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FORCE DRIVEN VIBRATIONS OF NONLINEAR PLATES ON A
VISCOELASTIC WINKLER FOUNDATION UNDER THE
HARMONIC MOVING LOAD

Marina V. Shitikova, Anastasiya I. Krusser
Voronezh State Technical University, Voronezh, RUSSIA

Abstract: In the present paper, the forced driven nonlinear vibrations of an elastic plate in a viscoelastic medium
and resting on a viscoelastic Winkler-type foundation are studied. The damping features of the surrounding medium
and foundation are described by the Kelvin-Voigt model and standard linear solid model with fractional derivatives,
respectively. The dynamic response of the plate is described by the set of nonlinear differential equations with due
account for the fact that the plate is being under the conditions of the internal resonance accompanied by the
external resonance. The expressions for the stress function and nonlinear coefficients for different types of boundary
conditions are presented.

Keywords: nonlinear vibrations of thin plates, viscoelastic Winkler-type foundation, fractional derivative model,
boundary conditions, combination of internal and external resonances

AHAJIN3 BBIHY ) KJEHHBIX HEJTUHENHBIX KOJIEBAHUH
IINTACTUHKH HA BA3KOYIIPYT'OM OCHOBAHHUH
BUHKJVIEPA OT AEMCTBUSA NIOABUKHOU HATPY3KH

M.B. Illumuxoea, A.H. Kpyccep

Boponexckuii rocy1apcTBEHHBII TeXHUYECKUN YHUBEPCUTET, I'. Boponexx, POCCU

AHnHoTanus: VccnenoBanbl HeJMHEHHBIC BBIHYXKACHHBIC KOJIeOaHNUS yHNpPyrol IUIACTHHBI B BA3KOYNPYTroi cpeae u
Ha BSI3KOYIPYroM OCHOBaHMM Bunkiepa. Jlemndupyromme CBOWCTBA OKPYXKArOIICH Cpeasl W OCHOBAHHUS
OIMCHIBaIOTCS pu nomoiu Mozxeneil Kenpuna-doiirra n craHJapTHOrO JIMHEHHOTO TBEPJIOrO Tesa ¢ JIPOOHOMH
MIPOM3BOIHON COOTBETCTBEHHO. KoeOaHus IIIaCTHUHKH ONMCHIBAIOTCS CHCTEMOM HEJIMHEHHBIX AU (depeHInaIbHbIX
YPaBHEHMH, C Y4YETOM TOro, 4TO IUIACTMHKA HAXOIUTCS B YCIOBHMSX COYETAaHUS BHYTPEHHEIO U BHEIIHEro
pe3oHaHcoB. [lomydeHs! BeIpakeHNS I QYHKIUH HAOpPsHDKEHUH M KO3((UINEHTOB NMPY HEJIMHEHHBIX WICHAX JUIs
Pa3IUYHBIX THUIIOB TPAHUYHBIX yCIOBUI.

KiroueBble cjioBa: HeTMHEHHBIE KOJIeOaHMS TUTACTHHOK, BA3KOYIIPYToe OCHOBaHME THITa BuHkiepa,
MOJIETb C IpOOHOM MPOM3BOAHON, IPAaHUIHBIC YCIIOBHS, COUETAaHNE BHYTPEHHETO M BHEIITHETO PE30HAHCOB

1. INTRODUCTION

Nonlinear dynamic response of elastic plates on
the viscoelastic foundation is of great interest
among researchers in the recent years. The
analysis of free and force driven vibrations of
nonlinear systems is of great importance for
defining the dynamic parameters dependent on
the amplitude-phase relationships and modes of
vibration [1-3]. Moreover, nonlinear vibrations
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could be accompanied by such a phenomenon as
the internal resonance, resulting in strong
coupling between the modes of vibrations
involved, and hence in the energy exchange
between the interacting modes. The described
type of resonance can be characterized as a
structural resonance, since external resonance,
for example, could be eliminated by the
simplest change in the frequency of the
harmonic force. Both types of resonances
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separately  are  extremely  unfavorable
phenomena, and their combination can lead to
the distraction of not only one element, but the
entire structure as a whole. The process of the
nonlinear vibrations of the plates under
conditions of internal resonances has been
widely studied in [4-7].

