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Abstract: As is known, targeted regulation of the frequency spectrum of natural vibrations of elastic systems 

with a finite number of degrees of mass freedom can be performed by introducing additional generalized con-

straints and generalized kinematic devices. Each targeted generalized constraint increases, and each generalized 

kinematic device reduces the value of only one selected natural frequency to a predetermined value, without 

changing the remaining natural frequencies and all forms of natural vibrations (natural modes). To date, for some 

elastic systems with a finite number of degrees of freedom of masses, in which the directions of mass movement 

are parallel and lie in the same plane, special methods have been already developed for creating additional con-

straints and generalized kinematic devices that change the frequency spectrum of natural vibrations in a targeted 

manner. In particular, a theory and an algorithm for the creation of targeted generalized constraints and general-

ized kinematic devices have been developed for rods. It was previously proved that the method of forming a ma-

trix of additional stiffness coefficients, specifying targeted generalized constraint, in the problem of natural vi-

brations of rods can also be applied to solving a similar problem for elastic systems with a finite number of de-

grees of freedom, in which the directions of mass movement are parallel, but do not lie in the same plane. In par-

ticular, such systems include plates. The distinctive paper shows that the method of forming a matrix for taking 

into account the action of additional inertial forces, specifying targeted kinematic devices in the problem of natu -

ral vibrations of rods can also be applied to solving a similar problem for elastic systems with a finite number of 

degrees of freedom, in which the directions of mass movement are parallel, but do not lie in the same plane. 

However, the algorithms for the creation of targeted generalized kinematic devices developed for rods based on 

the properties of rope polygons cannot be used without significant changes in a similar problem for plates. The 

method of creation of computational schemes of kinematic devices that precisely change the frequency spectrum 

of natural vibrations of elastic plates with a finite number of degrees of mass freedom is a separate problem and 

will be considered in a subsequent paper 
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INTRODUCTION 
 

When designing structures, in some cases it be-

comes necessary to deduce one or several natu-

ral frequencies from a certain frequency inter-

val. As is known [1-4] one of the methods for 

solving such a problem is the creation of target-

ed generalized constraints and generalized kin-

ematic devices. Special methods and algorithms 

of creation of generalized constraints and gener-

alized kinematic devices for elastic rods carry-

ing a finite amount of concentrated masses were 

developed and presented in the above-

mentioned papers. It was shown in [5] that the 

method of forming a matrix of additional stiff-

ness coefficients, specifying the targeted con-

straints in the problem of natural vibrations of 

rods can also be applied to solving a similar 

problem for elastic systems with a finite number 

of degrees of freedom, in which the directions 

of motion of the masses are parallel, but do not 

lie in the same plane. Let us show in the distinc-

tive paper that a similar approach can be applied 

to solving the problem of creating targeting 

generalized kinematic devices for elastic sys-

tems with a finite number of degrees of free-

dom, in which the directions of motion of the 

masses are parallel, but do not lie in the same 

plane. In particular, such systems include plates. 

By analogy with the approach, described in [5], 

let us firstly present a method of creation of tar-

geted kinematic devices for elastic rods [6] car-

rying a finite amount of concentrated masses. 

We can use system shown in Figure 1 [3, 4].  

 

 
Figure 1. Sample system. 

 

As in [5], the main system of the displacement 

method was chosen (Figure 1b). The equations 

of the displacement method were written in the 

form conventional for systems with a finite 

number of degrees of freedom 
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As in [5], the main system of the displacement 

method was chosen (Figure 1b). The equations 

of the displacement method were written in the 

form conventional for systems with a finite 

number of degrees of freedom 
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Figure 2. Main system of the displacement 

method (sample). 
 

Values ],[ kir  in (1) form matrix of stiffness co-

efficients ],[ kirA ; ][im  are the values of 

the masses, which form a diagonal matrix 

][imM ;  is the frequency of natural vibra-

tions of the system; ],[ jkv  are displacements in 

the direction of motion of the masses in the j -

th form of natural vibrations (natural modes). 

