of 
vibration [1-3]. Moreover, nonlinear vibrations 

could be accompanied by such a phenomenon as 
the internal resonance, resulting in strong 
coupling between the modes of vibrations 
involved, and hence in the energy exchange 
between the interacting modes. The described 
type of resonance can be characterized as a 
structural resonance, since external resonance, 
for example, could be eliminated by the 
simplest change in the frequency of the 
harmonic force. Both types of resonances 
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separately are extremely unfavorable 
phenomena, and their combination can lead to 
the distraction of not only one element, but the 
entire structure as a whole. The process of the 
nonlinear vibrations of the plates under 
conditions of internal resonances has been 
widely studied in [4-7].  
Depending on the applications of the considered 
foundation, several models have been proposed 
to describe their properties [8]. The viscoelastic 
Winkler-type or Pasternak-type foundations, 
damping features of which are described by the 
fractional derivative approach, are becoming 
increasingly widespread nowadays due to the 
important role of fractional calculus in solving 
problems of structural mechanics [9].  
In the literature there are mainly reports on the 
analysis of vibrations of plates on a viscoelastic 
foundation in the linear formulation of the 
problem [10-17]. Nevertheless, there are papers 
in which nonlinear vibrations of plates on the 
foundation are considered. Thus, large 
deflection dynamic response of isotropic thin 
rectangular plates resting on Winkler, Pasternak 
and nonlinear Winkler elastic foundations was 
investigated in [18]. The dynamic response of a 
rectangular nonlinear plate resting on a 
viscoelastic Winkler-type foundation, the 
damping features of which are described by the 
fractional derivative Kelvin-Voigt model, for 
the first time was studied in [19]. The standard 
linear solid model with fractional derivatives for 
defining the viscoelastic properties of the 
Winkler-type foundation was applied in [20] for 
the analysis of free vibrations of the plate. 
The problems of dynamic response of the 
rectangular plate supported by viscoelastic 
foundations and subjected to moving loads are 
studied in [16, 21-23]. This problem could find 
many engineering applications, such as aircraft–
runway interaction or vehicle-road interaction, 
pavement-foundation system, dynamics of the 
helipad system, ship deck (especially aircraft 
carriers), soil-foundation system of offshore 
structures, railway track system, reinforced 
warehouse floor, etc [1]. 

However, the dynamic problems considering 
time-dependent properties of the material of the 
plate or foundation are usually restricted to 
simply supported plates. But in the literature 
there are solutions for rectangular plates with 
different combinations of simple boundary 
conditions (i.e., either clamped (C), simply 
supported (SS), or free (F)) [24]. Thus, 
nonlinear frequencies of vibrations of 
rectangular plates for three different types of 
boundary conditions (B.Cs) have been 
calculated in [1]. The linear dynamic response 
of thin plates resting on a fractional derivative 
Kelvin-Voigt viscoelastic foundation subjected 
to a moving point load is investigated in [16] for 
four types of boundary conditions. Semi-
analytical solutions and comparative analysis of 
natural frequencies and midpoint displacements 
for vibration of the viscoelastic Kirchhoff–Love 
plate on the Kelvin-Voigt viscoelastic 
foundation with various B.Cs are presented in 
[25].   
In the present paper, the nonlinear vibrations of 
the “elastic plate – viscoelastic foundation” 
system is studied for the case of combination of 
one-to-one internal and external resonances. 
The properties of the foundation and of the 
surrounding medium are described by the 
fractional derivative standard linear solid model 
and Kelvin–Voigt model, respectively. The 
nonlinear force driven vibrations of the plate on 
the viscoelastic foundation are studied under the 
harmonic moving load for different types of 
boundary conditions.  
 
 
2. PROBLEM FORMULATION 
 
Let us consider nonlinear vibrations of a simply 
supported elastic plate rested on a viscoelastic 
Winkler-type foundation (Fig.1), the dynamic 
response of which is described by the von 
Karman equation in terms of plate’s lateral 
deflection ( , , )w w x y t  and Airy’s stress 
function : 
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where 3 2/12(1 )D Eh  is the plate’s 
cylindrical rigidity, E  and  are the elastic 
modulus and Poisson’s ratio of the plate’s 
material, respectively, h  and  are its 
thickness and density, t  is the time, 