Depending on the applications of the considered
foundation, several models have been proposed
to describe their properties [8]. The viscoelastic
Winkler-type or Pasternak-type foundations,
damping features of which are described by the
fractional derivative approach, are becoming
increasingly widespread nowadays due to the
important role of fractional calculus in solving
problems of structural mechanics [9].

In the literature there are mainly reports on the
analysis of vibrations of plates on a viscoelastic
foundation in the linear formulation of the
problem [10-17]. Nevertheless, there are papers
in which nonlinear vibrations of plates on the
foundation are considered. Thus, large
deflection dynamic response of isotropic thin
rectangular plates resting on Winkler, Pasternak
and nonlinear Winkler elastic foundations was
investigated in [18]. The dynamic response of a
rectangular nonlinear plate resting on a
viscoelastic  Winkler-type  foundation, the
damping features of which are described by the
fractional derivative Kelvin-Voigt model, for
the first time was studied in [19]. The standard
linear solid model with fractional derivatives for
defining the viscoelastic properties of the
Winkler-type foundation was applied in [20] for
the analysis of free vibrations of the plate.

The problems of dynamic response of the
rectangular plate supported by viscoelastic
foundations and subjected to moving loads are
studied in [16, 21-23]. This problem could find
many engineering applications, such as aircraft—
runway interaction or vehicle-road interaction,
pavement-foundation system, dynamics of the
helipad system, ship deck (especially aircraft
carriers), soil-foundation system of offshore
structures, railway track system, reinforced
warehouse floor, etc [1].
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However, the dynamic problems considering
time-dependent properties of the material of the
plate or foundation are usually restricted to
simply supported plates. But in the literature
there are solutions for rectangular plates with
different combinations of simple boundary
conditions (i.e., either clamped (C), simply
supported (SS), or free (F)) [24]. Thus,
nonlinear  frequencies of vibrations of
rectangular plates for three different types of
boundary conditions (B.Cs) have been
calculated in [1]. The linear dynamic response
of thin plates resting on a fractional derivative
Kelvin-Voigt viscoelastic foundation subjected
to a moving point load is investigated in [16] for
four types of boundary conditions. Semi-
analytical solutions and comparative analysis of
natural frequencies and midpoint displacements
for vibration of the viscoelastic Kirchhoff-Love
plate  on the Kelvin-Voigt viscoelastic
foundation with various B.Cs are presented in
[25].

In the present paper, the nonlinear vibrations of
the “elastic plate — viscoelastic foundation”
system is studied for the case of combination of
one-to-one internal and external resonances.
The properties of the foundation and of the
surrounding medium are described by the
fractional derivative standard linear solid model
and Kelvin—-Voigt model, respectively. The
nonlinear force driven vibrations of the plate on
the viscoelastic foundation are studied under the
harmonic moving load for different types of
boundary conditions.

2. PROBLEM FORMULATION

Let us consider nonlinear vibrations of a simply
supported elastic plate rested on a viscoelastic
Winkler-type foundation (Fig.1), the dynamic
response of which is described by the von
Karman equation in terms of plate’s lateral
deflection w=w(x,y,t) and Airy’s stress

function ¢:

International Journal for Computational Civil and Structural Engineering



Force Driven Vibrations of Nonlinear Plates on a Viscoelastic Winkler Foundation Under the Harmonic Moving Load

o’w 62W6¢ 62W8¢

DV*w+ ph—;
o2 o oy oy oX "
2 2
2 WP 4k,
OXOYy OXoy
2 a2 A2
vig=Eh|[ Q| _dwWow 2)
OXoy oX~ oy

where D=Eh®/12(1-v?) is the plate’s
cylindrical rigidity, E and v are the elastic

modulus and Poisson’s ratio of the plate’s
material, respectively, h and p are its
thickness and density, t is the time,
q=Po(x—g(t))o(y—-b/2)sinQ.t is external
load, P and Q. are the magnitude and the
frequency of the applied force, respectively, &
is the Dirac delta function, and g(t) is the
function defining the position of moving load,
g(t)=Vt for a load moving with a constant
velocity.  Besides, g(t) must satisfy
0<g(t)<a.