Roots of the equation 

 

02MA                    (2) 

 

determine the spectrum of frequencies of natural 

vibrations of the system 

 

][ ],...1[ ],[ ],1[ ..., ],2[ ],1[ nqqq . (3) 

 

For example, in [3, 4] for rods it is shown that a 

kinematic device with one degree of activity 

transfers to the structure a generalized targeted 

inertial force, which reduces the value of only 

one natural vibration frequency to a given value, 

leaving the rest of the spectrum frequencies un-

changed. The device is formed on the basis of a 

matrix for taking into account the action of ad-

ditional inertial forces 

 

mm MMM 00 ,                   (4) 

 

where we have 

 
n

kim kimM
1,0 ,[ .                 (5) 

 

The matrix 0M  must have special properties. If 

the introduced kinematic device is targeted at 

the q -th natural frequency, then the coefficients 

of the matrix mM  (
n

ki
kim

1,0 ],[ ) should be or-

thogonal to the coordinates of the modes of nat-

ural vibrations of the remaining frequencies of 

the spectrum. That is we have 
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With respect to the q -th natural frequency, 

which is “targeted” by the kinematic device we 

have 
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It was shown in [3, 4] that conditions (6) and (7) 

will be satisfied by the coefficients 

 

],[],[][][],[0 qkvqivkmimkim .       (8) 

 

The value of the factor 0mM  is found as the root 

of the equation 

 

0)()( 2

0

2

mSmS MMMA .        (9) 

 

Considering that the )(q -th form of natural vi-

brations remains its form of natural vibrations 

even at frequency S , the factor mOM  can be 

found as 

 

Aimed Control of the Frequency Spectrum of Eigenvibrations of Elastic Plates with a Finite Number of Degrees of 
Mass Freedom by Introducing Additional Generalized Kinematic Devices



184 International Journal for Computational Civil and Structural Engineering

n

i

n

k S

n

i

n

k S

m

qkvqivkim

qkvqivkimkia

M

1 1 021 1 20

)](,[)](,[],[

)](,[)](,[]),[],[( . 

(10)  The result of solving the equation  0)( 02 mm MMMA .       (11)  must confirm that the modes of natural vibra-tions have not changed, and the “targeted” fre-quency has decreased to S . The kinematic device, which will correspond to the matrix of coefficients for taking into account the action of additional inertial forces  mm MMM 00 ,  where nkim kimM 1,0 ,[ ,  should provide the ratio between the nodal dis-placements the same as between the coordinates of the q -th form of natural vibrations of the original system. In [3, 4] it is also shown that such a relation will be realized if the kinematic device transfers inertial forces to the nodes, the ratios between which will be proportional to the ratios between the forces  ],[][][0 qivimiR .              (12)  An example of such a generalized targeted kin-ematic system for a rod is a sprengel, the outline of which is determined by a rope polygon built in the plane of motion of masses by forces (see, for example, [3, 4]). The derivation of the expressions for the coeffi-cients of the matrix for taking into account the action of additional inertial forces (4) for the rods is based on the use of the displacement method in the conventional form and the proper-ties of the modes of natural vibrations (natural modes). 

Since the modes of natural vibrations of the plates, as well as for rods, are orthogonal, the problem for elastic plates carrying a finite num-ber of concentrated masses, as well as for rods, will be based on the formation of a matrix for taking into account the action of additional iner-tial forces. The coefficients nkikim 1,0 ],[  must also satisfy conditions (6) and (7) and be deter-mined by dependencies (8). Let us give an example that confirms that the matrix of additional stiffness coefficients (4) serves as the basis for creating targeted kinemat-ic devices and for elastic plates carrying a finite number of concentrated masses. Let us consider a plate from [5], carrying 25 concentrated masses (Figure 3).   