( ( )) ( / 2)sin Fq P x g t y b t  is external 
load, P and F  are the magnitude and the 
frequency of the applied force, respectively,  
is the Dirac delta function, and ( )g t  is the 
function defining the position of moving load, 

( )g t Vt  for a load moving with a constant 
velocity. Besides, ( )g t  must satisfy 
0 ( ) .g t a   
In equation (1), 2F  is the reaction force of the 
viscoelastic Winkler-type foundation, 
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1 1 1 0æF D w  is the damping force of the 

viscoelastic medium possessing the retardation 
time 1  and damping coefficient 1æ , which is 
modeled by the viscoelastic Kelvin-Voigt model 
with the Riemann-Liouville derivative 1

0D  of 

the fractional order 1  10 1  [9,26] 
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and (1 )  is the Gamma function.  
Let us assume, following [27], that the 
compliance operator of a viscoelastic foundation 
is described by the standard linear solid model 

with the Riemann-Liouville fractional derivative 
0D  (3) at 2 :  
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where  is the coefficient of instantaneous 
compliance of the foundation, 1 , 

0  is the defect of the compliance, 
i.e., the value characterizing the decrease in the 
compliance operator from its non-relaxed value 
to its relaxed value.  
 

 
Figure 1. Plate on a viscoelastic foundation 

subjected to a moving harmonic load 
 
The following boundary conditions could be 
added to the set of equations (1) and (2) at each 
edge: 
1) Simply supported edges (S) 
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Therefore, the following four types of boundary 
conditions (B.Cs) for the plate will be 
considered: all edges are simply-supported 
(SSSS), all edges are clamped (CCCC), two 
opposite edges are clamped and other two edges 
are simply supported (CSCS), and one edge is 
simply supported and others are clamped 
(CCSC). In the abbreviation of B.Cs the letter 
symbols are used, for example, CSCS means a 
plate with edges 0x  and x a  clamped (C), 

0y  and y b  simply supported (S).  
In order to identify the possibility of the 
occurrence of the internal resonance during 
nonlinear vibrations of a plate rested on a 

viscoelastic foundation and to carry out its 
subsequent analysis, suppose that only two 
natural modes of vibrations with numbers 1 1m n  

 2 2m n  are excited. Then the deflection of the 
plate could be represented in the following 
form:  

1 1 2 21 2( , , ) ( ) , ( ) , ,m n m nw x y t x t W x y x t W x y (7) 

where ( )ix t  ( 1, 2)i  are generalized 

displacements, and ,
i im nW x y  are the eigen 

functions. The mode shape functions for various 
B.Cs are presented in Table1 [25].   

 
Table 1. Plate mode shapes and natural frequencies for different B.Cs. 
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Substituting the proposed solution (7) in (2), 
taking into account the boundary conditions to 
be considered for each specific case and 
integrating with account for the orthogonality 
conditions of sines, we obtain the expressions 
for the stress function for different types of 
boundary conditions, which are presented in 
Appendix A. 
Substituting the assumed two-term expansion 
for the deflection function of the plate (7) and 
the corresponding stress function in the equation 

of motion of the plate (1) resting on the 
viscoelastic Winkler-type foundation yields the 
following set of nonlinear differential equations 
with respect to the generalized displacements:  
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3. METHOD OF SOLUTION  
 
In order to solve the set of Eqs. (15)-(16), the 
method of multiple time scales [29,30] could be 
utilized, according to which the generalized 
displacements ( )ix t  could be represented via the 
following expansion in two time scales 0T  and 2T : 
 

2
1 0 2 2 0 2

3
3 0 2

( ) = ( , ) ( , )
( , ) ...,

i i i

i

x t X T T X T T
X T T

  (17) 

 
where = n

nT t  are new independent variables, 
among them: 0 =T t  is a fast scale characterizing 
motions with the natural frequencies, and 

2
2 =T t  is a slow scale characterizing the 

modulation of the amplitudes and phases of the 
modes with nonlinearity. 
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Recall that the first and the second time 
derivatives, as well as fractional derivative 
could be expanded in terms of the new time 
scales, respectively, as follows [29]: 
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where i
i h

  ( 1, 2i ).  