In equation (1), F, is the reaction force of the
viscoelastic Winkler-type foundation,
F =a,7/"DJtw is the damping force of the
viscoelastic medium possessing the retardation
time 7, and damping coefficient @&,, which is

modeled by the viscoelastic Kelvin-Voigt model
with the Riemann-Liouville derivative D}: of

the fractional order y, (0<y, <1) [9,26]

Cx(t—tdt!

Do.x(t) = dt o T(— )"

O<y=rn<D, @)

and T'(1-y) is the Gamma function.

Let us assume, following [27], that the
compliance operator of a viscoelastic foundation
is described by the standard linear solid model
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with the Riemann-Liouville fractional derivative
D B)at y=y,:

i=d|1-v,— > | 4)
1+7;D
where A_ is the coefficient of instantaneous

compliance of the foundation, v =A11",
Al=A,—1, is the defect of the compliance,

i.e., the value characterizing the decrease in the
compliance operator from its non-relaxed value
to its relaxed value.

i 4

T 1

Ao T2, %2

Figure 1. Plate on a viscoelastic foundation
subjected to a moving harmonic load

The following boundary conditions could be
added to the set of equations (1) and (2) at each
edge:

1) Simply supported edges (S)

2
at x=0 and a, szvzvzo,

X
aty=0and b, w= Y =0;

2) Clamped edges (C)

at x=0 and a, w:;ﬂzo,

X

(6)

aty=0 and b, Wzﬂzo.
oy
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Therefore, the following four types of boundary
conditions (B.Cs) for the plate will be
considered: all edges are simply-supported
(SSSS), all edges are clamped (CCCC), two
opposite edges are clamped and other two edges
are simply supported (CSCS), and one edge is
simply supported and others are clamped
(CCSC). In the abbreviation of B.Cs the letter
symbols are used, for example, CSCS means a
plate with edges x=0 and x=a clamped (C),
y =0 and y =b simply supported (S).

In order to identify the possibility of the
occurrence of the internal resonance during
nonlinear vibrations of a plate rested on a
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viscoelastic foundation and to carry out its
subsequent analysis, suppose that only two
natural modes of vibrations with numbers m,n,

u m,n, are excited. Then the deflection of the

plate could be represented in the following
form:

WX, Y,8) = X (W, (X Y) % (OW,,,, (X,Y), (7)
X, (t) (i=12) are

displacements, and Wmini(X, y) are the eigen

where generalized

functions. The mode shape functions for various
B.Cs are presented in Tablel [25].

Table 1. Plate mode shapes and natural frequencies for different B.Cs.

B.Cs. W, (% Y) QF
SSSS sin 21X gjn 204 2 = E”4h22 H(&m? + nf)2

a b 12p(l-v)b
cccc|  (1-cos 2ﬂerlnix)(l—cos@) f:%(sg“mﬁ +2&°m?n’ +3n')
CSCS (1—cos 2”E;n‘x)sin Y L= %(454”‘? +2&'mfn? +0.75n )
cesc | (€08 37;2‘)( —cos%)(l—coszz%) 2 :m/;%:iw(&%g“mf +5£°m’n’ +8n/')

Substituting the proposed solution (7) in (2),
taking into account the boundary conditions to
be considered for each specific case and
integrating with account for the orthogonality
conditions of sines, we obtain the expressions
for the stress function for different types of
boundary conditions, which are presented in
Appendix A.