 Figure 3. Considering plate (sample).  In node number 9 the mass is equal to 600 kg, in node number 18 the mass is equal to 1000 kg, and in other nodes the mass is equal to 800 kg each. The dimensions of the plate in the plan are 6 m by 6 m, the thickness is equal to 0.12 m. The modulus of elasticity of the plate material is E = 24,000,000,000 n / m2 Poisson's ratio is equal to vo = 0.2. With the main system of the displacement method (Figure 4) and one-dimensional numbering of values ],[ jkv  in ac-cordance with Figure 3, the spectrum of natural vibration frequencies is determined as the roots of equation (2).  
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n
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kim
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ic devices and for elastic plates carrying a finite 
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Let us consider a plate from [5], carrying 25 

concentrated masses (Figure 3).  

 

 
Figure 3. Considering plate (sample). 

 
In node number 9 the mass is equal to 600 kg, in 

node number 18 the mass is equal to 1000 kg, 

and in other nodes the mass is equal to 800 kg 

each. The dimensions of the plate in the plan are 

6 m by 6 m, the thickness is equal to 0.12 m. 

The modulus of elasticity of the plate material is 

E = 24,000,000,000 n / m2 Poisson's ratio is 

equal to vo = 0.2. With the main system of the 

displacement method (Figure 4) and one-

dimensional numbering of values ],[ jkv  in ac-

cordance with Figure 3, the spectrum of natural 

vibration frequencies is determined as the roots 

of equation (2).  
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Figure 4. Main system of the displacement 

method (sample). 
 

The values of the first five frequencies of natu-

ral vibrations of the plate and the coordinates of 

the corresponding eigenmodes are given in Ta-

ble 1 (columns are initial frequencies and 

shapes). 

Suppose that it is required to expand the interval 

between the fourth and fifth natural frequencies 

by reducing the value of the fourth frequency 

from 146.834 sec-1 to 110 sec-1. For this, in ac-

cordance with (6), (7) and (8), we can form a 

matrix of the matrix for taking into account the 

action of additional inertial forces. The data re-

quired for using dependencies (6), (7) and (8) 

are given in the description of the plate and in 

Table 1 (columns are initial frequencies and 

shapes). 

After the formation of the matrix of the action 

of additional inertial forces, taking into account 

their influence, we determine from equation 

(11) the modified spectrum of natural frequen-

cies and the corresponding vibration modes. 

The first five natural frequencies and their cor-

responding shapes are shown in Table 1 (col-

umns are modified frequencies and shapes). 

It can be seen from Table 1 that taking into ac-

count additional stiffness coefficients did not 

change any of the modes of natural vibrations of 

the plate, but only reduced the value of one of 

the frequencies from 146.834 s-1 to a given val-

ue of 110 s-1. This result clearly illustrates the 

possibility of using dependencies (6), (7) and 

(8) for solving the problem of a generalized kin-

ematic device of constraints for elastic plates 

with a finite number of degrees of freedom of 

masses. 

The generalized kinematic device for the plate, 

as well as for the rod, must create an additional 

generalized inertial force that ensures the target 

of the action. 

As noted above, the properties of the kinematic 

devices for the rods are based on the properties 

of the natural vibration modes. The same prop-

erties apply to elastic plates. This circumstance 

serves as a justification for using the results of 

formulating the properties of kinematic devices 

for rods and in a similar problem for plates. 

Thus, for an elastic plate with a finite number of 

degrees of freedom of masses, the generalized 

kinematic device must correspond to the matrix 

for taking into account additional inertial forces 

(4). If the computational scheme of the con-

straint is represented by a variant of the hinge-

rod system, then it should be with one degree of 

activity, in the nodes of the plate where the 

masses are located, racks are installed in the di-

rection of movement of the masses, and during 

oscillations in the racks of the system, forces 

should arise, the ratios between which are pro-

portional to the ratios between efforts ][0 iR  

(12). In this case, in the structure of the con-

straint there should not be any connections with 

the plate, except for the racks installed in the 

nodes of the plate, where the masses are located. 

So, in this paper it is shown that the method of 

forming the account of additional inertial forces 

that determine the targeted kinematic device in 

the problem of natural vibrations of rods can also 

be applied to solving similar problems for elastic 

systems with a finite number of degrees of free-

dom of masses, for which the directions of mo-

tion of masses parallel, but not in the same plane. 