The solution of linear equations (21) and (22) 
has the form 
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where 2 1, 2jA T j  are yet unknown 
functions, and 2jA T  are conjugate functions 
with 2jA T .  
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Recall that the first and the second time 
derivatives, as well as fractional derivative 
could be expanded in terms of the new time 
scales, respectively, as follows [29]: 
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where 0 0/D T , and 2 2/D T . 
Expansion of the Rabotnov dimensionless 
fractional operator in a Taylor series in terms of 
a small parameter has the form [20]: 
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The analysis of relations (26)-(27) shows that 
the case of the occurrence of the one-to-one 
internal resonance is possible, when any two 
vibration frequencies of the mechanical system 
“plate+viscoelastic foundation” are close to 
each other, namely: 
 
   1 2 ,    and therefore,    1 2 . (28) 
 
From equations (26) and (27) it follows that the 
internal resonance could be accompanied by the 
external resonance when one of the following 
conditions is fulfilled: 
 

(1) ,i fi F   (31) 

                          (2) i fi F .                (29) 
 
The condition for eliminating secular terms in 
equations (26) and (27) with account for 
relationships (28)-(29) leads to a set of two 
governing equations:  
 

1 22 1
1 2 1 1 1 2 2 1 1

2 2
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3 2 0,

i D A i i A

A A A A A A A f
(30) 
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3 2 0.

i D A i i A

A A A A A A A f
 (31) 

 
Multiplying (30) by 1A  and (31) by 2A , adding 
and subtracting the equations conjugate to them, 
and representing functions iA  in the polar form  
 

          = ( = 1,2)i i
i iA a e i ,              (32) 

 
where 2( )i ia a T  and 2( )i i T  are the 
functions of amplitudes and phases of 
vibrations, yield the following set of equations:  
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1
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 (33) 
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2 2

a a
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2 2 3 2 2 4 2 1

11 2
4 2 1 2 2 2 2

1 3
2 2

1 1cos cos 0,
2 2

a a

a f a
(36) 

 
where 2 12( )  is the phase difference,  
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1
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2
2 2 2

2 2
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sin ,
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1= ( = 1, 2),
2
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1 ( ) cos

i i i i i

i

i i i i i

i

i i

i i i

i
i

i

s R

R

i

R

(37) 

 
The set of equations (33)-(36) is the governing 
one for the amplitudes and phases of nonlinear 
force driven vibrations of the elastic simply 
supported plate on a nonlinear viscoelastic 
Winkler-type foundation, damping features of 
which are defined by the fractional derivative 
standard linear solid model (4), when vibrations 
occur in a viscoelastic surrounding medium, 
properties of which are described by the 
fractional derivative Kelvin-Voigt model.  
For other types of boundary conditions, the 
governing set of equations could be obtained in 
a similar way by changing the vibration 
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Recall that the first and the second time 
derivatives, as well as fractional derivative 
could be expanded in terms of the new time 
scales, respectively, as follows [29]: 
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where 0 0/D T , and 2 2/D T . 
Expansion of the Rabotnov dimensionless 
fractional operator in a Taylor series in terms of 
a small parameter has the form [20]: 
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Substituting expansion (17) with account for 
relationships (18)-(19), after equating the 
coefficients at like powers of  to zero, we are 
led for the case of forced vibrations to the 
following set of recurrence equations to various 
orders: 
to order   
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where i
i h

  ( 1, 2i ).  

The solution of linear equations (21) and (22) 
has the form 
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where 2 1, 2jA T j  are yet unknown 
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and (24) yields 
 

1 22

1

1

2 2
0 13 1 13 1 2 1 1 0

1
1 1 2 2 1 1 1 0

2
1 1 1 0 1 1 0 1

2
2 2 1 2 0 2 2 1 0

2
2 1 2 0 1 1 0

1 0

2 exp

(1 ) exp

exp 3 3 exp

exp 2 2 exp

exp 2 exp ( )

exp ( )

f F

f F

D X X i D A i T

i i A i T

A i T A i T A

A T A A i T

A i T A f i T

f i T ,cc

 

 (26) 

1 22

2

2

2 2
0 23 2 23 2 2 2 2 0

1
1 2 2 2 2 2 2 0

2
3 2 2 0 2 2 0 2

2
4 1 1 2 0 1 1 2 0

2
1 2 1 0 2 2 0

2 0

2 exp

(1 ) exp

exp 3 3 exp

exp 2 2 exp

exp 2 exp ( )

exp ( )

f F

f F

D X X i D A i T

i i A i T

A i T A i T A

A T A A i T

A i T A f i T

f i T .cc
  (27) 
 