Substituting the assumed two-term expansion
for the deflection function of the plate (7) and
the corresponding stress function in the equation
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of motion of the plate (1) resting on the
viscoelastic Winkler-type foundation yields the
following set of nonlinear differential equations
with respect to the generalized displacements:

o 2 3 2 2
X+ @ X + Xy + XXy + & DX —

8
o, ()% = R (1) ©

. 2 3 2 2 7
X, + @5 X, + X, + o, X, X + &7 DX, —

o, ()% = P, (1) ©)
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where

= (ﬁ PsinQ_.t 5(x—g(t))o(y—0.5b)x
00 (10)

(x,y) dxdy /phﬁ[ ] dxdy,
00

a; are the coefficients depending on numbers of
the vibration modes which are given in

Appendix B, & is a small dimensionless
. ) E,z*
parameter, z; are finite values, &y =—"1,
ph
2 /1 Vé: 2 2 - .
eu,=——, o and o, are Vvibration
h

frequencies of the mechanical system “plate +
viscoelastic foundation”

a)i2:Qi2+l—°°,

oh 11)

and Q? are the natural frequencies of the linear
vibration of the plate presented in Table 1, and
a’; (zJ?) is the Rabotnov dimensionless

fractional operator defined as follows [28]

1

To77D% 12
1+ D "

3 (z77) =

When deriving relations (8) and (9), the filtering
property of the delta function should be taken

into account:
[[30¢=x)5(y = yo) f (x, y) dxdy = f (%, ¥,). (13)

Considering (13), equation (10) for the case of a

simply supported plate is reduced as
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R(t) = PsinQ.t[[o(x-Vt)s(y~b/2)x

xsin (mjsin (mj dxdy =
a b
= Psin(”m‘thsin(ﬂ—m]sin Q.t.
a 2

Then with due account for (14) the governing
equations (8) and (9) could be written as

(14)

X, + o % + oy + XX + 8" DX, — (15)
—&°1, 3, (72)%, —4&’ f sino tsinQ t =0,

) 2 3 2 2 j2
X, + @, X, + 0 X5 + o, XX + &1 Dt X,

(16)

—&°11, 3, (13°)%, —4&’ f,sinw; tsinQ t =0,

_mV
o, =——— are

P . (7zn
sinj —|.
abph [ 2 j

3. METHOD OF SOLUTION

where frequencies, and

& f=

In order to solve the set of Egs. (15)-(16), the
method of multiple time scales [29,30] could be
utilized, according to which the generalized
displacements x;(t) could be represented via the

following expansion in two time scales T, and T, :

X (t) = gxil(TO’T2)+82Xi2
+&° X5 (Mo, T,) + .y

T,,T,)+ (17)

where T, =¢"t are new independent variables,
among them: T, =t is a fast scale characterizing
motions with the natural frequencies, and
T,=ct* is a slow scale characterizing the

modulation of the amplitudes and phases of the
modes with nonlinearity.
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Recall that the first and the second time
derivatives, as well as fractional derivative
could be expanded in terms of the new time
scales, respectively, as follows [29]:

%:D0+52D2+ :
) (18)
d
o D +2£°D,D, +
or (4] (Dy+&°D,+...) =
©dt (19)

=D} +&°yD]™'D, +...,

where D, =0/0T,,and D, =0/7T,.

Expansion of the Rabotnov dimensionless
fractional operator in a Taylor series in terms of
a small parameter has the form [20]:

5 () =g =04y’
0+

—£*(1+7'D) ) ?cyDy D, +...

(20)

Substituting expansion (17) with account for
relationships (18)-(19), after equating the
coefficients at like powers of ¢ to zero, we are
led for the case of forced vibrations to the
following set of recurrence equations to various
orders:

to order ¢
D()2X11 + a)llel =0, (21)
D02X21+a)22X21:0, (22)
to order &°
D§ X3+ 0 X5 = —2D,D, X, — Xy, (1,05 —
—1,(+ 1} Dgz)-l) a X3 —a, X X2 + (23)

+2 flcos((a)fl —QF)TO)+ 2 flcos((a)fl +QF)TO),
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Dy X5 +@; Xp3 = =2D,D, X, — Xﬂ(ﬁngl -
1, (L+ 77 D7) )=, X5~ X X + (24)
+21, cos((wfz —QF)T0)+2 f, cos((a)fz +QF)TO),

where z, =% (1=1,2).

The solution of linear equations (21) and (22)
has the form

X, =A (Tz)exp(ia)jTo)+
_ (25)
+A (Tz)exp(—ia)jTO),

unknown

functions, and K (TZ) are conjugate functions
with A, (TZ).