The paper substantiates and formulates the 

properties and requirements to which the design 

schemes of targeted kinematic devices in the 

problem under consideration must correspond. 

Design schemes of generalized kinematic devic-

es that meet the above requirements are multi-

variate and depend on the shape of the plate, the 

locations of the masses and some other features 

of the original object. Taking these circum-

stances into account, the approaches and algo-

rithms for the formation of the corresponding 

design schemes that purposefully change the 

spectrum of natural vibration frequencies of 

elastic plates with a finite number of degrees of 

freedom of masses represent a separate problem 

and will be considered in a subsequent work. 
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Table 1. Results of analysis. 
 Initial frequencies and modes Modified frequencies and modes 

36.6583 91.0084 92.7466 146.834 178.911 36.6583 91.0084 92.7466 110.0000 178.911 

1 0.0830 0.1995 0.0499 -0.2495 0.1547 0.0830 -0.1995 -0.0499 0.2495 0.1547 

2 0.1434 0.2935 -0.0043 -0.2433 -0.0063 0.1434 -0.2935 0.0043 0.2433 -0.0063 

3 0.1649 0.2568 -0.1468 0.0129 -0.1657 0.1649 -0.2568 0.1468 -0.0129 -0.1657 

4 0.1420 0.1514 -0.2494 0.2641 -0.0063 0.1420 -0.1514 0.2494 -0.2641 -0.0063 

5 0.0818 0.0579 -0.1971 0.2624 0.1548 0.0818 -0.0579 0.1971 -0.2624 0.1548 

6 0.1441 0.2533 0.1398 -0.2517 0.2788 0.1441 -0.2533 -0.1398 0.2517 0.2788 

7 0.2492 0.3484 0.0840 -0.2447 0.0003 0.2492 -0.3484 -0.0840 0.2447 0.0003 

8 0.2867 0.2601 -0.1502 0.0123 -0.2788 0.2867 -0.2601 0.1502 -0.0123 -0.2788 

9 0.2468 0.1025 -0.3415 0.2593 0.0003 0.2468 -0.1025 0.3415 -0.2593 0.0003 

10 0.1423 0.0090 -0.2912 0.2642 0.2789 0.1423 -0.0090 0.2912 -0.2642 0.2789 

11 0.1672 0.1467 0.2455 -0.0058 0.3359 0.1672 -0.1467 -0.2455 0.0058 0.3359 

12 0.2895 0.1491 0.2411 -0.0017 0.0088 0.2895 -0.1491 -0.2411 0.0017 0.0088 

13 0.3336 0.0082 -0.0119 0.0070 -0.3237 0.3336 -0.0082 0.0119 -0.0070 -0.3237 

14 0.2877 -0.1313 -0.2630 0.0124 0.0088 0.2877 0.1313 0.2630 -0.0124 0.0088 

15 0.1657 -0.1331 -0.2605 0.0131 0.3359 0.1657 0.1331 0.2605 -0.0131 0.3359 

16 0.1454 0.0007 0.2856 0.2417 0.3025 0.1454 -0.0007 -0.2856 -0.2417 0.3025 

17 0.2522 -0.0908 0.3339 0.2415 0.0119 0.2522 0.0908 -0.3339 -0.2415 0.0119 

18 0.2915 -0.2485 0.1317 -0.0018 -0.2941 0.2915 0.2485 -0.1317 0.0018 -0.2941 

19 0.2513 -0.3314 -0.1103 -0.2446 0.0118 0.2513 0.3314 0.1103 0.2446 0.0118 

20 0.1446 -0.2398 -0.1592 -0.2432 0.3025 0.1446 0.2398 0.1592 0.2432 0.3025 

21 0.0842 -0.0528 0.1956 0.2437 0.1811 0.0842 0.0528 -0.1956 -0.2437 0.1811 

22 0.1461 -0.1445 0.2454 0.2416 0.0151 0.1461 0.1445 -0.2454 -0.2416 0.0151 

23 0.1688 -0.2486 0.1349 -0.0059 -0.1580 0.1688 0.2486 -0.1349 0.0059 -0.1580 

24 0.1457 -0.2827 -0.0135 -0.2517 0.0151 0.1457 0.2827 0.0135 0.2517 0.0151 

25 0.0838 -0.1910 -0.0633 -0.2494 0.1811 0.0838 0.1910 0.0633 0.2494 0.1811 
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1 0.0830 0.1995 0.0499 -0.2495 0.1547 0.0830 -0.1995 -0.0499 0.2495 0.1547 