The analysis of relations (26)-(27) shows that 
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each other, namely: 
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                          (2) i fi F .                (29) 
 
The condition for eliminating secular terms in 
equations (26) and (27) with account for 
relationships (28)-(29) leads to a set of two 
governing equations:  
 

1 22 1
1 2 1 1 1 2 2 1 1

2 2
1 1 1 2 1 2 2 1 2 2 1

2 (1 )

3 2 0,

i D A i i A

A A A A A A A f
(30) 

1 22 1
2 2 2 1 2 2 2 2 2

2 2
3 2 2 4 2 1 4 2 1 1 2

2 (1 )

3 2 0.

i D A i i A

A A A A A A A f
 (31) 

 
Multiplying (30) by 1A  and (31) by 2A , adding 
and subtracting the equations conjugate to them, 
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where 2( )i ia a T and 2( )i i T  are the 
functions of amplitudes and phases of 
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The set of equations (33)-(36) is the governing 
one for the amplitudes and phases of nonlinear 
force driven vibrations of the elastic simply 
supported plate on a nonlinear viscoelastic 
Winkler-type foundation, damping features of 
which are defined by the fractional derivative 
standard linear solid model (4), when vibrations 
occur in a viscoelastic surrounding medium, 
properties of which are described by the 
fractional derivative Kelvin-Voigt model.  
For other types of boundary conditions, the 
governing set of equations could be obtained in 
a similar way by changing the vibration 
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frequencies (see Table 1) and coefficients 
1 4  (presented in Appendix B) in the 

expressions (33)-(36), as well as the terms 
depending on the external load. 
 
 
4. NUMERICAL EXAMPLE  
 
Equations (33)-(36) were solved numerically in 
the «Mathcad 15» system by using the method 
suggested in [31] for the cases of free and forced 
driven vibrations of the SSSS plate. A quadratic 
plate was considered as an example with the 
following geometric parameters: 10 ,a b m

0,3h m , 1 2 1,m n 2 1 3m n and material 
parameters 73, 25 10 ,E kPa 32400kg m , 
and 0.3.  The harmonic load is moving with 
the constant velocity 30V m s  and frequency 

95F s-1 along the x-axis. The vibrations of 
the plate are studied for three cases of external 
load: 2140P N  (Fig. 2b), 5000P N  (Fig. 
2c), and 7140P N  (Fig. 2d).  

The plate is subjected to the conditions of the 
internal resonance 1:1 at 1 2 104,42 s-1, 
accompanied by the external resonance: 
 

    
11

3,14 1 30 95 104,42
10f F s-1.  

 
Figure 2 clearly shows the energy exchange 
between interacting modes of nonlinear free 
vibrations and force driven vibrations of the 
simply supported plate on the elastic ( 2 0 ) and 
viscoelastic ( 2 0 ) foundation via the fractional 
calculus standard linear solid for different values 
of external load. It is seen that an increase in the 
magnitude of the external force results in the 
increase in dimensionless amplitudes of vibrations 
of the plate. The dependence of the amplitudes of 
nonlinear vibrations on the values of fractional 
parameters 1  and 2  is shown in Figure 3. With 
the appearance of the damping properties of the 
viscoelastic medium, the damping of vibrations 
increases. 
 
 

 
Figure 2. The dimensionless T2-dependence of the dimensionless amplitudes of nonlinear vibrations 

for SSSS-plate for 1 2 1,m n 2 1 3m n : a) free vibrations, and force driven vibrations at 
b) 1 23, 3;f f  c) 1 27, 7;f f  d) 1 210, 10;f f  solid line – a2, dashed line – a1 

 
Figure 3. The dimensionless T2-dependence of the dimensionless amplitudes of nonlinear vibrations 

of SSSS-plate for different values of fractional parameters at 1 23, 3;f f  1 2 1,m n

2 1 3;m n  solid line – a2, dashed line – a1 

 