Substituting relationships (25) in equations (23)
and (24) yields

where are yet

Dy X3 + @} X, = —2i0 D, A exp(ioyT, ) -

[ A(io)" - @@+ 2 (o)) |Aexp(inT,)-
o, A exp(BiaT,) +3A exp(ioT,) | A’ -

—aZ{AZZ exp| (@, +20,)T, |+ 2A, A exp(iaT, ) +
+A expli(e, —2w2)T0]} A+ fexp(i(, —Q)T, )+

+f,exp(i(w, +Qp)T, ) +cc,
(26)

Dy X 5 + @; X 3 = —2i0,D, A, exp(ia,T, ) -

| Ao, ) -+ o (i) ) | A explio]T,) -
—053[Az exp(3iw,T, ) +3A, exp(iw,T )]AZ -

—a4{Ai exp[ (20, + @,)T, |+ 2AA exp(io,T, ) +

+A expli(e, —2a)1)T0}} A+ 1, exp(i(cof2 —QF)TO)+

+f, exp(i(a)fz + QF)T0)+ cc.
(27)
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The analysis of relations (26)-(27) shows that
the case of the occurrence of the one-to-one
internal resonance is possible, when any two
vibration frequencies of the mechanical system
“plate+viscoelastic foundation” are close to
each other, namely:

o, =w,, andtherefore, Q,=Q,. (28)
From equations (26) and (27) it follows that the
internal resonance could be accompanied by the
external resonance when one of the following
conditions is fulfilled:

(1) & =, -Q,

() o =05 +Q¢. (29)

The condition for eliminating secular terms in
equations (26) and (27) with account for
relationships (28)-(29) leads to a set of two
governing equations:

20D, +| f(ie) - m+ 7y (@) ) |A
+3a, A A + o, AN + 20, AAA, — f =0,
20,0, +| 7 (i, )" - 7, (L 5 (i, ) )7 |, +
+3a, A A, + o A A + 20, A,AA — T, =0,

+
(30)
(31)

Multiplying (30) by A and (31) by A,, adding
and subtracting the equations conjugate to them,
and representing functions A in the polar form

A=ae’ (i=12), (32)

where a =a(T,) and ¢ =¢(T,) are the

functions of amplitudes and phases of
vibrations, yield the following set of equations:
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2\ 2 A 2.2 G
(af) +saf + o 'a,ala sing + (33
+fo'a sing, =0,

o _ .
(a%) +s,8} - ;' a7al sino + (3)
+f,0,'a, sing, =0,
) _121 _2051(‘)1_16112 — a0, 85 —

27t 2 (35)

—%aZa)llazz cosﬁ+% (o2, )_l cosg, =0,

o1 3 _ _
?, _5/12 _Easa)zlazz —Ot4a)21a12 -
(36)

_%a4a)2‘1af cos5+% f,(@,a, )71 cosg, =0,
(31)

where 6 =2(p, —¢,) is the phase difference,

S, = o siny, + o 'R sin®, +
Lo siny,,
A = gl cosy, — o 'R, cos ®, +

0 cosy,, (37)

Vi :%7[74 (i=1,2),

Ri = \/1+ Z(Tza)i )72 CoSy, + (TZG)i )272 !

(r,,)" siny,

tan @, = .
" 1+ (7,0, ) cosy,

The set of equations (33)-(36) is the governing
one for the amplitudes and phases of nonlinear
force driven vibrations of the elastic simply
supported plate on a nonlinear viscoelastic
Winkler-type foundation, damping features of
which are defined by the fractional derivative
standard linear solid model (4), when vibrations
occur in a viscoelastic surrounding medium,
properties of which are described by the
fractional derivative Kelvin-Voigt model.

For other types of boundary conditions, the
governing set of equations could be obtained in
a similar way by changing the vibration
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frequencies (see Table 1) and coefficients
a,—a, (presented in Appendix B) in the

expressions (33)-(36), as well as the terms
depending on the external load.