2 0.1434 0.2935 -0.0043 -0.2433 -0.0063 0.1434 -0.2935 0.0043 0.2433 -0.0063 

3 0.1649 0.2568 -0.1468 0.0129 -0.1657 0.1649 -0.2568 0.1468 -0.0129 -0.1657 

4 0.1420 0.1514 -0.2494 0.2641 -0.0063 0.1420 -0.1514 0.2494 -0.2641 -0.0063 

5 0.0818 0.0579 -0.1971 0.2624 0.1548 0.0818 -0.0579 0.1971 -0.2624 0.1548 

6 0.1441 0.2533 0.1398 -0.2517 0.2788 0.1441 -0.2533 -0.1398 0.2517 0.2788 

7 0.2492 0.3484 0.0840 -0.2447 0.0003 0.2492 -0.3484 -0.0840 0.2447 0.0003 

8 0.2867 0.2601 -0.1502 0.0123 -0.2788 0.2867 -0.2601 0.1502 -0.0123 -0.2788 

9 0.2468 0.1025 -0.3415 0.2593 0.0003 0.2468 -0.1025 0.3415 -0.2593 0.0003 

10 0.1423 0.0090 -0.2912 0.2642 0.2789 0.1423 -0.0090 0.2912 -0.2642 0.2789 

11 0.1672 0.1467 0.2455 -0.0058 0.3359 0.1672 -0.1467 -0.2455 0.0058 0.3359 

12 0.2895 0.1491 0.2411 -0.0017 0.0088 0.2895 -0.1491 -0.2411 0.0017 0.0088 

13 0.3336 0.0082 -0.0119 0.0070 -0.3237 0.3336 -0.0082 0.0119 -0.0070 -0.3237 

14 0.2877 -0.1313 -0.2630 0.0124 0.0088 0.2877 0.1313 0.2630 -0.0124 0.0088 

15 0.1657 -0.1331 -0.2605 0.0131 0.3359 0.1657 0.1331 0.2605 -0.0131 0.3359 

16 0.1454 0.0007 0.2856 0.2417 0.3025 0.1454 -0.0007 -0.2856 -0.2417 0.3025 

17 0.2522 -0.0908 0.3339 0.2415 0.0119 0.2522 0.0908 -0.3339 -0.2415 0.0119 

18 0.2915 -0.2485 0.1317 -0.0018 -0.2941 0.2915 0.2485 -0.1317 0.0018 -0.2941 

19 0.2513 -0.3314 -0.1103 -0.2446 0.0118 0.2513 0.3314 0.1103 0.2446 0.0118 

20 0.1446 -0.2398 -0.1592 -0.2432 0.3025 0.1446 0.2398 0.1592 0.2432 0.3025 

21 0.0842 -0.0528 0.1956 0.2437 0.1811 0.0842 0.0528 -0.1956 -0.2437 0.1811 

22 0.1461 -0.1445 0.2454 0.2416 0.0151 0.1461 0.1445 -0.2454 -0.2416 0.0151 

23 0.1688 -0.2486 0.1349 -0.0059 -0.1580 0.1688 0.2486 -0.1349 0.0059 -0.1580 

24 0.1457 -0.2827 -0.0135 -0.2517 0.0151 0.1457 0.2827 0.0135 0.2517 0.0151 

25 0.0838 -0.1910 -0.0633 -0.2494 0.1811 0.0838 0.1910 0.0633 0.2494 0.1811 
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