5. CONCLUSION 
 
In the present paper, the problem of nonlinear 
vibrations of a von Karman elastic plate based 
on a viscoelastic Winkler-type foundation and 
subjected to moving load is solved. The 
damping features of the viscoelastic foundation 
are described by the fractional derivative 
standard linear solid model, while the damping 
properties of the environment in which the 
vibrations occur are described by the Kelvin-
Voigt model with the Riemann-Liouville 
fractional derivative. The expressions for the 
stress function and nonlinear coefficients for 
SSSS, CCCC and CSCS types of boundary 
conditions are presented. The governing 
equations are obtained for determining 
nonlinear amplitudes and phases in the case of 
forced driven vibrations, when the natural 
frequencies of the two dominant vibration 
modes are close to each other and to the 
frequency of the external load. The resulting set 
of equations allows one to control the damping 
properties of the external environment and the 
foundation by changing the fractional 

parameters from zero, what corresponds to an 
elastic medium and/or elastic foundation, to 
unit, what conforms to the traditional standard 
linear solid model, resulting in the expansion of 
the range of applicability of the solution 
obtained.  
The derived set of equations has been solved 
numerically for the SSSS case of boundary 
conditions using the approach described in [31].  
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frequencies (see Table 1) and coefficients 
1 4  (presented in Appendix B) in the 

expressions (33)-(36), as well as the terms 
depending on the external load. 
 
 
4. NUMERICAL EXAMPLE  
 
Equations (33)-(36) were solved numerically in 
the «Mathcad 15» system by using the method 
suggested in [31] for the cases of free and forced 
driven vibrations of the SSSS plate. A quadratic 
plate was considered as an example with the 
following geometric parameters: 10 ,a b m

0,3h m , 1 2 1,m n 2 1 3m n and material 
parameters 73, 25 10 ,E kPa 32400kg m , 
and 0.3.  The harmonic load is moving with 
the constant velocity 30V m s  and frequency 

95F s-1 along the x-axis. The vibrations of 
the plate are studied for three cases of external 
load: 2140P N  (Fig. 2b), 5000P N  (Fig. 
2c), and 7140P N  (Fig. 2d).  

The plate is subjected to the conditions of the 
internal resonance 1:1 at 1 2 104,42 s-1, 
accompanied by the external resonance: 
 

    
11

3,14 1 30 95 104,42
10f F s-1.  

 
Figure 2 clearly shows the energy exchange 
between interacting modes of nonlinear free 
vibrations and force driven vibrations of the 
simply supported plate on the elastic ( 2 0 ) and 
viscoelastic ( 2 0 ) foundation via the fractional 
calculus standard linear solid for different values 
of external load. It is seen that an increase in the 
magnitude of the external force results in the 
increase in dimensionless amplitudes of vibrations 
of the plate. The dependence of the amplitudes of 
nonlinear vibrations on the values of fractional 
parameters 1  and 2  is shown in Figure 3. With 
the appearance of the damping properties of the 
viscoelastic medium, the damping of vibrations 
increases. 
 
 

 
Figure 2. The dimensionless T2-dependence of the dimensionless amplitudes of nonlinear vibrations 

for SSSS-plate for 1 2 1,m n 2 1 3m n : a) free vibrations, and force driven vibrations at 
b) 1 23, 3;f f  c) 1 27, 7;f f  d) 1 210, 10;f f  solid line – a2, dashed line – a1 

 
Figure 3. The dimensionless T2-dependence of the dimensionless amplitudes of nonlinear vibrations 

of SSSS-plate for different values of fractional parameters at 1 23, 3;f f  1 2 1,m n

2 1 3;m n  solid line – a2, dashed line – a1 

 

5. CONCLUSION 
 
In the present paper, the problem of nonlinear 
vibrations of a von Karman elastic plate based 
on a viscoelastic Winkler-type foundation and 
subjected to moving load is solved. The 
damping features of the viscoelastic foundation 
are described by the fractional derivative 
standard linear solid model, while the damping 
properties of the environment in which the 
vibrations occur are described by the Kelvin-
Voigt model with the Riemann-Liouville 
fractional derivative. The expressions for the 
stress function and nonlinear coefficients for 
SSSS, CCCC and CSCS types of boundary 
conditions are presented. The governing 
equations are obtained for determining 
nonlinear amplitudes and phases in the case of 
forced driven vibrations, when the natural 
frequencies of the two dominant vibration 
modes are close to each other and to the 
frequency of the external load. The resulting set 
of equations allows one to control the damping 
properties of the external environment and the 
foundation by changing the fractional 

parameters from zero, what corresponds to an 
elastic medium and/or elastic foundation, to 
unit, what conforms to the traditional standard 
linear solid model, resulting in the expansion of 
the range of applicability of the solution 
obtained.  
The derived set of equations has been solved 
numerically for the SSSS case of boundary 
conditions using the approach described in [31].  
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