4. NUMERICAL EXAMPLE

Equations (33)-(36) were solved numerically in
the «Mathcad 15» system by using the method
suggested in [31] for the cases of free and forced
driven vibrations of the SSSS plate. A quadratic
plate was considered as an example with the
following geometric parameters: a=b=10m,

h=0,3m, m =n,=1 m,=n =3and material
parameters E =3,25-10"kPa, p = 2400kg/m?,
and v =0.3. The harmonic load is moving with
the constant velocity V =30m/s and frequency

Q. =95s? along the x-axis. The vibrations of

the plate are studied for three cases of external
load: P =2140N (Fig. 2b), P =5000N (Fig.
2c), and P =7140N (Fig. 2d).

Marina V. Shitikova, Anastasiya I. Krusser

The plate is subjected to the conditions of the
internal resonance 1:1 at @, = w, =104,42s™,

accompanied by the external resonance:

3,14-1-30

0, =0, +Q; = +95=104,425,

Figure 2 clearly shows the energy exchange
between interacting modes of nonlinear free
vibrations and force driven vibrations of the
simply supported plate on the elastic (, =0) and

viscoelastic (y, = 0) foundation via the fractional

calculus standard linear solid for different values
of external load. It is seen that an increase in the
magnitude of the external force results in the
increase in dimensionless amplitudes of vibrations
of the plate. The dependence of the amplitudes of
nonlinear vibrations on the values of fractional
parameters y, and y, is shown in Figure 3. With
the appearance of the damping properties of the

viscoelastic medium, the damping of vibrations
increases.

3 W |

\"“H_nln !
\ ||I| lwi| .|||h {]llln

%h ;hlh ’w

aHl b
i
"
11
|
I
|

Figure 2. The dimensionless T2-dependence of the dimensionless amplitudes of nonlinear vibrations
for SSSS-plate for m, =n, =1, m, =n, =3 a) free vibrations, and force driven vibrations at

b) f,=-3 f,=3,¢) f,=-7,f,=7,d) f,=-10, f, =10; solid line — a2, dashed line — a1
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— 1=0.05; y2=0
— e =0.05; y2=0.1

16 a)

— y=0.1; y=0
— =1 y=0.1

: — p=0.1; y=0.2
) — =01 y=0.25

Figure 3. The dimensionless T2-dependence of the dimensionless amplitudes of nonlinear vibrations
of SSSS-plate for different values of fractional parametersat f, =-3, f,=3; m =n, =1,

m, =n, =3; solid line — a2, dashed line — a1

5. CONCLUSION

In the present paper, the problem of nonlinear
vibrations of a von Karman elastic plate based
on a viscoelastic Winkler-type foundation and
subjected to moving load is solved. The
damping features of the viscoelastic foundation
are described by the fractional derivative
standard linear solid model, while the damping
properties of the environment in which the
vibrations occur are described by the Kelvin-
Voigt model with the Riemann-Liouville
fractional derivative. The expressions for the
stress function and nonlinear coefficients for
SSSS, CCCC and CSCS types of boundary
conditions are presented. The governing
equations are obtained for determining
nonlinear amplitudes and phases in the case of
forced driven vibrations, when the natural
frequencies of the two dominant vibration
modes are close to each other and to the
frequency of the external load. The resulting set
of equations allows one to control the damping
properties of the external environment and the
foundation by changing the fractional

\Volume 17, Issue 4, 2021

parameters from zero, what corresponds to an
elastic medium and/or elastic foundation, to
unit, what conforms to the traditional standard
linear solid model, resulting in the expansion of
the range of applicability of the solution
obtained.

The derived set of equations has been solved
numerically for the SSSS case of boundary
conditions using the approach described in [31].
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APPENDIX A

1) SSSS-plate

where & = E
a

POGY)=EN D 30D o XY

1

mi
n, a

=
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zp(m, +m,)x zp(m, —m,)x n? 1
Mlp = COoS p( 1a 2) , sz = COS p( 1a 2) ’ ¢i02 _ §3Z ’ ¢|20 — 32§2m2
qu — COS ”q(n1+n2)y, qu — COS ”q(nl_nz)y ,
b b
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3) CSCS-plate

1
¢(X’y’t):Eh{ZZZ¢|pqxlelq X|(t) +[4(A42M12N11_D42M22N21_B 2M12N21+C Mzan)
i q

m12 2.2
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242 2 D5: 242 2"
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APPENDIX B
1) SSSS-plate

ab m4 n4
4 2 2
l: 2pab” IJ‘Kll Lll |:_}1Y12 +b_];1 X12:|dXdy,
00
4ab , 4 n4
oy = Zpabﬂ IJ‘Kzl L21 |: b—iX22:|dXdy
00

a, =— 7[4.T.T{ 11L11{ 2 ngz n TZ Xzz} 2m K21L21M11[ Aiz(nl"'nz)z N11+B12(n1_n2)2 N21}+
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2 2n’
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E 20 m’m2 n/n 2m
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—1'(:;?;2 H2L11X22Y22(4mfn22X12—nfmzz(l— Xy2)) - LZT)ZHZH Ky,YiK,,L, —

2:2b2 Xaoloa[~A2 (141, ) MipNy + B2 (=, ) M N, -
~C,2(n+1n,) My,Ny, +D,2 (n, =1, )" My N,, +2B2m?nZ (n, +n,)° X,N,, —
~2CM2N (1 =1, )" XNyy = 2APMENE (1 =1, )7 Ny Xy, + 2D57m2n (my 1, ) Ny X, | -

e sz (1= X)L | A7 (MM, )" Ny + B, (my+m, ) My, Ny, -
~C,2(m —m,)" M,,N,, +% D2 (m,—m,)" M,,N,, + 2Bm/nZX,,N,, -
—2C2 MmN} X5, N oy = 2A°MINEN,, X, + 2D myne Ny, X 5, |+

:SZ KoY [ B2 (M +m, )(n, =1, ) ST, +
+A(m +m,)(n +n,)S,T, +C*(m —m,)(n +n,)S,T, -D,(m —m,)(n,—n,)S,T, - (B.11)

—ZB2 3 2(n1+n )T K, +2C2 *n 2( )T21K22+2A52 m’n 2( 1—n2)T21K12—
_2D2 ;N 2(n1+n2)T11K22 }(1_ X 2L, dxdy,
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n’n’

ab
4 2
a, = 3pab 7 '(['([{ |: XploYi, +

m?n?
_166112t1)2 G*L, XYy, (4m22n12X22 —n;my (1- Xzz))_
m2 2
2a2b2 12L11[ A42(nl+n2) M12N11+B42(n1

_C4 (n1 +n, )2 M22N11 + D42 (nl

_2C52m22n12 (nl_nz )2 X22N21_2'6‘52”]12“22 (nl

2b2

1
~C,2(m, —m,)’ M22N11+ZD42 (m

n,)" M,N,, +2B,*m?
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X
4b42 L21(1_ X22)(X12 _f) -

3,3
mnm,n, -,
—L 122 GPK,,Y, K
4a2b2 22721 12L12

2
nz) M12N21 -

n22 (n1 +n, )2 X12 N11 -

n, )2 N,, X, +2D,’m;n; (n, + n2)2 Nllxzz}_
(1 XlZ)Lll|: A42 (ml + m2 )2 MlZNll + B42 (ml + m2)2 M12N21 -

m, )2 M21N22 + ZBssznzlean -

_chzmgnlzxzz Ny, — 2A52ml4n§ N Xy, + 2D52m;n12 Ny X2 :I +

m n
#KHYM[ B2 (m, +m,)(n,—n,)S,T, +

+A7(m +m,)(n,+n,)S,T,, +C2(m —m,)(n +n,)S,,T, - D, (m —m,)(n
)T21K22+2A5 m ( 1

—2BSm’n; (n, +n,)T,,K,, +2C*mon; (n, —
—2D/min? (n, +n,)T,,K,, ]} (1-X,,)L,dxdy,

where G? = 32201222 JH2=—
mZn;

32,5,
m;n;

- ) SlZTZZ -

(B.12)
n, )T21 K12
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